Accessing unpolarized and linearly polarized gluon TMDs through quarkonium production Asmita Mukherjee and Sangem Rajesh∗ Department of Physics, Indian Institute of Technology Bombay, Mumbai-400076, India. (Dated: January 3, 2017) We present the study of accessing unpolarized and linearly polarized gluon TMDs in J/ψ and Υ(1S)productioninunpolarizedproton-protoncollisionatLHC,RHICandAFTERenergies.Non- relativisticQCDbasedcoloroctetmodel(COM)isusedforestimatingquarkoniumproductionrates within transverse momentum dependent factorization formalism. A comparison is drawn between theexperimentaldataandthetransversemomentumdistributionofquarkoniumobtainedinCOM and color evaporation model. I. INTRODUCTION h⊥g functionsareofprimeimportance.Inordertoprobe 7 1 1 h⊥g, several processes have been proposed theoretically. 1 0 Amongst the eight leading twist-2 transverse momen- Linear gluon polarization can be determined by measur- 2 tum dependent parton distribution functions (TMDs) ing azimuthal asymmetry in heavy quark pair and dijet n [1,2,3],fg(x,k )andh⊥g(x,k )aretheonlytwoTMDs production in SIDIS [6], Υ + jet [7] and γγ [8] in pp 1 ⊥ 1 ⊥ a which describe the dynamics of gluons inside an unpo- collision at LHC. h⊥g can also be accessed through the 1 2 J ulanrpizoeldarhizaeddroanndwhliinleeafr1glyanpdolha⊥1rigzerdepgrleusoennst tinhseiddeenasnityuno-f c[1r3o]ssansedctCio-neveonf H(cihgagrsg-beocsoonnju[9g,at1io0n, 1e1v,en1)2]q,uHarigkgosn+iujemt polarizedhadronrespectively.TMDshavebeenreceiving production [14]. ] h paramount interest in both theoretically and experimen- Inthisproceedingcontribution,wediscusstheJ/ψand p tallyastheyprovidethe3-dimensionalstructureandspin Υ(1S) production in unpolarized proton-proton collision - informationofthenucleon.TMDsdependonbothlongi- toshowthatthequarkoniumproductionisalsoapromis- p e tudinal momentum fraction (x) and intrinsic transverse ing channel to extract both f1g and h⊥1g. Details of our h momentum (k ) of the parton whereas usual collinear work can be found in [15, 16]. We estimate the quarko- ⊥ [ parton distribution functions (PDFs) depend only on x. nium production rates using color octet model (COM) Gauge links are required to define the gauge invariant [15]withintransversemomentumdependent(TMD)[17] 1 v operator definition of TMDs and are process dependent. framework and draw a comparison between the results 9 In general, linearly polarized gluons can be present with color evaporation model (CEM) [16] and experi- 2 even at tree level inside an unpolarized hadron [1] pro- mentaldata.COM,colorsingletmodel(CSM)andCEM 3 vided that the gluons carry transverse momentum w.r.t are the three important models for quarkonium produc- 0 parent hadron. The associated density function of lin- tion, which are successful at different energies. Gener- 0 early polarized gluons, h⊥g is a T-even (time-reversal ally, two scales are involved in quarkonium production . 1 1 even) distribution and is also even in the transverse mo- [18, 19, 20]. The first one is related to the production 0 mentum. TMDs are nonperturbative objects and have of heavy quark pair with momentum of order M (heavy 7 to be extracted from experiments. Drell-Yan (DY) and quark mass) which is called short distance factor. This 1 : semi-inclusive deep inelastic scattering (SIDIS) are the short distance factor can be calculated in order αs(M) v two processes which provide the experimental data re- usingperturbationtheory.Thesecondoneisthebinding i X lated to the TMDs [4]. In these processes, the intrinsic ofquarkoniumboundstatewhichistakingplaceatscale r transversemomentum(k⊥)hasanimprintontheexper- of order ΛQCD. This is a nonperturbative process and a imentally measurable quantities, for instance, azimuthal is denoted with long distance matrix elements (LDME) asymmetriesandtransversemomentum(p )distribution in factorization expression. The hadronization informa- T of the final hadron. Hence, these quantities are very sen- tionisencodedintheLDMEwhichareusuallyextracted sitive to the TMDs. However, h⊥g and even fg have not byfittingdata.Thenon-relativisticQuantumchromody- 1 1 been extracted yet. Gluon Sivers function (f⊥g) [5] gen- namics(NRQCD)effectivefieldtheory[20]separatesthe 1 short distance and long distance factors systematically. erates single spin asymmetry in scattering processes like In COM [21], the initially produced heavy quark pair ep↑ and pp↑. In order to understand asymmetries fully, can be either in color singlet or octet state. one should have complete knowledge about unpolarized TMDs since fg sits in the denominator of the asymme- 1 try expression [4]. Therefore, the extraction of fg and 1 II. J/ψ AND Υ(1S) PRODUCTION IN COM We consider unpolarized proton-proton collision pro- ∗ Thisproceedingisbasedonatalkdeliveredat22ndInternational cess for quarkonium production i.e., p + p → SpinSymposium,2016,UIUC.;[email protected] J/ψorΥ(1S)+X.Protonisrichofgluonsathighenergy, 2 (cid:104) (cid:105) henceweconsidertheleadingorder(LO)gluon-gluonfu- w = 1 (k .k )2− 1k2 k2 and k = p − 2M4 ⊥a ⊥b 2 ⊥a ⊥b ⊥b T sion channel for quarkonium production. Assuming that h k . The definition of C is given in Eq.(6) of Ref. [15]. the TMD factorization holds good, the differential cross ⊥a n Herep andyarethetransversemomentumandrapidity section is given by [15] T of the quarkonium. (cid:90) dσ = dx dx d2k d2k Φµν(x ,k ) a b ⊥a ⊥b g a ⊥a (1) III. EVOLUTION OF TMDS ×Φ (x ,k )dσJ/ψ(Υ), gµν b ⊥b where, Φµν is the gluon-gluon correlator of unpolarized As per Ref. [14], we assume that the unpolarized and g spin-1 hadron, which can be further parametrized in linearlypolarizedgluonTMDsfollowtheGaussianform. 2 In Gaussian parametrization, TMDs are factorized into terms of leading twist-2 TMDs as the following [1] productofcollinearPDFstimesexponentialfactorwhich 1 (cid:110) (cid:16)kµkν is a function of only k and Gaussian width. Φµν(x,k )= − gµνfg(x,k2)− ⊥ ⊥ ⊥ g ⊥ 2x T 1 ⊥ M2 +gµν k2⊥ (cid:17)h⊥g(x,k2)(cid:111). h (2) f1g(x,k2⊥)=f1g(x,Q2)π(cid:104)k1⊥2(cid:105)e−k2⊥/(cid:104)k⊥2(cid:105), (7) T 2M2 1 ⊥ h Here f1g and h⊥1g are the unpolarized and linearly polar- h⊥1g(x,k2⊥)= Mh2πf(cid:104)1gk(2x(cid:105),2Q2)2(1r−r)e1−k2⊥r(cid:104)k1⊥2(cid:105), (8) ized gluon TMDs respectively. M is the proton mass. ⊥ h The dσJ/ψ(Υ) in Eq.(1) is the partonic differential cross where, fg(x,Q2) is the collinear PDF which follows the 1 section of gg → QQ¯[2S+1L(a)] channel. Using NRQCD, DGLAP evolution equation and r = 2/3 and 1/3 [14] J the partonic differential cross section can be factorized values are taken for numerical estimation. The Gaussian as follows [20, 22] widthsare(cid:104)k2(cid:105)=0.25GeV2 and1GeV2 [14].Inmodel- ⊥ I, we do not take any upper limit for k integration. dσJ/ψ(Υ) =(cid:88)dσˆ[gg →QQ¯(n)](cid:104)0|OnJ/ψ(Υ) |0(cid:105) (3) An upper limit kmax =(cid:112)(cid:104)k⊥2(cid:105) [27] is con⊥siadered for k⊥a n integrationinmodel-II.Theanalyticalexpressionsofdif- The first term in the right hand side of Eq.(3) was given ferentialcrosssectionsformodel-Iandmodel-IIaregiven in [15] that describes the production of heavy quark and inSec-(III)[15].AspointedoutinRef.[4],inordertoex- anti-quarkpairinadefinitequantumstateanditcanbe plainhighpT spectrumonehastoconsiderthefullTMD calculated in order α . Spin, orbital angular momentum evolution approach which was derived in impact param- s and color quantum numbers are denoted with n. After eter space (b⊥). The Fourier transformations of gluon- forming the heavy quark pair, its quantum numbers will gluon correlator in b⊥ and k⊥ space are be readjusted to form a color singlet quarkonium state (cid:90) by emitting or absorbing soft gluons. This process is ab- Φ(x,b⊥)= d2k⊥e−ik⊥.b⊥Φ(x,k⊥), (9) sorbed in (cid:104)0 | OJ/ψ(Υ) | 0(cid:105) (LDME) which is nonpertur- n bative. All possible configurations of heavy quark pair 1 (cid:90) in different quantum states are taken into account for Φ(x,k⊥)= (2π)2 d2b⊥eik⊥.b⊥Φ(x,b⊥). (10) quarkonium production which is represented with sum- mation over n in Eq.(3). In line with Ref. [22, 23], we The gluon correlator in b⊥ space is given by [12] consider only the color octet states 1S0, 3P0 and 3P2 1 (cid:110) (cid:16)2bµbν which have dominant contribution in charmonium and Φg(x,b )= gµνfg(x,b2)− ⊥ ⊥ ⊥ 2x T 1 ⊥ b2 bottomonium production. The LDME numerical values ⊥ (11) (cid:17) (cid:111) ofthesecoloroctetstatesareextractedinRef.[24,25,26], −gµν h⊥g(x,b2) . T 1 ⊥ whicharetabulatedin[15].Afterintegratingw.r.tx ,x a b and k in Eq.(1) and following the steps in Ref. [15], In TMD evolution approach, TMDs depend on both ⊥b one can obtain the differential cross section as renormalization scale µ and auxiliary scale ζ which was dσff+hh dσff dσhh introducedtoregularizetherapiditydivergences.Renor- = + , (4) malizationgroup(RG)andCollins-Soper(CS)equations dyd2p dyd2p dyd2p T T T are obtained by taking scale evolution w.r.t the scales µ where andζ.AftersolvingtheseequationsoneobtainstheTMD dσff C (cid:90) evolution expressions of TMDs in b⊥ space [17, 28, 29]. = n d2k fg(x ,k2 )fg(x ,k2 ), (5) The differential cross section expressions of Eq.(4) in dyd2p s ⊥a 1 a ⊥a 1 b ⊥b T TMD evolution approach are given by [15] dyddσ2hphT = Csn (cid:90) d2k⊥awh⊥1g(xa,k2⊥a)h⊥1g(xb,k2⊥b), ddy2σdpf2Tf = C2sn (cid:90)0∞b⊥db⊥J0(pTb⊥)f1g(xa,c/b∗) (12) (6) ×fg(x ,c/b )R R , 1 b ∗ pert NP 3 and 1.0 d2σhh C C2 (cid:90) ∞ ff(cid:45)I dydp2 = 2nsπ2A b⊥db⊥J0(pTb⊥)αs2(c/b∗) 0.8 ff(cid:43)hh(cid:45)I T 0 ff(cid:45)(cid:72)II(cid:76) (cid:76) (cid:90) 1 dx (cid:18)x (cid:19) (cid:45)2 ff(cid:43)hh(cid:45)(cid:72)II(cid:76) ××(cid:90)xx1ba dxxx2121(cid:18)xxx2ba1 −−11(cid:19)ff11gg((xx21,,cc//bb∗∗))RpertRNP 2ΣdpGeVT 00..46(cid:144)(cid:72) k(cid:166)2 (cid:61)1GeV(cid:72)2(cid:76) (cid:72) (cid:76) (13) d (cid:88) (cid:92) 1 where Rpert and RNP are the perturbative and nonper- (cid:45)Σ turbative parts of the evolution kernel. 0.2 (cid:40) (cid:90) Q dµ(cid:18) (cid:18)Q2(cid:19) (cid:19)(cid:41) 0.0 R =exp −2 Alog +B 0.0 0.5 1.0 1.5 2.0 2.5 3.0 pert µ µ2 c/b∗ p GeV T (a) (cid:40) (cid:41) (cid:104) Q (cid:105) 3.5 (cid:72) (cid:76) R =exp − 0.184log +0.332 b2 NP 2Q ⊥ 0 3.0 ff(cid:45)I ff(cid:43)hh(cid:45)I Here A and B are the anomalous dimensions of the (cid:76) ff(cid:45)(cid:72)II(cid:76) evolution kernel and TMDs respectively and these have (cid:45)2V 2.5 ff(cid:43)hh(cid:45)(cid:72)II(cid:76) perturbative expansion [15]. We used the b∗ prescrip- Ge (cid:72) (cid:76) tion to avoid the Landau poles by freezing the scale as 2.0(cid:72) (cid:72) (cid:76) b∗(b⊥) = (cid:114)1+(cid:16)b⊥bmb⊥ax(cid:17)2. In the nonperturbative regime 2ΣdpT 1.5(cid:144) (cid:88)k(cid:166)2(cid:92)(cid:61)0.25GeV2 where b is very large, the evolution kernel cannot be d ⊥ (cid:45)1 1.0 calculated using perturbation theory. Hence, the evolu- Σ tionkernelinthisregimeismodeledasR [28].Wehave NP 0.5 consideredthesamenonperturbativefactorR forboth NP unpolarized and linearly polarized gluon TMDs. 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 p GeV T IV. NUMERICAL RESULTS (b) (cid:72) (cid:76) We calculated the transverse momentum (p ) distri- FIG. 1. (color online) Differential cross section (normalized) T bution of J/ψ and√Υ(1S) in unpolarized√proton-proton of J/ψ a√nd Υ(1S) production√in pp → J/ψ(Υ(1S))+X at collisionatLHC( s=7TeV),RHIC( s=500GeV) L√HCb ( s = 7 TeV), RHIC ( s = 500 GeV) and AFTER √ ( s = 115 GeV) energies using DGLAP evolution approach andAFTER( s=115GeV)energies.Quarkoniumpro- for (a) (cid:104)k2(cid:105) = 1 GeV2 and (b) (cid:104)k2(cid:105) = 0.25 GeV2 at r = 2 duction rates are estimated using NRQCD version COM ⊥ ⊥ 3 . The solid (ff-(I)) and dot dashed (ff-(II)) lines are obtained within TMD factorization framework. Color octet states by considering unpolarized gluons in Model-I and Model-II such as 1S , 3P and 3P of initially produced heavy 0 0 2 respectively. The dashed (ff+hh-(I)) and tiny dashed (ff+hh- quark pair are taken into account for quarkonium pro- (II)) lines are obtained by taking into account unpolarized duction. The masses of J/ψ and Υ(1S) are considered gluons plus linearly polarized gluons in Model-I and Model- 3.096 and 9.398 GeV respectively. m = 1.5 GeV and II respectively. See the text for ranges of rapidity integration c m = 4.8 GeV are taken for charm and bottom quark [15]. b masses respectively. MSTW2008 [39] is used for gluon PDFs.Q=M (quarkoniummass)isconsideredforscale of the gluon PDFs in DGLAP evolution. Quarkonium differential in p is normalized with total cross section T p distribution is obtained by integrating rapidity in the as a result we obtain the p spectrum which is indepen- T T range of y ∈ [2.0,4.5], y ∈ [−3.0,3.0] and y ∈ [−0.5,0.5] dentofcenterofmassenergyandquarkoniummass.The for LHCb, RHIC and AFTER respectively. The conven- obtained p spectrum in DGLAP evolution approach in T tion in the figures as follows. “ff”and “ff+hh”represent model-I and model-II are compared in FIG.1 at r =2/3. the quarkonium distribution obtained by taking into ac- Thequarkoniump spectrumhasbeenmodulatedsignif- T countonlyunpolarizedgluonsandlinearlypolarizedplus icantly by taking into consideration of linearly polarized unpolarized gluons respectively. gluons along with the unpolarized gluons in the scatter- FIG.1 represents the p spectrum of J/ψ and Υ(1S) ingprocess.Theeffectoflinearlypolarizedgluonsismore T which is estimated in COM. In FIG.1, the cross section inmodel-IIcomparedtomodel-I.InFIG.2,theestimated 4 ratios of J/ψ → e+e− and Υ(1S) → µ+µ− channels re- 104 spectively. J/ψ and Υ(1S) states can be produced from LHC √s=7 TeV CEM-ff higher mass excited states. However, we have considered CEM-ff+hh only the direct production of quarkonium in this arti- 103 COM-ff COM-ff+hh 2V) CMS 1.6<y<2.4 100 e ALICE 2.5<y<4 G b/ 102 LHCb 2<y<2.5 LHC √s=7 TeV ff-CEM n ff+hh-CEM y) ( 2V) ff-COM 2PdT 101 Ge10−1 ffAT+LhAhS-C 0O<My<1.2 2dσ/(d ) (nb/ CLHMCSb | y2|<<y2<.42.5 100 dy10−2 T 2 P d 10−1 σ/( 0 1 2 3 4 5 6 7 8 d10−3 μ (a) PT (GeV) Bμ 10−4 102 0 2 4 6 8 10 12 RHIC √s=200 GeV ffff-+ChEhM-CEM PT (GeV) 2V) 101 ffff-+ChOhM-COM e FIG. 3. (color online). Differential cross section of Υ(1S) at G STAR-2016 |y|<1 √ nb/ 100 STAR-2013 |y|<1 LHCb ( s = 7 TeV) as function of pT in pp → Υ(1S)+X P) (T PHENIX |y|<0.35 usingTMDevolutionapproach.Dataaretakenfrom[36,37, yd10−1 38]. The rapidity in the range 2.0<y<2.5 is chosen [15]. d PT π 2dσ/(210−2 cle. In general, LO calculation is insufficient to explain Bee10−3 full pT spectrum. It may be possible to explain high pT spectrum by adding NLO calculation with LO. 10−4 0 1 2 3 4 5 6 7 8 (b) PT (GeV) V. CONCLUSION FIG. 2. (color online). Differential cross section of J/ψ at √ √ We studied the transverse momentum (p ) distribu- (a) LHCb ( s = 7 TeV) and (b) RHIC ( s = 200 GeV) T tionofJ/ψandΥ(1S)inunpolarizedproton-protoncolli- as function of p in pp → J/ψ +X using TMD evolution T sionwithinTMDfactorizationformalism.NRQCDbased approach. Data are taken from [30, 31, 32] and [33, 34, 35] for LHC and RHIC respectively. The rapidity in the range color octet model is employed to estimate the quarko- 2.0<y <2.5 and −0.35<y <0.35 is chosen for LHCb and niumproductionrates.ThequarkoniumpT spectrumhas RHIC energies respectively [15]. beenmodulatedbythepresenceoflinearlypolarizedglu- ons inside unpolarized proton and is in good agreement with LHCb and RHIC data. Hence, quarkonium produc- p spectrumofJ/ψinTMDevolutionapproachatLHCb tion offers a good possibility to probe both unpolarized T andRHICenergiesinCOMandCEMarecomparedwith and linearly polarized gluon TMDs. data. Experimental data is taken from Ref. [30, 31, 32] and Ref. [33, 34, 35] for LHCb and RHIC experiments respectively.InFIG.3,p spectrumofΥ(1S)usingTMD T ACKNOWLEDGEMENT evolution approach in COM and CEM is compared with data [36, 37, 38]. The production rates are in good ac- curacy with data up to low p for both J/ψ and Υ(1S), SRacknowledgesIITBombayandspinsymposiumor- T however, COM is slightly over estimated. In FIG.2 and ganizersforfinancialsupporttoattendthe22nd Interna- FIG.3, B (0.0594) and B (0.0248) are the branching tional Spin Symposium, 2016, UIUC. ee µµ [1] P.J.MuldersandJ.Rodrigues,Phys.Rev.D63,094021 [2] R.Angeles-Martinezetal.,ActaPhys.Polon.B46,2501 (2001), hep-ph/0009343. (2015), 1507.05267. 5 [3] S. Meissner, A. Metz, and K. Goeke, Phys. Rev. D76, [22] S. Fleming and I. Maksymyk, Phys. Rev. D54, 3608 034002 (2007), hep-ph/0703176. (1996), hep-ph/9512320. [4] S. Melis, EPJ Web Conf. 85, 01001 (2015), 1412.1719. [23] F.Cooper,M.X.Liu,andG.C.Nayak,Phys.Rev.Lett. [5] D. W. Sivers, Phys. Rev. D41, 83 (1990). 93, 171801 (2004), hep-ph/0402219. [6] C.Pisano,D.Boer,S.J.Brodsky,M.G.A.Buffing,and [24] Y.-Q. Ma and R. Venugopalan, Phys. Rev. Lett. 113, P. J. Mulders, JHEP 10, 024 (2013), 1307.3417. 192301 (2014), 1408.4075. [7] W. J. den Dunnen, J. P. Lansberg, C. Pisano, and [25] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. M. Schlegel, Phys. Rev. Lett. 112, 212001 (2014), Zhang, Phys. Rev. Lett. 108, 242004 (2012), 1201.2675. 1401.7611. [26] R.SharmaandI.Vitev,Phys.Rev.C87,044905(2013), [8] J.-W. Qiu, M. Schlegel, and W. Vogelsang, Phys. Rev. 1203.0329. Lett. 107, 062001 (2011), 1103.3861. [27] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, [9] D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel, S. Melis, F. Murgia, A. Prokudin, and C. Turk, Eur. andW.Vogelsang,Phys.Rev.Lett.108,032002(2012), Phys. J. A39, 89 (2009), 0805.2677. 1109.1444. [28] S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 [10] D.Boer,W.J.denDunnen,C.Pisano,andM.Schlegel, (2011), 1101.5057. Phys. Rev. Lett. 111, 032002 (2013), 1304.2654. [29] S.M.Aybat,A.Prokudin,andT.C.Rogers,Phys.Rev. [11] M. G. Echevarria, T. Kasemets, P. J. Mulders, and Lett. 108, 242003 (2012), 1112.4423. C. Pisano, JHEP 07, 158 (2015), 1502.05354. [30] R. Aaij et al. (LHCb), Eur. Phys. J. C71, 1645 (2011), [12] D. Boer and W. J. den Dunnen, Nucl. Phys. B886, 421 1103.0423. (2014), 1404.6753. [31] V. Khachatryan et al. (CMS), Eur. Phys. J. C71, 1575 [13] D. Boer and C. Pisano, Phys. Rev. D91, 074024 (2015), (2011), 1011.4193. 1412.5556. [32] B. B. Abelev et al. (ALICE), Eur. Phys. J. C74, 2974 [14] D. Boer and C. Pisano, Phys. Rev. D86, 094007 (2012), (2014), 1403.3648. 1208.3642. [33] L.Adamczyketal.(STAR),Phys.Lett.B722,55(2013), [15] A. Mukherjee and S. Rajesh (2016), 1611.05974. 1208.2736. [16] A. Mukherjee and S. Rajesh, Phys. Rev. D93, 054018 [34] L. Adamczyk et al. (STAR), Phys. Rev. C93, 064904 (2016), 1511.04319. (2016), 1602.02212. [17] J.Collins,FoundationsofperturbativeQCD (Cambridge [35] A. Adare et al. (PHENIX), Phys. Rev. D82, 012001 University Press, 2013), URL http://www.cambridge. (2010), 0912.2082. org/de/knowledge/isbn/item5756723. [36] R. Aaij et al. (LHCb), Eur. Phys. J. C72, 2025 (2012), [18] J. F. Amundson, O. J. P. Eboli, E. M. Gregores, 1202.6579. and F. Halzen, Phys. Lett. B372, 127 (1996), hep- [37] S. Chatrchyan et al. (CMS), Phys. Lett. B727, 101 ph/9512248. (2013), 1303.5900. [19] J. F. Amundson, O. J. P. Eboli, E. M. Gregores, [38] G.Aadetal.(ATLAS),Phys.Rev.D87,052004(2013), and F. Halzen, Phys. Lett. B390, 323 (1997), hep- 1211.7255. ph/9605295. [39] A.D.Martin,W.J.Stirling,R.S.Thorne,andG.Watt, [20] G.T.Bodwin,E.Braaten,andG.P.Lepage,Phys.Rev. Eur. Phys. J. C63, 189 (2009), 0901.0002. D51,1125(1995),[Erratum:Phys.Rev.D55,5853(1997)], hep-ph/9407339. [21] G.T.Bodwin,E.Braaten,andG.P.Lepage,Phys.Rev. D46, R1914 (1992), hep-lat/9205006.