ebook img

Accreting X-ray pulsars observed with Integral PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Accreting X-ray pulsars observed with Integral

ACCRETINGX-RAY PULSARS OBSERVED WITHINTEGRAL IngoKreykenbohm1,2,SonjaFritz1,NamiMowlavi2,Jo¨rnWilms3,PeterKretschmar4,Ru¨digerStaubert1,and AndreaSantangelo1 1Institutfu¨rAstronomieundAstrophysik–Abt. Astronomie,Sand1,72076Tu¨bingen,Germany 2IntegralScienceDataCentre,Chemind’Ecogia16,1290Versoix,Switzerland 3Dr. RemeisSternwarte,Universita¨tErlangen-Nu¨rnberg,Sternwartstr. 7,96049Bamberg,Germany 4EuropeanSpaceAstronomyCentre(ESA),Madrid,Spain ABSTRACT mechanismisonlyroughlyunderstood,asadetailedun- 7 derstandingwouldrequireafullmagneto-hydrodynamic 0 0 treatment,incorporatingthepresenceofamagneticfield 2 In this paper, we review the observational properties of∼1012G,andafullhandlingofgeneralrelativity. Es- of two accreting X-ray pulsars, the persistent source pecially the behavior and shape of cyclotron resonant n 4U1907+09andthetransientV0332+53.AccretingX- scattering features (CRSFs or cyclotron lines) are not a raypulsarsareamongthebrightestsourcesintheX-ray verywellunderstoodandrequiredetailedstudying. But J skyandarefrequentlyobservedbyIntegralandotherX- also only a very general picture of the overall accretion 0 ray missions. Neverthelessthey are still very enigmatic geometryandtheaccretionprocessitselfexists. Analyz- 3 sources as fundamental questions on the X-ray produc- ingthetemporalbehaviorofaccretingneutronstarsalong 1 tion mechanism still remain largely unanswered. These with thespectralpropertiesallowstostudytheseimpor- v questionsareaddressedbyperformingdetailedtemporal tantquestions. 9 and spectral studies on several objects over a long time 6 range. INTEGRAL is an excellent instrument to study these 8 sources asINTEGRALfrequentlyobservesthe galactic 1 Ofvitalimportanceisthestudyofcyclotronlinesasthey centerandthegalacticplaneandduetoitslargefieldof 0 provide the only direct link to the magnetic field of the view. Asaresult,anenormousamountofdataonaccret- 7 pulsar. While some objects show cyclotron lines which ing X-ray pulsars is obtained. In this paper we present 0 are extremely stable with time and with pulse phase, in some recent results on the analysis of two accreting X- h/ otherobjectsthelinesstronglydependonthepulsephase, ray pulsars: the detection of a complete torque rever- p theluminosityofthesource,orboth. salin4U1907+09[9] andtheevolutionofthetransient - V0332+53overitsrecentoutburstandespeciallythebe- o Ofspecialinterestinanycasearetransientsourceswhere haviorofthecyclotronline[27,33]. r it is possibleto studythe evolutionofthe cyclotronline t s andthesourceingeneralfromtheonsetuntiltheendof a theoutburstthroughawiderangeofdifferentluminosity : 2. 4U1907+09 v states. i X We present an observationalreview of a transient and a r persistentaccretingX-raypulsarobservedwithIntegral. The wind-accreting High Mass X-ray Binary system a 4U1907+09 [13] consists of a neutron star in an ec- centric (e = 0.28)8.3753d orbitaroundits companion. Keywords: X-rays: stars–stars: magneticfields–stars: Basedonalowerlimitforthedistanceof5kpc,theX-ray flare – stars: pulsars: individual: 4U 1907+09 – stars: luminosityisapproximately21036ergs−1[15].Thestel- pulsars:individual:V0332+53. lar companionhas been classified as a O8–O9 Ia super- giantwith an effectivetemperatureof 30500K, a radius of26R ,aluminosityof5105L ,andamasslossrate ⊙ ⊙ 1. INTRODUCTION of710−6M⊙yr−1[6]. Similar to other accreting neutron stars, the X-ray con- Accreting X-ray pulsars are among the most prominent tinuumof4U1907+09canbedescribedbyapower-law sources in the X-ray sky. Since accreting X-ray pul- spectrumwith anexponentialturnoverat∼13keV [25]. sars are usually young objects, they are clustered along Thespectrumismodifiedbystrongphotoelectricabsorp- the galactic plane. Although already discovered in the tion with a columnN = 1.5–5.71022cm−2 [7] which H first days of X-ray astronomy, many fundamentalques- isduetothedensestellar windandisthereforestrongly tions remainunansweredto date. The X-rayproduction variable over the orbit. The column density is maximal 1.8 MJD 1.6 −1ec] 1.4 53138.4 53139.0 53139.6 53140.2 s unts [ 1.2 30 53138.12 53M13 J8D.20 53138.28 Co 1.0 50 − M −1ASec] 00..684 −1ounts s] 20 −1Count rate [counts s] 12340000 Counts [s 3 nt rate [c −100 3 4 5 6 7 BIS− 2 Cou 10 2004 May 13 I 1 0.0 0.5 1.0 0.5 Orbital−Phase (T = 0) 0 90 Figure1. Lightcurveof4U1907+09,foldedwiththeor- bitalperiodof8.3753days[from9]. UpperPanel:Rossi 0 6 12 18 0 6 12 18 0 6 12 X-rayTimingExplorerAllSkyMonitor(ASM)2–12keV. 2004 May 13 2004 May 14 2004 May 15 LowerPanel: IBIS20–40keVlightcurve. Figure 2. IBIS(ISGRI)20–40keV lightcurve ofrevolu- tion193[from9]. Thebintimeis200s. Theinsetshows betweentheendoftheprimaryX-rayflareandthestartof a close up of the flare, the bin time in this case is 40s. thesecondaryflare(Fig.1)oftheorbitallightcurve[31]. X-axisnumbersarehours. Athigherenergies,thespectrumexhibitscyclotronreso- nantscatteringfeatures(CRSF)at∼19keVand∼40keV MJD [24,25,7]. 46000 49000 52000 442 Withapulseperiodof∼ 440s,4U1907+09isaslowly rotating neutron star [23]. The neutron star has ex- hibited a steady linear spin down with an average of P˙ = +0.225syr−1 from P = 437.5s in 1983 pulse pulse ˙ to 440.76s in 1998 [16]. Recently, a decrease in P pulse to∼0.115syr−1, abouthalfthelongtermvaluewasre- 440 ported[2]. c] e s d [ MJD o 52800 53100 53400 2.1. TimingAnalysis Peri 441.4 441.3 TpuhlesaXtio-rnasywliigthht acuprveerioodf 4oUf 1∼940471+s0.9 clAeadrdliytiosnhaolwlys, 438 Period [sec] 441.2 4U1907+09also exhibitsflareswitha typicallengthof 441.1 severalhours[23,16]. Fritzetal. [9]observedfoursuch 441.0 flareswithcountrateincreasesofatleast5σoveritsnor- 2003 2004 2005 mallevel(Fig.2).Threeofthem,inrevolutions187,193, 436 and305,areassociatedwiththemainpeakintheorbital 1985 1990 1995 2000 2005 lightcurve(Fig.1)whiletheflareobservedinrevolution 188islinkedtothesecondarypeak. Figure3.Evolutionofthe4U1907+09pulseperiodover thelast20years[asshownby9]. Diamondsindicatethe 4U1907+09showedasteadyspindownrateofP˙ = resultsobtainedinthiswork,othersymbolsindicatedata pulse +0.225syr−1 [16]. Baykal et al. [2] usingRXTE-data from[23,plus-signs],[5,asterixes],[25,triangles],[16, determined a spin down rate 0.5 times lower than the squares], and [1, 2, crosses]. Note the clear deviation longtermvalue. Fritzetal. [9]usingINTEGRALdata, from the long term trend leading to a complete spin re- extend the tracking of the pulse period evolution to the versal. Theinsetshowsacloseupoftheperiodsfoundby years2003–2005.Thereforetheseauthorsfirstdetermine INTEGRAL[9]. the pulse period by first using epoch folding [22] to get 3 Rev. 0048 a starting period and then performing pulse phasing to 2 get a higher accuracy. Fig. 3 shows the long-time his- 1 tory of the period evolution based on all available data. 0 a NotethattherecentperiodsobtainedfromRXTE-data[2] 4 Rev. 0059 showacleardeviationfromthehistoricspindowntrend 3 of P˙ = +0.225syr−1 from [15]. The periods ob- 2 tainepdulsbeyFritz etal. [9] fromINTEGRAL-data(shown 1 b as diamonds) not only confirm this change of the trend, 3 Rev. 0069 2 butshowacompletetrendreversalfromthehistoriclong 1 termspindowntrendtoaspinuptrendfromMJD53131 0 c onwards(seeFig.3). 3 Rev. 0135 2 Usingthederivedperiods,Fritzetal. [9]obtainedpulse 1 profiles for all revolutions (Fig. 4) by folding the light 0 d curveswiththebestrespectiveperiods.Nochangeinthe 6 Rev. 0188 shapeofthepulseprofileisobvious,especiallynochange 4 ˙ intheshapebefore,during,andafterthereversalofP can 2 beseen. e 6 Rev. 0193 4 2 2.2. Discussion f 6 Rev. 0246 IntheINTEGRALdata,aspinupphaseof4U1907+09 4 iabsercianltegeacorlofynPds˙piesuttleseecnt=tedw+iatfh0te.P2r¨22=50sy0yersa−−r1s1,.owfInistph2i0nt0hd2eoaawvnnadi(l2Fa0big0le.33dfi)aratsatt −1ounts sec] 224 Rev. 0248 g iwnedriecadteiotencstefodr[a2]d.eAcrsesahsoewinntihneSmecatg.n2i.t1u,dtehoefnsepwinINdoTwEn- ate [c 0 h GRAL data show a torque reversal from ∼MJD53131 nt R 23 Rev. 0249 onwards,withthesourcenowexhibitingaspinupwitha ou 1 rate of P˙pulse = −0.158syr−1. So far, theINTEGRAL C 0 i resultsappeartobeconsistentwithP¨ =0s−1(the1σup- 3 Rev. 0250 perlimitforP¨ duringthespinupis−410−5s−1yr−2). 2 1 The conventional interpretation of spin up in accreting 0 j X-raypulsarswithastronglymagnetized,disk-accreting 4 Rev. 0255 neutronstar isthattheaccretiondiskistruncatedbythe 2 magnetic field of the neutron star [see, e.g., 10, 11, 12, 0 k andreferencestherein]. Thetransferofangularmomen- 3 Rev. 0295 tum from the accreted matter onto the neutron star will 2 lead to a torque onto the neutron star resulting in spin 1 up. The general expectation of these models is that the 0 l Alfve´nradiusrm,wheretheaccretionflowcouplestothe 6 Rev. 0305 magneticfield, is assumedto be close to the co-rotation 4 radius,r . 2 co m Thissimplemodel,however,isunabletoexplainthelong 6 Rev. 0361 episodes of constant P˙. For 4U1907+09the magneto- 4 spheric radiusinferredfromthe cyclotronline measure- 2 n ments is r ∼ 2400km, while r ∼ 12000km [16]. m co 3 Rev. 0379 Moving rm out to rco would require a magnetic field of 2 ∼1014Gasforamagnetar,whichistwoordersofmag- 1 nitude larger than the magnetic field deduced from the 0 o observedcyclotronlines. 0. 0 0. 5 1. 0 0. 5 Pulse Phase Fritzetal.[9],however,thendiscussthattheamodelpre- Figure 4. Pulse profiles for different revolutions in the sentedrecentlybyPernaetal.[28]isabletoexplainthese 20–40keVband[from9]. Panelsa–eshowpulseprofiles observations. ThismodelisbasedonthefactthatX-ray obtainedduringtheperiodofspindown,andpanelsf–o pulsarsare obliquerotators, i.e., the neutronstar’s mag- showspinuppulseprofiles. neticfieldistiltedbyanangleχwithrespecttotheaxis of rotation of the neutron star. Assuming the accretion diskissituatedintheneutronstar’sequatorialplane,for a ringofmatter in the accretiondisk, the magneticfield s) strength then depends on the azimuthal angle and thus crab 1 20-30 keV V 0332+53 theboundaryofthemagnetosphereisasymmetric. Such ux ( 30-40 keV aconfigurationcanleadtoregionsinthediskwherethe Fl propeller effect is locally at work, while accretion from other regions is possible. This then results in a nonlin- ˙ ear dependenceof the accretion luminosity from the M 40-60 keV throughtheouterpartsofthedisk. Pernaetal. [28]point out that a nontrivialconsequenceis that for values of χ 10-1 greaterthanacriticalvalue,χ ,limitcyclesarepresent, crit where cyclic torquereversalepisodesare possible with- ˙ a. IBIS/ISGRI out a change in M. For typical parameters. χ is be- crit tween ∼25◦ and ∼45◦. Perna et al. [28] and Fritz et al. [9] stress that the existence of the limit cycles de- s) pendsonlyonχandonthepulsar’spolarmagneticfield, crab 10-15 keV B, and no variation of external parameters is required x ( 5-10 keV u to trigger torque reversals, while the torque reversal of Fl 1 4U1907+09 with no associated drop in luminosity and 3-5 keV nochangein theshapeofthepulseprofileisdifficultto RXTE/ASM explaininconventionalmodels. 10-1 3. V0332+53 b. JEM-X 53350 53360 53370 53380 53390 53400 53410 53420 TherecurrentX-raytransientV0332+53experiencedan t (MJD) X-ray outburst from December 2004 to February 2005 [19,29]. Theoutburstwaspredictedalmostoneyearbe- Figure5. a LightcurveofV0332+53overthedecayof foretheactualoutburst[14]duetotheopticalbrightening the outburst in different energy bands in Crab units [as oftheopticalcompanionBQCam,aO8-O9estar. shownby27]. Thesolidcurvesarefitstotheexponential (fromMJD=53376to53412withτ=30days)andlinear TheobservationofthisoutburstofV0332+53byRXTE (fromMJD=53412to53422)bSameasa,butforJEM-X revealedthepresenceofthreecyclotronlines[4,19,29]. fluxesandwithanexponentialdecayofτ=20days. The ThefundamentalCRSFhasanenergyof28keV,andthe 2–12keVRXTE/ASMlightcurveisalsoshown,usinga firstandsecondharmonicsareat50keVand71keV,re- normalizationfactorof77cpsfor1Crab. spectively. Thiscorrespondstoamagneticfieldstrength of2.7×1012G[19,29]. Thespectrumisotherwisede- scribedbyapowerlawmodifiedbyahigh-energycut-off athigherenergies. 0.5 PCU2 RXTE 0.45 3.1. Fluxes 0.4 ThelightcurveofV0332+53inISGRIandJEM-Xdur- C0.35 ing the outburstis shownin Fig. 5. Mowlavietal. [27] H F describethedeclinephasebyanexponentialdecayupto E 0.3 MJD≃53412, followedby a linear decrease. The expo- D nential decay is less rapid at the ISGRI energiesthan at C 0.25 theJEM-Xenergies.Fromasimpleestimation,theexpo- B A nentialdecaytime isabout30 daysabove20keV (solid 0.2 curvesinFig.5a)andabout20daysbelow15keV(solid curves in Fig. 5b). The exponential decay is also con- 0.4 0.45 0.5 0.55 0.6 SC firmedbythe2–12keVlightcurveasobservedbytheAll SkyMonitor(ASM)onboardofRXTE(seeFig.5b). Figure 6. Color-Color Diagram of the outburst of V0332+53[from30]usingRXTE-data. TheX-raycol- Reig et al. [30] discovered a very interesting behavior ors are defined as soft color SC=7.5-10 keV/4-7.5 keV ofthecolor-colordiagramovertheoutburst(seeFig.6). andhardcolorHC=15-30keV/10-15keV. They derived background-subtractedlight curves corre- sponding to the energyranges c1 = 4−7.5 keV, c2 = 30 a E (keV) 29.5 cyc,1 29 28.5 a) V0332+53 28 V 27.5 V 0332+53 e k c/1.000 4.9 e 4.8 s/s 4.7 nt 4.6 u 4.5 o0.100 4444....2341 b s 1 (keV) alized c 2.15 rm0.010 2.1 c t o 2.05 1 n 2 1.95 1.9 1.85 0.001 1.8 60 1.75 40 b) 53380 53385 53390 53395 53400 53405 53410 53415 53420 20 t (MJD) 0 c −20 Figure 7. Evolutionofthe parametersof the fundamen- −40 −60 talcyclotronline[from27]. alineenergy,bwidth,andc depth.Theverticalbarsrepresent90%uncertainty,while 10 c) 5 the horizontalbars indicate the duration of each obser- 0 vation. c −5 −10 6 7.5−10keV,c3 = 10−15keVandc4 = 15−30keV 4 d) andthendefinedthesoftcolor(SC)astheratioc2/c1and 2 thehardcolor(HC)astheratiobetweenc4/c3. c −02 −4 Theseauthorsobservedthatthesourcewasinasoftstate −6 duringthepeakoftheoutburstandasthecountratede- 10 e) creasedthesourcemovedupandrightinthecolorcolor 5 diagram,i.e. itbecameharder. Attheendoftheoutburst 0 (regionsEandF)thesourcemovedagaintotheleft,i.e., c −5 lowervaluesofSC,whileHCremainedmostlyconstant. −10 Therefore two spectral states or branches can be distin- 10 f) guished:asoftstatewhenthesourceisbrightandahard 5 statewhenthesourcegetsdimmer. 0 c −5 ThepatterninthecolorcolordiagramofV0332+53re- −10 semblesthatoflowmassX-raybinaryZsource[seee.g 10 100 34]. Inthispicture,thesoftbranchwouldcorrespondto Channel Energy [keV] the normalbranchandthe hardbranchto the horizontal branchin a Z source, however,as Reig et al. [30] point out, the flaring branch observed in Z source is missing Figure 8. a Spectrum and folded model for JEM-X in V0332+53. During the decline of the outburst, the (left) and ISGRI (right) using data of revolution 284 source moveswithoutjumpsthroughthe Z shape in the [from 27]; b residuals of the model with Γ=−0.41 and colorcolordiagram,takingabout80daysfromthesoftest Efold=7.4keV,andwithoutanycyclotronlinemodeled;c tohardestpoint[30]. one Gaussianis includedat29.3keV;d a secondGaus- sian is added at 51keV to model the first harmonic; e as before, but with the energy of the first line fixed at 3.2. Spectrum 27.5keV,thevaluefoundinrevolution273;fsameasd, butwithΓfixedtothevalueof−0.17foundinrevolution 273. Thestrongresidualsinthetwobottompanelsshow The spectra of accreting X-ray pulsars are a superposi- thattheparametersofthefundamentalcyclotronlinedo tion of contributionsfromthe hotspotsat bothmagnetic indeedchange. polesandthelowerpartsoftheaccretioncolumns.Since no self consistent model is available, various empirical modelshavetobeused[18] dependenceresultsinthefollowingrelation: Ecyc,1 =−0.10L37+28.97keV, where L37 is the luminosity in units of 1037erg s−1. Assuming that for low luminosities the emission comes practically from the neutron star surface, Tsygankov et al. [33]estimatethemagneticfieldonthesurfaceofthe neutron star for canonical values for the radius and the massoftheneutronstartoB =3.01012G. 3.3. Discussion V0332+53isahighlymagnetizedpulsarwithamagnetic fieldofabout3.0×1012G[19,29,33],asderivedfrom theenergyofthefundamentalcyclotronline. TheX-ray outburstsfromthissystemareobservedwithatimerecur- renceofabout10years.Theyarebelievedtobetriggered by a massive mass ejection from the optical companion star, resulting in the optical brightening of the system in 2004 [14]. The ejected mass feeds an accretion disk Figure9. Dependenceoftheenergyoftheenergyofthe fundamentalcyclotronlineofV0332+53[from33]. Tri- aroundthepulsar,fromwhichitisfunneledbythemag- neticfieldtowardsthepolarcapsandfallsonthesurface angles represent results from INTEGRAL, and squares oftheneutronstar. fromRXTE. The analysis of the 2005outburstprovidesnew insights towards a better understanding of V0332+53 and simi- Mowlavi et al. [27] use the simple “cutoffpl” model to lartransientsourceswithinthisbasicpicture. TheX-ray fit the combined ISGRI and JEM-X data, to which two lightcurve(Sect.3.1)displaysacharacteristicexponen- cyclotronlines with a Gaussian opticaldepth profile[3] tialdecaywithatimescaleof20to30days,followedby havebeenadded. Amultiplicativeconstantisappliedto alineardecrease.Thisremarkablechangeoccursapprox- allow for the differentnormalizationsof the two instru- imatelyatthesame momentwhenthe trendinthe color ments. Furthermorea systematic errorof 2% is applied colordiagramchanges.Thismayprovidesomeinforma- to accountfor the uncertaintiesin the responsematrices tionontheaccretionandespeciallythegeometry. ofJEM-XandISGRI.Nophotoelectricabsorptionisre- AsdiscussedbyMowlavietal. [27],anexponentialde- quiredat low energies, compatiblewith the fact thatthe cayofthefluxisobservedalsoindwarfnovaeandinsoft JEM-X data are analyzed only above 4keV. The same X-ray transients on time scales from a few days for the modelisusedforallobservationstokeepconsistencybe- former to several weeks for the latter [21, 32]. King & tweentheparametersfromoneobservationtothenext. Ritter [17] show how illuminated disks in low-mass X- ray binary stars can produce such an exponential decay The cyclotron line parameters for the fundamental line onthetimescalesobservedforthesoftX-raytransients. [27] are displayed in Fig. 7 as a function of time. The Subsequently,numericalcalculationsbyDubusetal. [8] spectrumwiththefitsandtheresidualsforamodelwith showed,thatindeedirradiatedaccretiondisksproducean no, one, two, andthreecyclotronlinesusing thedata of exponentialdecayoftheX-rayluminosity. revolution284isshowninFig.8. Theenergyofthefun- damentalcyclotronlineincreasesby7%fromthefirstto AsMowlavietal. [27] pointout,itistemptingtomake the last INTEGRAL observations, and the depth of the the parallel with the results observed in V0332+53. line increases by 16% while at the same time the width The exponentially decreasing flux followed by a linear decreasesby12%.Thesechangesaresignificant;accord- decrease is very similar to what is observed in disk- ingtoMowlavietal. [27],theattempttofitthespectrum illuminated systems. Such a behavior as observed by inrevolution284withalineat27.5keVresultsinstrong Mowlavi et al. [27] has never before been observed in residualsaroundtheline(Fig.8e), butalsovariationsof a high mass accreting X-ray binary pulsar system. The continuumcanberuledouttoexplainthechangesinthe X-rayfluxisproportionaltothemassaccretionrate,and lineparameters(Fig.8f). therefore the accretion rate would then also be propor- tional to the mass of the disk. An unknown change in Tsygankovetal. [33]thenwentonestepfurtherandin- the disk would then trigger the switch to the linear de- stead plotting the energy of the fundamental cyclotron cay phase. Furthermore, Mowlavi et al. [27] suggest line versus time, these authors show the dependence of thatthetwodifferentdecaytimesobservedinV0332+53 thecyclotronenergyontheluminosityofthesource,thus areduetothepresenceofatleasttworegionscontribut- combining Figs. 7 and 5 into Fig. 9. A linear fit to this ing to the X-ray continuum: one time scale governsthe rateofmassflowontotheneutronstarthroughthedisk, [3] Coburn,W.,Heindl,W.A.,Rothschild,R.E.,etal. leadingtotheexponentialdecayfollowedbyalinearde- 2002,ApJ,580,394–412 crease (see above);anothertime scale governsthespec- [4] Coburn,W.,Kretschmar,P.,Kreykenbohm,I.,etal. tralchangesoftheemissionthatmaycomefromdifferent 2005,ATel,381 heightswithintheaccretioncolumn[27]. [5] Cook,M.C.,Page,C.G. 1987,MNRAS,225,381– The X-rayspectrum(Sect. 3.2) is wellfitted by a cutoff 392 power law modifiedbytwo cyclotronlines. The energy [6] Cox,N.L.J.,Kaper,L.,Foing,B.H.,Ehrenfreund, ofthefundamentalcyclotronlineisshowntoincreaseby P. 2005,A&A,438,187–199 20%fromthepeakoftheoutburstasmeasuredbyRXTE [7] Cusumano,G.,DiSalvo,T.,Burderi,L.,etal.1998, untiltheendoftheoutburst. Atthesametimeitbecame A&A,338,L79–L82 narrower and deeper. This information would provide someinsightintotheresonancescatteringregionnearthe [8] Dubus, G., Lasota, J.-P., Hameury, J.-M., Charles, polar caps. The evolution of cyclotron line parameters P. 1999,MNRAS,303,139–147 with time has already been reportedin the literature for [9] Fritz, S., Kreykenbohm,I., Wilms, J., et al. 2006, several binary systems [25]. These authorsattribute the A&A,458,885–893 change of the line energy to a change of the height of [10] Ghosh,P.,Lamb,F.K. 1978,ApJL,223,L83–L87 the scattering regionabovethe neutronstar, resulting in a heightchange∼300m for V 0332+53. Kreykenbohm [11] Ghosh,P.,Lamb,F.K. 1979,ApJ,232,259–276 et al. [20] report a variation of the cyclotron energy of [12] Ghosh,P.,Lamb,F.K. 1979,ApJ,234,296–316 GX301-2withthepulsephaseofthepulsar,andattribute [13] Giacconi, R., Kellogg, E., Gorenstein, P., et al. the change to different viewing angles of the accretion 1971,ApJL,165,L27–L35 columnwherethelineoriginates. [14] Goranskij,V.,Barsukova,E. 2004,ATel,245,1 For V0332+53 Mowlavi et al. [27] interpret the in- [15] in ’t Zand, J. J. M., Strohmayer, T. E., Baykal, A. creaseoftheenergyasavariationofthescatteringregion 1997,ApJ,479,L47–L50 characteristics. They assume that the region where the [16] in’t Zand, J. J. M., Baykal, A., Strohmeyer, T. E. cyclotron resonance scattering takes place is extended. 1998,ApJ,496,386–394 The region would then cover a range of magnetic field strengths resulting in a superposition of several narrow [17] King, A. R., Ritter, H. 1998, MNRAS, 293, L42– cyclotronlines, eachoriginatingat a specific heightand L48 therefore in a specific magnetic field strength, thus giv- [18] Kreykenbohm, I., Kretschmar, P., Wilms, J., et al. ing rise to a broadline. Asthe accretionrateand hence 1999,A&A,341,141–150 thefluxdecreaseswithtime,thecyclotronresonancere- [19] Kreykenbohm, I., Mowlavi, N., Produit, N., et al. gionshrinksandmovesclosertotheneutronstar. Atthe 2005,A&A,433,L45–L48 endoftheoutburstonlytheregionclosesttotheneutron starsurface,wherethemagneticfieldisstrongest,would [20] Kreykenbohm, I., Wilms, J., Coburn, W., et al. contribute to the formation of cyclotron lines. The re- 2004,A&A,427,975–986 sultinglinescanthereforebeexpectedtobeobservedat [21] Lasota, J.-P., Narayan, R., Yi, I. 1996, A&A, 314, higherenergiesandbeingmuchnarrowerasisindeedob- 813–820 served in V0332+53. Mowlavi et al. [27] estimate the [22] Leahy,D.A.,Darbo,W.,Elsner,R.F.,etal. 1983, totalmovementofthecyclotronlineformationregionto ApJ,266,160–170 beoftheorderof500m,similarto4U0115+63wherea changeof∼1kmwasobserved[26]. [23] Makishima,K.,Kawai,N.,Koyama,K.,etal.1984, PASJ,36,679–689 [24] Makishima,K., Mihara,T., Nagase, F., Murakami, T. 1992,inTanaka,Y.,Koyama,K.,FrontiersofX- ACKNOWLEDGMENTS RayAstronomy,Proc,XXVIIIYamadaConf.,Fron- tiersScienceSeries,2,23–32 We acknowledge the support of the Deutsches Zentrum [25] Mihara,T.,PhDthesis,RIKEN,Tokio,1995 fu¨rLuft-undRaumfahrtundergrantnumbers50OR0302, [26] Mihara,T.,Makishima,K.,Nagase,F. 1998,inAll 50OG9601,and50OG0501,andbyNationalAeronautics SkyMonitorSurveyConference,135–140RIKEN andSpaceAdministrationgrantINTEG04-0000-0010. [27] Mowlavi, N., Kreykenbohm,I., Shaw, S. E., et al. 2006,A&A,451,187–194 [28] Perna, R., Bozzo, E., Stella, L. 2006, ApJ, 639, REFERENCES 363–376 [1] Baykal,A.,C¸.˙InamAlpar,M.A.,etal. 2001,MN- [29] Pottschmidt,K.,Kreykenbohm,I.,Wilms, J., etal. RAS,327,1269–1272 2005,ApJ,634,L97–L100 [2] Baykal,A.,˙Inam,S.C¸.,Beklen,E. 2006,MNRAS, [30] Reig, P., Mart´ınez-Nu´n˜ez, S., Reglero, V. 2006, 369,1760–1764 A&A,449,703–710 [31] Roberts, M. S. E., Michelson, P. F., Leahy, D. A., etal. 2001,ApJ,555,967–977 [32] Tanaka,Y., Shibazaki,N. 1996,ARA&A,34,607– 644 [33] Tsygankov, S. S., Lutovinov, A. A., Churazov, E.M.,Sunyaev,R.A. 2006,MNRAS,371,19–28 [34] vanderKlis,M.inLewin,W.H.G.,vanParadijs,J., vandenHeuvel,E.P.J.,X-raybinaries,Cambridge UniversityPress,Cambridge,1995

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.