ebook img

Acoustic MIMO Signal Processing (2006) (Signals and Communication Technology) PDF

383 Pages·2006·14.917 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Acoustic MIMO Signal Processing (2006) (Signals and Communication Technology)

Springer Series on SIGNALS AND COMMUNICATION TECHNOLOGY SIGNALS AND COMMUNICATION TECHNOLOGY Circuits aad Systems Processing of SAR Data Based on Delta Modulation Fundamentals, Signal Processing, Interferometty Linear, Nonlinear and Mixed Mode Processing A. Hein ISBN 3-540-05043-4 D.G. Zrilic ISBN 3-540-23751-8 Chaos-Based Digital Functional Structures in Networks Communication Systems AMLn—^A Language for Model Driven Operating Principles, Analysis Methods, Development of Telecom Systems and Performance Evaluation T. Muth ISBN 3-540-22545-5 F.C.M. Lau and C.K. Tse ISBN 3-540-00602-8 Radio Wave Propagation Adaptive Signal Processing for Telecommunications Applications Application to Real-World Problems H. Sizun ISBN 3-540-40758-8 J. Benesty and Y. Huang (Eds.) ISBN 3-540-00051-8 Electronic Noise and Interfering S^nals Principals and Applications Multimedia Information Retrieval G. Vasilescu ISBN 3-540-40741-3 and Management Technological Fundaments and Applications DVB D. Feng, W.C. Siu, and H.L Zhang (Eds.) The Family of International Standards ISBN 3-540-00244-8 for Digital Video Broadcasting, 2nd Ed. U. Reimers ISBN 3-540-43545-X Structured Cable Systems A,B. Semenov, S.K. Strizhakov, Digital Interactive TV and Metadata and I.R. Suncheley ISBN 3-540-43000-8 Future Broadcast Multimedia A. Lugmayr, S. Niiranen, and S. Kalli UMTS ISBN 3-387-20843-7 The Physical Layer of the Universal Mobile Telecommunications System Adaptive Antenna Arrays A. Springer and R. Weigel Trends and Applications ISBN 3-540-42162-9 S. Chandran (Ed.) ISBN 3-540-20199-8 Advanced Theory of Signal Detection Digital Signal Processing Weak Signal Detection in with Field Programmable Gate Arrays Generalized Observations U. Meyer-Baese ISBN 3-540-21119-5 I. Song, J. Bae, and S.Y. Kim ISBN 3-540-43064-4 Neuro-Fuzzy and Fuzzy Neural Applications in Telecommunications Wireless Internet Access over GSM and P. Stavroulakis (Ed.) ISBN 3-540-40759-6 UMTS M. Tafemer and E. Bonek SMDA for Multipath Wireless Channels ISBN 3-540-42551-9 Limiting Characteristics and Stochastic Models L.P. Kovalyov ISBN 3-540-40225-X The Variational Bayes Method in Signal Processing Digital Television V. §m{dl and A. Quinn A Practical Guide for Engineers ISBN 3-540-28819-8 W. Fischer ISBN 3-540-01155-2 Distributed Cooperative Laboratories Multimedia Communication Technology Networking, Instrumentation, and Measurements Representation, Transmission F. Davoli, S. Palazzo and S. Zappatore (Eds.) and Identification of Multimedia Signals ISBN 0-387-29811-8 J.R. Ohm ISBN 3-540-01249-4 Orthogonal Frequency Division Multiplexing Information Measures for Wireless Communications Information and its Description in Science and Y. (Geoffiey) Li and G. L. StOber (Eds.) Engineering ISBN: 0-387-29095-8 C. Amdt ISBN 3-540-40855-X Yiteng (Arden) Huang Jacob Benesty Jingdong Chen Acoustic MIMO Signal Processing Springer Dr. Yiteng (Arden) Huang Bell Labs, Lucent Technologies 600 Mountain Ave. Murray Hill, NJ 07974 USA Prof. Dr. Jacob Benesty INRS-EMT, University of Quebec 800 de la Gauchetiere Quest Montreal, QC, H5A 1K6 Canada Dr. Jingdong Chen Bell Labs, Lucent Technologies 600 Mountain Ave. Murray Hill, NJ 07974 USA Acoustic MIMO Signal Processing Library of Congress Control Number: 2006920463 ISBN 0-387-27674-2 e-ISBN 0-387-27676-9 ISBN 9780387276748 Printed on acid-free paper. © 2006 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and simila rterms, even if they are not identified as such ,is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. 9 8 7 6 5 4 3 21 springer.com Contents Preface xiii 1 Introduction 1 1.1 Acoustic MIMO Signal Processing 1 1.2 Organization of the Book 4 Part I Theory 2 Acoustic MIMO Systems 9 2.1 Signal Models 9 2.1.1 SISO Model 9 2.1.2 SIMO Model 11 2.1.3 MISO Model 12 2.1.4 MIMO Model 12 2.2 Characteristics of Acoustic Channels 13 2.2.1 Linearity and Shift-Invariance 14 2.2.2 FIR Representation 14 2.2.3 Time-Varying Channel Impulse Responses 14 2.2.4 Frequency Selectivity 15 2.2.5 Reverberation Time 15 2.2.6 Channel Invertibility and Minimum-Phase Filter 16 2.2.7 Multichannel Diversity and the Common-Zero Problem 18 2.2.8 Sparse Impulse Response 19 2.3 Measurement and Simulation of MIMO Acoustic Systems 21 2.3.1 Direct Measurement of Acoustic Impulse Responses.... 22 2.3.2 Image Model for Acoustic Impulse Response Simulation 24 2.4 Summary 29 Contents Wiener Filter and Basic Adaptive Algorithms 31 3.1 Introduction 31 3.2 Wiener Filter 32 3.3 Impulse Response Tail Effect 34 3.4 Condition Number 35 3.4.1 Decomposition of the Correlation Matrix 36 3.4.2 Condition Number with the Frobenius Norm 37 3.4.3 Fast Computation of the Condition Number 39 3.5 Basic Adaptive Algorithms 41 3.5.1 Deterministic Algorithm 41 3.5.2 Stochastic Algorithm 44 3.5.3 Sign Algorithms 46 3.6 MIMO Wiener Filter 48 3.7 Numerical Examples 53 3.8 Summary 56 Sparse Adaptive Filters 59 4.1 Introduction 59 4.2 Notation and Definitions 60 4.3 The NLMS, PNLMS, and IPNLMS Algorithms 61 4.4 Universal Criterion 64 4.4.1 Linear Update 65 4.4.2 Non-Linear Update 67 4.5 Exponentiated Gradient Algorithms 68 4.5.1 The EG Algorithm for Positive Weights 68 4.5.2 The EG± Algorithm for Positive and Negative Weights 69 4.5.3 The Exponentiated RLS (ERLS) Algorithm 71 4.6 The Lambert W Function Based Gradient Algorithm 72 4.7 Some Important Links Among Algorithms 74 4.7.1 Link Between NLMS and EG± Algorithms 74 4.7.2 Link Between IPNLMS and EG± Algorithms 75 4.7.3 Link Between LWG and EG± Algorithms 77 4.8 Numerical Examples 78 4.9 Summary 83 Frequency-Domain Adaptive Filters 85 5.1 Introduction 85 5.2 Derivation of SISO FD Adaptive Algorithms 86 5.2.1 Criterion 86 5.2.2 Normal Equations 89 5.2.3 Adaptive Algorithms 91 5.2.4 Convergence Analysis 93 5.3 Approximation and Special Cases 96 5.3.1 Approximation 96 5.3.2 Special Cases 98 Contents 5.4 FD Affine Projection Algorithm 99 5.5 Generalization to the MISO System Case 101 5.6 Numerical Examples 104 5.7 Summary 106 Blind Identification of Acoustic MIMO Systems 109 6.1 Introduction 109 6.2 Blind SIMO Identification Ill 6.2.1 Identifiability and Principle HI 6.2.2 Constrained Time-Domain Multichannel LMS and Newton Algorithms 113 6.2.3 Unconstrained Multichannel LMS Algorithm with Optimal Step-Size Control 120 6.2.4 Frequency-Domain Unnormalized and Normalized Multichannel LMS Algorithms 122 6.2.5 Adaptive Multichannel Exponentiated Gradient Algorithm 135 6.2.6 Numerical Examples 141 6.3 Bhnd MIMO Identification 147 6.3.1 Problem Formulation and Background Review 148 6.3.2 Memoryless MIMO System with White Inputs 151 6.3.3 Memoryless MIMO System with Colored Inputs 152 6.3.4 Convolutive MIMO Systems with White Inputs 154 6.3.5 Convolutive MIMO Systems with Colored Inputs 156 6.3.6 Frequency-Domain Blind Identification of Convolutive MIMO Systems and Permutation Inconsistency 157 6.3.7 Convolutive MIMO Systems with White but Quasistationary Inputs 158 6.4 Summary 160 6.5 Appendix. Blind SIMO Identification: A Derivation Directly From the Covariance Matrices of the System Outputs 161 Separation and Suppression of Co-Channel and Temporal Interference 169 7.1 Introduction 169 7.2 Separating Co-Channel and Temporal Interference 170 7.2.1 Example: Conversion of a 2 x 3 MIMO System to Two SIMO Systems 170 7.2.2 Generalization to M x N MIMO Systems with M > 2 and M < AT 174 7.3 Suppressing Temporal Interference 177 7.3.1 Direct Inverse (Zero-Forcing) Equalizer 178 7.3.2 MMSE Equalizer 179 7.3.3 MINT Equalizers 179 7.4 Summary 182 Contents Part II Applications Acoustic Echo Cancellation and Audio Bridging 185 8.1 Introduction 185 8.2 Network Echo Problem 186 8.3 Single-Channel Acoustic Echo Cancellation 188 8.4 Multichannel Acoustic Echo Cancellation 190 8.4.1 Multi versus Mono 190 8.4.2 Multichannel Identification and the Nonuniqueness Problem 192 8.4.3 Impulse Response Tail EflPect 194 8.4.4 Some Different Solutions for Decorrelation 195 8.5 Hybrid Mono/Stereo Acoustic Echo Canceler 199 8.6 Double-Talk Detection 200 8.6.1 Basics 200 8.6.2 Double-Talk Detection Algorithms 202 8.6.3 Performance Evaluation of DTDs 206 8.7 Audio Bridging 206 8.7.1 Principle 206 8.7.2 Interchannel Differences for Synthesizing Stereo Sound . 209 8.7.3 Choice of Interchannel Differences for Stereo AEC 211 8.8 Summary 212 Time Delay Estimation and Acoustic Source Localization .215 9.1 Time Delay Estimation 215 9.2 Cross-Correlation Method 217 9.3 Magnitude-Difference Method 219 9.4 Maximum Likelihood Method 220 9.5 Generalized Cross-Correlation Method 223 9.6 Adaptive Eigenvalue Decomposition Algorithm 226 9.7 Multichannel Cross-Correlation Algorithm 227 9.7.1 Forward Spatial Linear Prediction 228 9.7.2 Backward Spatial Linear Prediction 230 9.7.3 Spatial Linear Interpolation 231 9.7.4 Time Delay Estimation Using Spatial Linear Prediction 232 9.7.5 Spatial Correlation Matrix and Its Properties 233 9.7.6 Multichannel Cross-Correlation Coefficient 235 9.7.7 Time Delay Estimation Using MCCC 235 9.8 Adaptive Multichannel Time Delay Estimation 236 9.9 Acoustic Source Localization 238 9.10 Measurement Model and Cramer-Rao Lower Bound 239 9.11 Algorithm Overview 242 9.12 Maximum Likehhood Estimator 243 9.13 Least-Squares Estimators 244 Contents ix 9.13.1 Least-Squares Error Criteria 245 9.13.2 Spherical Intersection (SX) Estimator 247 9.13.3 Spherical Interpolation (SI) Estimator 247 9.13.4 Linear-Correction Least-Squares Estimator 248 9.14 Example System Implementation 254 9.15 Summary 259 10 Speech Enhancement and Noise Reduction 261 10.1 Introduction 261 10.2 Noise-Reduction and Speech-Distortion Measures 263 10.2.1 Noise-Reduction Factor and Noise-Reduction Gain Function 264 10.2.2 Speech-Distortion Index and Attenuation Frequency Distortion 265 10.2.3 Signal-to-Noise Ratio 265 10.2.4 Log-Spectral Distance 266 10.2.5 Itakura Distance 266 10.2.6 Itakura-Saito Distance 268 10.2.7 Mean Opinion Score 269 10.3 Single-Channel Noise-Reduction Algorithms: a Brief Overview. 269 10.4 Time-Domain Wiener Filter 270 10.4.1 Estimation of the Clean Speech Samples 270 10.4.2 Estimation of the Noise Samples 273 10.4.3 Noise Reduction versus Speech Distortion 274 10.4.4 A Priori SNR versus a Posteriori SNR 277 10.4.5 Bounds for Noise Reduction and Speech Distortion .... 281 10.4.6 Particular Case: White Gaussian Noise 282 10.4.7 A Suboptimal Filter 283 10.5 Frequency-Domain Wiener Filter 287 10.5.1 Estimation of the Clean Speech Spectrum 287 10.5.2 A Priori SNR versus a Posteriori SNR 290 10.6 Noise Reduction Through Spectral Magnitude Restoration .... 292 10.7 Spectral Subtraction 293 10.7.1 Estimation of the Spectral Magnitude of the Clean Speech 293 10.7.2 Estimation of the Noise Spectrum 295 10.7.3 Relationship Between Spectral Subtraction and Wiener Filtering 296 10.7.4 Estimation of the Wiener Gain Filter 299 10.7.5 Simulations 300 10.8 Adaptive Noise Cancellation 302 10.8.1 Estimation of the Clean Speech 302 10.8.2 Ideal Noise Cancellation Performance 304 10.8.3 Signal Cancellation Problem 305 10.8.4 Simulations 307

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.