ebook img

Abundances of the light elements from UV (HST) and red (ESO) spectra in the very old star HD 84937 PDF

0.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Abundances of the light elements from UV (HST) and red (ESO) spectra in the very old star HD 84937

Astronomy&Astrophysicsmanuscriptno.30058_hk2ArX (cid:13)cESO2017 January18,2017 Abundances of the light elements from UV (HST) and red (ESO) ⋆ spectra in the very old star HD84937 M.Spite1,R.Peterson2,A.J.Gallagher1,B.Barbuy3,andF.Spite1 1 GEPI,ObservatoiredeParis,PSLResearchUniversity,CNRS,UniversitéParisDiderot,SorbonneParisCité,PlaceJulesJanssen, 92195,Meudon,France 2 SETIInstitute,189BernardoAve,Suite100,MountainView,CA94043,USA 3 UniversidadedeSãoPaulo,IAG,RuadoMatão1226,CidadeUniversitária,05508-900,SãoPaulo,Brazil 7 1 January18,2017 0 2 ABSTRACT n a Inordertoprovideabetterbasisforthestudyofmechanismsofnucleosynthesisofthelightelementsbeyondhydrogenandhelium J intheoldeststars,theabundancesofC,O,Mg,Si,P,S,K,andCahavebeenderivedfromUV-HSTandvisible-ESOhighresolu- 7 tionspectraintheold,verymetal-poorstarHD84937,atametallicitythatis1/200thatoftheSun’s.Forthishalomain-sequence 1 turnoff star,theabundance determinationof PandS arethefirstpublished determinations. TheLTEprofilesof thelineswerefit- tedtotheobserved spectra.Whereverpossible, wecorrectedthederivedabundances fornon-LTEeffects.Three-dimensional(3D) ] CO5BOLD model atmospheres have been used to determine the abundances of C and O from molecular CH and OH bands. The R abundancesoftheselightelementsinHD84937arefoundtoagreewellwiththeabundancesinclassicalmetal-poorstars.OurHD S 84937carbonabundancedeterminationpointstowardasolar(ormildlyenhanced)valueof[C/Fe].Themodestoverabundanceofthe alphaelementsofevenatomicnumberZ,typicalofhaloturnoffstars,isconfirmedinthisexample.Theodd-ZelementPisfoundto . h besomewhatdeficientinHD84937,at[P/Fe]=–0.32,whichisagainconsistentwiththehandfulofexistingdeterminationsforturnoff p starsofsuchlowmetallicity.Weshowthattheabundanceofoxygen,deducedfromtheOHbandfrom3Dcomputations,isnotcom- - patiblewiththeabundancededucedfromtheredoxygentriplet.Thisincompatibilityisexplainedbytheexistenceofachromosphere o heatingtheshallowlayersoftheatmospherewheretheOHband,in3Dcomputations,ismainlyformed.Theabundanceratiosare r t comparedtothepredictionsofmodelsofgalacticnucleosynthesisandevolution s a Keywords. Stars:Abundances–Galaxy:abundances–Galaxy:halo [ 1 v1. Introduction 2013;VandenBergetal.2014;Snedenetal.2016;Amarsietal. 8 2016; Zhaoetal. 2016). The model parameters are very sim- 0TheoldestsurvivingunevolvedstarsintheMilkyWayaremade ilar in all these studies. The adopted effective temperature 6from matter that is not very enriched in elements produced by T ranges from 6300 to 6408K, and the metallicity [Fe/H]1 eff 4previous(i.e.older,moremassive)stars. The elementsin these from–1.9(Laietal.2007)to–2.3(Snedenetal.2016).Thesur- 0survivingstarsshowlowabundances,buttheobserveddeficien- facegravitylogg rangesfrom4.0to4.1inthesestudies;theonly 1.cies of individualelements are not identical. The measurement exception is a value of logg = 4.5 derived by Laietal. (2007) 0ofthesedeviationsisessentialinordertoconstrainthedifferent fromphotometryratherthanspectra. 7nucleosynthesisprocessesproducingtheseelements.Itisthere- FollowingVandenBergetal.(2014),acomparisonofthepo- 1fore very important to measure the detailed abundances for as sitionofthestarinthe M vs.logT diagramwithisochrones v:many elementsas possible, with the highestprecision, in these computedwith differentavgesand meefftallicities yieldsan age of Xitvheerylioglhdtsetlaerms.eTnthsissupcahpearsiPs,mS,aiannldyKde,vtohteedevtooluthtieoanboufnwdahniccheoinf 12.08 ± 0.14Gyr, adopting Teff = 6408 K and logg = 4.05. Butthisagedependscriticallyontheadoptedtemperature.The rtheGalaxyisstillpoorlyknown. error bar takes into account only the parallax uncertainty. If a HD84937 is a bright, (V = 8.32, Ducati 2002) very we instead adopt the parameters T = 6300K and logg =4.0, eff metal-poor, main-sequence turnoff star, often used as a refer- as in Snedenetal. (2016), then the age of HD84937 becomes ence for the field metal-poor stars (lately: Lawleretal. 2015), ≈13.8Gyr,veryclosetotheageoftheUniverse:13.799±0.038 and consequently has recently been widely studied from spec- Gyr (PlanckCollaborationetal. 2015). Unfortunately, a new tra in the visible domain (Gehrenetal. 2006; Laietal. 2007; parallaxforthisstarisnotyetavailableinthefirstGaiarelease Mashonkinaetal. 2011; Bergemannetal. 2012; Lindetal. 2. Owing to the weakness of spectral lines at the temperature ⋆ Based on observations made with the NASA/ESAHubbleSpace and metallicity of HD84937, the analysis of very high quality Telescopeobtained under program GO-14161 at the Space Telescope spectraisnecessarytoestablishaccurateabundancesforthisref- Science Institute (STScI), which is operated by the Association of erencestar.TakingadvantageofanewUVhighresolutionspec- Universitiesfor ResearchinAstronomy (AURA)and onobservations collected at the European Organisation for Astronomical Research in 1 We adopt the classical notation that for element X: A(X) = the Southern Hemisphere (Archives of programmes 080.D-0347(A), log(N /N )+12 and [X/H]=log(N /N ) −log(N /N ) . X H X H star X H Sun 082.B-0610(A),266.D-5655(A),and073.D-0024(A)). 2 http://www.cosmos.esa.int/web/gaia/dr1 Articlenumber,page1of8 A&Aproofs:manuscriptno.30058_hk2ArX trum from the HubbleSpaceTelescope(HST), complemented 3. Spectralanalysisandabundancemeasurements by previous high resolution, high signal-to-noise UVES and In our analysis we used OSMARCS model atmospheres HARPS spectra obtained in the visible at the European South- (Gustafssonetal. 2008) together with the turbospectrum LTE ern Observatory (Very Large and 3.6m telescopes), we present synthesis code (Alvarez&Plez 1998; Plez 2012). In this code, newdeterminationsoftheabundancesofseveralelementswith the collisional broadening by neutral hydrogen is generally atomic numbersZ lyingbetween Z=6(carbon)and Z=20(cal- computedfollowingthetheorydevelopedbyAnstee&O’Mara cium).NewabundancesofC,Si,P,andSinparticularhavebeen (1991),Barklemetal.(2000)andBarklem&O’Mara(2000). determinedfromthe new HST spectrum,which containsmany For the computations we adopted the model parame- more useful lines of these elements than the optical and near- ters and [Fe/H] derived for HD84937 in the same way infraredspectradoinsuchweak-linedstars. as in Peterson&Kurucz (2015) and Petersonetal. (2016): Phosphorus (Z=15) has never been measured in T =6300K, logg=4.0, and v=1.3kms−1, along with the iron HD84937 and indeed has been measured in very few metal- eff t abundancetheyderivedwiththeseparameters,[Fe/H]=−2.25. poor stars, including only five stars with a metallicity below ThesevaluesdeducedonlyfromtheUVspectraareinexcellent [Fe/H] < −2.0dex (Caffauetal. 2011, 2016; Roedereretal. agreementwith the values derivedfor this star by Lawleretal. 2014). Its behaviour hints at a primary origin in massive stars (2013)andSnedenetal.(2016)basedonV−Kphotometryand (Jacobsonetal.2014). accurateHIPPARCOSparallaxes. Sulphur(Z=16)hasneverbeenmeasuredinHD84937,butit Theparametersanddeducedabundanceforeachatomicline hasbeenmeasuredinasampleofmetal-poorstars(Caffauetal. considered for this analysis are listed in Table 1. The mean 2005; Spiteetal. 2011; Caffauetal. 2016) from near-infrared abundances of the different elements are given in Table 2. For lines (multiplets 1, 6, and 8) and in a carbon-rich metal-poor the computations of [X/H] we adopted the solar abundances star(Roedereretal.2016)fromthreeUVlines(multiplet2uv)3. A(C)=8.5,4 A(Mg)=7.54, A(Si)=7.52, A(P)=5.46, A(S)=7.16, We present the first determination of the sulphur abundancein A(K)=5.11, and A(Ca)=6.33, following Caffauetal. (2011) or HD84937,usingtheUVmultiplet1uvcomparedtotheinfrared Loddersetal.(2009). multiplet1. We also provide 3D corrections for a selected number of Forthefirsttimethesiliconabundancehasbeendetermined atomicandmolecularlines.Theywerecomputedfrom3Dsyn- in HD84937 from the profile of six UV lines and from the Si theticspectrabasedonaCO5BOLD(Freytagetal.2012)model lineinthevisible. atmosphere from the Cosmological Impact of the First STars (CIFIST; Ludwigetal. 2009) grid, using the latest version of Linfor3D5(Gallagheretal.2016a).Agridof1Dsyntheticspec- 2. Observationaldata tra – based on 1D LHD models(Caffau&Ludwig 2007) com- putedwiththesamemicro-physicsasthe3Dmodels–werefit The HST spectrum was obtained as a legacy spectrum un- tothe3Dsyntheticprofilestodeterminethe3Dcorrection(see der GO-14161, with R. Peterson as PI. As described further Gallagheretal.2016b). by Petersonetal. (2016), this spectrum was acquired with the E230H grating of the STIS echelle spectrograph and the 0.2" The 3D and equivalent 1D LHD models selected from x 0.09"slit for a resolvingpowerR=114000.Adoptingfive of the CIFIST grid have stellar parameters Teff/logg/[Fe/H] = thesix E230H“prime”wavelengthsettings, withcentralwave- 6206K/4.0/−2.0,whichiscurrentlythemodelinthegridwith lengths201.3nm,226.3nm,251.3nm,276.2nm,and301.3nm, stellarparametersclosesttotheadoptedOSMARCSmodelpa- resultedinananalysiscoverageof188.0nm–314.0nm.Theto- rameters. talexposuretimeof106.4ks(29.5hours)yieldedS/N>=50per two-pixel resolution element at all wavelengths, except for the 3.1.Carbonandoxygenabundances bluestandreddest. To compare the abundances deduced from the HST spec- In HD84937 the C and O abundances can be derived from traandthevisible,wealsousedground-basedspectrafromthe atomiclinesandfromthemolecularCHandOHbands. ESO Very Large Telescope archives(spectrographsUVES and HARPS).Forwavelengthsshorterthan400nmweusedHARPS 3.1.1. CandOfromatomiclines spectra.TheyhavearesolvingpowerR=115000andasignal-to- noiseperpixel(S/N)betterthan150perpixel.Atlongerwave- – Carbon lengths,inthebluewecombinedtheindividualUVESspectrato Itispossibletodeterminethecarbonabundancefromafitof a mean UVES spectrum with a resolving power R=65000 and theweakredCilinesnear910nm,theweakUVlinesaround aS/Nperpixelbetterthan500.Inthered,inordertominimise 199and248nmandtheverystrongUVCilineat193nm.In theinfluenceofthetelluriclines,andtakingadvantageofthefact thethreecasesweestimate(Table2)thattheerrorin[C/H] thatfollowingCarney&Latham(1987)anddeBruijne&Eilers is≈0.1dex. (2012), HD84937 shows no detectable velocity variability, we The red Ci lines are located within a H O telluric band.In 2 used three different mean spectra each obtained by combining thisregionwehadseveralspectraobservedatdifferentdates individual spectra with almost the same geocentric radial ve- (2002,2003,2004),andforeachmeanspectrumtherelative locity. Therefore, the positions of the telluric lines relative to positionofthetelluriclineswasdifferent.Thuswechoseto the stellar lines are almost the same. These three mean spec- measure each Ci line from only those spectra in which tel- trawereobtainedconsecutivelyonasinglenighteveryyearbe- luriccontaminationwasminimal.The906.25linewasmea- tween 2002 and 2004. The resulting mean red spectra reach a suredonlyonthemean2003spectrum,the907.83linecould resolving power of about 45000 and a S/N per pixel equal to be measured on the 2002 and 2003 mean spectra, and the 310,510,and350,respectively,intheregionoftheredCilines. 4 withtheclassicalnotation:A(X)=log (N /N )+12 10 X H 3 WiththemultipletnumberingofMoore(1945) 5 http://www.aip.de/Members/msteffen/linfor3d Articlenumber,page2of8 XX1etal.:AbundancesofC,O,Mg,Si,P,S,K,andCainHD84937 Table 1. Line-by-line 1D LTE abundances A(X) from atomic lines. Table2.Meanabundances ofthedifferentelements. InCols.2and3 The adopted non-LTE corrections to be applied are given in the last aregiventheabundancesofthedifferentelementsderivedfromthe1D column.ForS,thenon-LTEcorrectionincludesthe3Dcorrection.Air computations.Weadoptedthesolarabundancesgiveninsection3and wavelengths are given for wavelengths > 200nm and vacuum values [Fe/H]=–2.25.Inthelastcolumnisgiven[X/Fe]correctedforNLTE below. and3Dwhenpossible. Element [X/H] [X/Fe] σ [X/Fe] Z λ(nm) Ex.Pot. loggf A(X)LTE NLTEcorr 1D 1D corrected 6 C(Ci) LTE LTE (adopted) 193.0905 1.26 -0.13 6.30 <0.01 C(CH) –1.86 +0.39 – +0.11 199.2012 1.26 -5.74 6.47 <0.01 C(Ci)(UV) –2.09 +0.16 0.15 +0.17 199.3620 1.26 -3.72 6.60 0.01 C(Ci)(red) –2.06 +0.19 0.04 +0.10 247.8561 2.68 -0.96 6.28 0.01 906.2470 7.48 -0.455 6.41 -0.07 O(OH) –1.47 +0.78 907.8280 7.48 -0.581 6.43 -0.08 O(Oi)(red) –1.48 +0.77 – +0.65 908.8509 7.49 -0.430 6.43 -0.08 911.1799 7.49 -0.297 6.49 -0.10 Mg –1.99 +0.26 0.07 +0.30 8 O 777.1944 9.15 0.369 7.28 -0.12 Si –1.90 +0.35 0.06 +0.38 777.4166 9.15 0.223 7.28 -0.12 777.5388 9.15 0.002 7.28 -0.12 P –2.57 –0.32 0.07 –0.32 12 Mg 279.5528 0.00 0.100 5.55 0.00 S(UV) –1.83 +0.42 0.03 +0.42 280.2705 0.00 -0.210 5.55 0.00 S(red) –1.75 +0.50 0.08 +0.20 457.1096 0.00 -5.623 5.61 — 470.2991 4.35 -0.440 5.60 0.04 K(red) –1.68 +0.57 0.03 +0.37 517.2684 2.71 -0.380 5.59 0.06 518.3604 2.72 -0.158 5.54 0.02 Ca –1.78 +0.47 0.08 +0.53 552.8405 4.34 -0.341 5.49 0.01 14 Si 197.7598 0.00 -1.309 5.66 <0.01 198.0618 0.01 -1.437 5.69 <0.01 198.3233 0.01 -1.192 5.65 <0.01 208.2021 0.78 -1.900 5.63 -0.01 208.4462 0.78 -1.880 5.62 -0.01 212.2990 0.78 -1.840 5.57 0.00 212.4122 0.78 0.149 5.40 <0.01 390.5523 1.91 -1.041 5.70 0.05 15 P 213.5469 1.41 -1.240 2.98 — 213.6182 1.41 -0.111 2.94 — 215.2939 1.41 -0.357 2.81 — 253.3986 2.32 -1.114 2.86 — 255.4911 2.33 -1.231 2.85 — 16 S 190.0287 0.00 -3.709 5.30 — 191.4697 0.05 -4.261 5.31 — 216.8884 1.14 -3.962 5.30 — 921.2863 6.53 0.420 5.33 -0.3 922.8093 6.53 0.260 5.49 -0.3 Fig.1.Examplesofthebestfits(redthickline)oftwoatomiclinesof 923.7538 6.53 0.040 5.40 -0.3 Ciinthered.Syntheticprofiles(bluethinlines)havebeencomputed 19 K withA(C)=6.1,6.4,and6.7. 766.4899 0.00 0.149 3.46 -0.2 769.8964 0.00 -0.154 3.40 -0.2 20 Ca 911.18lineonlyonthe2004spectrum.Anexampleofthefit 428.3011 1.89 -0.220 4.55 0.07 isgiveninFig.1.InFig.2wepresentthefitofthewingsof 431.8652 1.90 -0.210 4.49 0.06 thestrongCilineat193.1nm. 442.5437 1.88 -0.360 4.50 0.07 Fabbianetal.(2006,2009b)computedanon-LTEcorrection 443.5679 1.89 -0.520 4.52 0.07 forHD84937of–0.2dexforthehighexcitationCiredlines. 445.4779 1.90 0.260 4.50 0.04 Zhaoetal.(2016)andMashonkina(privatecommunication) 526.5556 2.52 -0.260 4.63 0.13 computedacorrectioncloseto–0.1dexfortheredCilines 534.9465 2.71 -0.310 4.50 0.12 and≤0.01dexfortheUVCilines;weadoptedthesecorrec- 558.1965 2.52 -0.710 4.67 0.09 tions (Table 1). These new measurementspoint to a [C/Fe] 558.8749 2.52 0.210 4.62 0.08 ratioinHD84937closetosolar(Table2). 559.0114 2.52 -0.710 4.67 0.09 – Oxygen 560.1277 2.52 -0.690 4.69 0.09 585.7451 2.93 0.230 4.50 0.08 Articlenumber,page3of8 610.2723 1.88 -0.790 4.51 0.05 612.2217 1.89 -0.320 4.52 0.00 616.2173 1.90 -0.090 4.54 0.00 643.9075 2.52 0.470 4.42 -0.02 A&Aproofs:manuscriptno.30058_hk2ArX Fig.2.ObservedprofileofthestrongCilineinHD84937.Thebluethin linesrepresentthesyntheticprofilescomputedwithA(C)=6.0and6.9. Thethickredlinerepresentsthebestfit(1Dcomputations)A(C)=6.3. Fig.3.Comparisonbetweentheobservedandsyntheticprofilesofthe redoxygentripletinHD84937.Thesyntheticprofiles(bluethinlines) oftheoxygentriplethavebeencomputedwithA(O)=6.9and7.5.The thickredlinerepresentsthebestfitforA(O)=7.28. We derived the oxygen abundance in HD84937 from the oxygen triplet at 777nm (Fig. 3). The non-LTE correction (−0.12dex)wasadoptedfromthecalculationsofZhaoetal. Fig. 4. Observed profile of the CH and OH bands in HD84937. For theCHbandsthe1DETLsyntheticprofiles(bluethinlines)havebeen (2016)andleadsto[O/H]=7.16±0.1.Theresultingvalue computed with A(C)= 0.0, 6.4, and 6.7. The absorption by the wing [O/Fe] = +0.65 is in good agreement with the value ob- ofHγhasbeenincludedinthecomputation oftheG-band. Thethick tained from the forbidden [Oi] line in the EMP giants by redlinerepresentsthebestfit:A(C)=6.60fortheUVCHfeatureand Spiteetal. (2005), and is in a reasonable agreement, in- A(C)=6.64for the G-band. The synthetic profile of the OH band has side the measurement errors, with the value obtained by been computed withA(O)=7.0 and 7.6. Thebest fit isobtained with Zhaoetal. (2016) from the red Oi lines (part of the differ- A(O)=7.29 enceindeedcomesfromtheadopted[Fe/H]value). –3DComputations Wecomputed3Dcorrectionstothe1Dabundancesdetermined 3.1.2. CandOfromCHandOHmolecularbands for the G-band, and 14 OH lines in the wavelength range 312.24−312.83nm.Wedefinea3Dcorrection,∆ ,withthefor- 3D –1DComputations malismgivenbyGallagheretal.(2016b),i.e.,∆ = A(X) − 3D 3D -We computed the CH carbon abundance by fitting the profile A(X) , wherethe 1D synthesisis computedfromLHD model 1D oftheCHfeatureat314.3nmandoftheG-bandbetween430.8 atmospheres.Wecomputed3DprofilesofCHandOHusingthe and 431.4nm. Line lists for 12CH and 13CH (Masseronetal. absolute carbon and oxygen abundances derived from the 1D 2014)wereincludedinthesynthesis.Theresultispresentedin non-LTE computations of the red Ci and Oi atomic lines and Fig. 4. For the UV feature the best fit correspondsto [C/H] = thus with a C/O ratio of ≈ 0.15. (Unlike the 1D computations, −1.90dex, i.e., [C/Fe] = +0.35dex, and for the G-band to the3DcomputationsaresensitivetotheC/Oratio)6. [C/H] = −1.86dex,i.e., [C/Fe] = +0.39dex. The CH bandin For the G-band we found a 3D correction of –0.28dex. HD84937isveryweakandthusthecorrespondingabundanceis The resulting C abundance, [C/H]= –2.14 or [C/Fe]= +0.11, verysensitive to the positionof the continuumand in this case is in very good agreement with the abundance deduced from theerroron[C/H]isestimatedto≈0.15dex. the atomic lines (Table 2). However, the OH lines were far -AfitoftheOHbandbetween312and314nmleadsto[O/H]=– stronger in 3D than in 1D. In fact, owing to the low C/O ratio 1.47(Fig.4)and[O/Fe]=+0.78. in the atmosphere of a typical metal-poor star like HD84937, Thereis,inHD84937,arathergoodagreementbetweenthe the OH lines are mainly formed in the most external regions abundances deduced from the atomic lines (Table 2) and the of the atmosphere, which are about 300K cooler in the 3D molecularbandsfrom1Dcomputations.However,inmetal-poor model than in the 1D model (see Fig. 1 in Gallagheretal. stars the molecularlines are sensitive to convectiveeffects, ne- 2016b, for a metallicity of –2). In this case, the 3D correction glected in the 1D computations,and we have to take them into account. 6 X/Y=N(X)/N(Y)=10[A(X)∗−A(Y)∗] Articlenumber,page4of8 XX1etal.:AbundancesofC,O,Mg,Si,P,S,K,andCainHD84937 fortunately,inHD84937aninterstellarlinewitharadialvelocity veryclose to the radial velocityof the star perturbsthis profile on the red side, and the red peak of the emission is not clearly visible. We also computed the 3D correction for two Ci lines: the verystronglineat193.09nm(Fig.2)andthelineat199.36nm. Inbothcaseswefoundacorrectionlowerthanthemeasurement error(respectively+0.06and-0.07). 3.2.Abundancesofclassicalαelements:magnesiumand calcium Foramorehomogeneouscomparison,inthevisiblewederived the magnesium and calcium abundances from the equivalent widths of a set of lines already used in extremely metal-poor (EMP)main-sequenceturnoffstarsbyBonifacioetal.(2009). FortheopticalMgilinesinTable1,weadoptedthenon-LTE correctioncomputedbyZhaoetal.(2016)andwefoundamild overabundanceofMg(Table2:[Mg/Fe] =+0.30dex),asdid LTE Gehrenetal.(2006)andZhaoetal.(2016).Thisvalueisalsoin goodagreementwiththevaluewededucefromthewingsofthe very strong Mgii h and k lines around 280nm ([Mg/Fe] = LTE +0.26dex).Thenon-LTEcorrectionhasnotbeencomputedfor Fig.5.CentreofthethehandkMgiilinesintheHST/STISUVspectra theseUVlines.However,followingAbia&Mashonkina(2004), ofHD84937andHD140283.Theprofilesofthehandklineshavebeen sinceMgiiisthemajorityspecies,departuresfromLTEareex- overplottedtoshowtheemissionatthecentreofbothlinesindicating pectedto be caused mainlyby radiativeb-b transitions, and no theexistenceofachromosphere.InHD84937aninterstellarline,witha radialvelocityclosetotheradialvelocityofthestar,perturbstheprofile processseems to affect the Mgii ground-statepopulation.As a ontheredsideofthecore. consequence,thenon-LTEcorrectionfortheresonancehandk Mgiilinesshouldbenegligible. Our LTE calcium abundances in Table 1 have been corrected reaches−0.72dex.Applyingthis3DcorrectiontotheOHband fornon-LTEeffectsfollowingSpiteetal.(2012).Wehavethree would lead to a value of [O/H]=–2.19([O/Fe]=+0.06),a value linesincommonwith Zhaoetal.(2016),andthenon-LTEcor- hardlycompatiblewiththeobservationoftheatomiclines.For rections for these lines do not differ by more than 0.02dex. HD84937 the adopted 3D model seems to be too cool in the The Ca abundance found in HD84937 is in very good agree- most outer layers. This could be due to the omission of a hot ment with the mean abundances obtained, using the same set solar-likechromosphereinour3Dmodel. of lines, for EMP turnoff stars with −3.6 < [Fe/H] < −2.5 (Bonifacioetal.2009;Spiteetal.2012). From HST spectra of the Mgii lines near 280nm, Peterson&Schrijver (1997) showed that solar-like chromo- spheres routinely occur among turnoff metal-poor stars despite 3.3.Siliconabundance theirrelativelylowdegreeofactivity.Fromsevensuch starsof a wide metallicity range down to 1/300 solar whose radial ve- Thesiliconabundancecouldbededucedfromsevensiliconlines locities largely shifted the line coresaway from the interstellar intheUVandanotheroneat390nm.Thislastlinewasusedto absorption,thisworkdemonstratedthatdouble-peakedemission determinetheSi abundancein the sampleofEMPturnoffstars cores were always present, and that the blue peak was usually studiedinBonifacioetal.(2009).Shietal.(2009)computedfor strongerthantheredasisalsotheusualcaseforthequietSun. thislinea non-LTEcorrectionof+0.05dex.Thenon-LTEcor- Theyconcludedthat“whilethesedatadonotruleoutmagnetic rection for the ultraviolet lines were computed by Mashonkina fieldstheysupportanacousticoriginofchromosphericemission (privatecommunication)andarelessthan0.1dex(Table1).Our andshowthatrelativelyinactivesolar-typestarsofallageshave derivedoverabundanceof Si is then [Si/H] = −1.87±0.10 or chromosphereswhosecharacteristicsarelargelyindependentof [Si/Fe]=+0.38.Itisinterestingtonotethatthisvalueishigher metallicity”. Subsequent work, based on observations of Hei than the mean silicon overabundance derived in EMP dwarfs 1083nmabsorptionfeatures,haveconfirmedtheseresults(e.g., from the 390nm line alone: [Si/Fe] ≈ +0.09± 0.14. But this Takeda&Takada-Hidai2011).Moreworkonthissubject,based mean value has not been corrected for non-LTE effects and, in on the profiles of the Mgii lines in HST/STIS spectra of sev- theseEMPturnoffstarswith[Fe/H]≤ −3,thenon-LTEcorrec- eralmetal-poorstars,isongoing(Peterson&Tarbellinprepara- tioncouldreach0.25dex(Shietal.2009).Asaconsequencethe tion).InFig. 5we presentthe profileof theMgii h andklines silicon abundancefoundin the UV in HD84937is compatible in our HST/STIS spectrum of HD84937 and in the G0-14161 with the results of Bonifacioetal. (2009). As for Mg and Ca, E230Hspectrumofanotherclassicalextremelymetal-poorstar, our[Si/H] value is veryclose to the valuefoundby Zhaoetal. HD140283(Petersonetal.2016).InHD140283thetwopeaks (2016), and the small difference in [Si/Fe] is attributed to the –typicalofasolar-likechromosphere–are clearlyvisible;un- adopted[Fe/H]values. Articlenumber,page5of8 A&Aproofs:manuscriptno.30058_hk2ArX 3.4.Phosphorusabundance Thephosphorusabundanceisderivedfromfiveultravioletlines of the multiplets 4(uv), 8(uv), and 9(uv), leading to [P/Fe] = −0.32.Thestatisticalerrorreaches0.07dex.SomeotherPlines are visible in the spectrum, but these lines are so severely blended that they cannot be used to determine the P abun- dance with precision. In Fig. 6 we show the fit of the ob- served lines with the computed spectra. The value of [P/Fe] in HD84937confirmsthe low value of [P/Fe] in metal-poorstars (Fig.7). Recently R. Kurucz has published new loggf values for the P lines in the UV and in the red 7. These new values are about 0.1dex higher than the old ones. Consequently, their adoption herewouldreducethe[P/Fe]valuesofTables1and2byabout 0.1dex. To date, no non-LTE calculations have been performed for Pi features;followingJacobsonetal.(2014)theyareexpected tobesmallinthistypeofstar. 3.5.Sulphurabundance InHD84937,thesulphurabundancecouldbederivedfromthe profileoftwoUVfeaturesat190.03and191.47nmandfromthe profiles of the red multiplet 1 (Table 2). This multiplet is con- taminated by a telluric band of H O. We measured the S lines 2 only on spectra wherethey were notblendedby a telluric line. The921.2linecouldbemeasuredonthe2002,2003,and2004 spectra,buttheothertwolines(922.8and923.7m)onlyonthe 2002 and 2003 spectra. We obtained good agreement between the abundances deduced from the two different sets of lines: [S/Fe]=+0.42dexfromtheUVlinesand[S/Fe]=+0.50fromthe redlines. It is well known that non-LTE effects influence the profiles of the red multiplet 1. Following Takedaetal. (2005), the non- LTE correction is about –0.2 dex for the model parameters of HD84937. However, following Spiteetal. (2011), based on a new model atom of sulphur by Korotin (2008, 2009a,b) and Fig. 6. Comparison of the observed (crosses) and synthetic (curves) newphotoionisationrates,theNLTEcorrectionforthemodelof spectrainHD84937intheregionofthefourPIlinesanalysedinthis HD84937reaches–0.4dex.Ontheotherhand,ithasbeencom- work.Theredthicklinemarksthebest-fitsyntheticspectrum,obtained puted that in the case of this multipletthe 3D correctionis not withthevalueofA(P)indicatedinthefigure.Thethinbluelinesshow negligible and reaches +0.1dex (Spiteetal. 2011). This small syntheticspectracomputedwithA(P)=2.6andA(P)=3.2.Asisusually butpositive correctionhasbeen addedto the NLTE correction. done,theloggf valuesoftheblendinglineshavebeenadjustedtogive Finally,wefindfromtheredmultiplet1,[S/Fe]=+0.20dex. amorecorrectrepresentationofthedifferentfeatures. As far as we are aware, non-LTE corrections of the UV features have never been computed, but they are probably as 4. Discussionandconclusion small asforC and Si. We estimate a sulphuroverabundancein HD84937of[S/Fe]≈0.3dex,ingoodagreementwiththemean Our analysis of high quality spectra for HD84937,notablythe sulphuroverabundancefoundinmidmetal-poorstars(François HST ultraviolet spectra as well as ground-based optical/near- 1986)andinEMPstars(Spiteetal.2011). infraredspectra,hasallowedustorefinetheabundancesofsev- eral light elements between C and Ca in this star, and provide thefirstmeasurementsofitsP,S,andKabundancesandamore 3.6.Potassiumabundance firmly established Si abundance. Accurate abundances of such The abundance of K has been deduced from the red lines keyelementsarevitalinreferencestarslikeHD84937inorder at 766.4899nm and 769.8964nm. Following Takedaetal. tobetterinterpretchemicalevolutionmodelsandsupernovaeen- (2002), the non-LTE correction for the model parameters of richmentintheGalactichalo. HD84937reaches–0.3dex,butZhaoetal.(2016)hascomputed The presence of emission-core reversal at the centre of the a correction of –0.2dex and we adopted this latter value. As a very strong Mgii resonance lines confirms the existence of a consequencewefindforthisstararatio[K/Fe]=0.37±0.10,in chromospherearoundHD84937(Peterson&Schrijver1997). excellentagreementwith the value foundfor the EMPstars by The abundancesof C and O deducedfromthe atomic lines Takedaetal.(2009)andAndrievskyetal.(2010). areingoodagreementwiththeabundancesobtainedintheEMP stars(Bonifacioetal.2009;Spiteetal.2005). 7 http://kurucz.harvard.edu/linelists.htmlseefileGFALL. TheCabundancededucedfromtheCHmolecularbandafterthe Articlenumber,page6of8 XX1etal.:AbundancesofC,O,Mg,Si,P,S,K,andCainHD84937 arehighlystrengthened.However,current3Dmodelsformetal- poorturnoffstarsdonotincludetheriseintemperatureexhibited byasolar-likechromosphere.Thesemodelshavebeenbuiltonly fortheSun,butsimilarmodelswouldbeusefulinordertoanal- ysemolecularfeaturesinclassicalmetal-poorturnoffstars. TheclassicalαelementsMg,Si,andCahaveaboutthesame overabundance in HD84937 as observed in the EMP turnoff starsstudiedinBonifacioetal.(2009).HD84937isalsomildly enhancedinK,asaretheothermetal-poorstars. –The ratio [P/Fe] is found to be slightly below the solar value, as is typically seen in very metal-poor stars (Fig. 7) Fig. 7. [P/Fe] vs. [Fe/H] is shown for the five stars analysed by and more generally for the light odd-Z elements like Na and Roedereretal.(2014)andRoedereretal.(2016)with [Fe/H] < −2.0 Al. Molaroetal. (2001) also measured [P/Fe] in a dust free (blue dots), plus our result for HD84937 (blue star symbol). The Ly-α system that has the same metallicity as HD84937, and theoretical predictions of Timmesetal. (1995) (red dot-dashed line), Goswami&Prantzos(2000)(pinkdottedline),Kobayashietal.(2011) they found [P/Fe]=–0.27, about the same ratio as observed in (bluethickline),andCescuttietal.(2012)(greendashedline)arealso HD84937(Table2). represented. In Fig. 7 we show the P measurements of Roedereretal. (2014, 2016). The two most metal-poor stars in the figure areBD+44◦493 ([Fe/H]=−3.88)andG64-12,([Fe/H]=−3.28). They are both carbon-enhanced metal-poor stars (CEMP) fol- lowing Roedereretal. (2016) and Placcoetal. (2016), but in thesestarstheneutron-captureelementsarenotenhanced.They are “CEMP-no” stars and thus the composition of their atmo- sphere is supposed to reflect the abundance of the cloud that formed the star. This cloud would have been enriched by a faintsupernova(SN)providingcarbonandthelighterelements, but the elements heavier than Mg are not affected (see, e.g., Bonifacioetal. 2015). As a consequence, the P abundance in thesestarsshouldbecomparabletothePabundanceinclassical Fig. 8. [S/Fe] vs. [Fe/H] for metal-poor stars with [Fe/H] < −2.0 metal-poorstars(i.e.,metal-poorstarswithoutCenhancement) (blue squares), plus our result for HD84937 (blue star symbol). The andweincludetheminthefigure. theoretical predictions of Timmesetal. (1995) (red dot-dashed line), According to Woosley&Weaver (1995) and West&Heger Goswami&Prantzos(2000)(pinkdottedline),Kobayashietal.(2011) (2013), the isotope 31P is produced mostly in SNII in both O (bluethickline),andMatteucci(2016)(greendashedline)arealsorep- and Ne burning shells, and its ejection is not very sensitive to resented. theexplosionmechanism.Takingintoaccountcore-collapsesu- pernovae and hypernovae, Kobayashietal. (2006, 2011) pro- ducedmodelsofchemicalevolutionforthehalo.Weoverplotted theirbestmodeltotheveryfewavailablePdatapoints(Fig.7). Alsoplottedinthisfigurearethemetallicity-dependentmodelof Timmesetal.(1995),themodelofGoswami&Prantzos(2000) using yields from Woosley&Weaver (1995) at variablemetal- licities,andmodel4ofCescuttietal.(2012).Thebestfitseems tobeobtainedwiththeKobayashietal.(2011)model.However intheinterpretationoftheabundancetrendswehavetobevery prudent.We note that NLTE computationshave not been done for this element and that following Caffauetal. (2016) for the disk stars there is a shiftof 0.23dex between the UV-HST and Fig. 9. [K/Fe] vs. [Fe/H] for metal-poor stars with [Fe/H] < −2.0 the near-infrared measurements of the P abundance (see their (blue squares), plus our result for HD84937 (blue star symbol). The Fig. 5). This disagreementcould be the result of differentnon- theoretical predictions of Timmesetal. (1995) (red dot-dashed line), LTEcorrectionsfortheUVandnear-infraredlinesbutcouldbe Goswami&Prantzos(2000)(pinkdottedline),Kobayashietal.(2011) alsotheresultofsystematicerrorsinthegf values. (bluethickline),andMatteucci(2016)(greendashedline)arealsorep- resented. –Sulphur is an α element mainly produced in massive su- pernovae or hypernovae. In Fig. 8 we compare the observed [S/Fe] ratios to the abundance ratios predicted by the mod- 3D-1Dcorrectionisinverygoodagreementwiththeabundance elsofGoswami&Prantzos(2000),Kobayashietal.(2011)and deducedfromtheatomiclines(Table2). Matteucci (2016). The best fit is obtained with the model of The oxygen abundance deduced from the OH molecular band Matteucci(2016). computed with 1D models agree with the abundancesdeduced –In the very metal-poor stars, potassium (an odd element: fromtheatomiclines;however,when3Dcomputationsaredone, Z = 19) is enhanced relative to iron (Fig. 9) as are the (even) theabundanceofoxygendeducedfromtheOH bandisincom- α elements. The models struggle to represent the abundance patiblewiththeabundancededucedfromtheatomiclines.In3D of K in the Galactic halo. The best fit (Fig. 9) is achieved by computations,atvariancewith1Dcomputations,theOHbandis the model of Goswami&Prantzos (2000); however, these au- formedpredominantlyinshallowatmosphericlayers,andsince thorspointoutthatthisgoodrepresentationcouldbefortuitous 3D models are cooler at the surface than 1D models, OH lines and might be due to a factor of two reduction of the Fe yields Articlenumber,page7of8 A&Aproofs:manuscriptno.30058_hk2ArX combinedwiththeadoptedIMF(Kroupaetal.1993).Following Korotin,S.A.2008,OdessaAstron.Pub.,21,42 Kobayashietal.(2011)theunderproductionofKinthetheoret- Korotin,S.A.,2009a,AstronomicheskiiZhurnal,86,702 ical massive supernovae/hypernovaecould be the consequence Korotin,S.A.2009b,AstronomyReports,53,651 Kroupa,P.,Tout,C.A.,&Gilmore,G.1993,MNRAS,262,545 ofaneglectoftheνprocess.Whenthecoreofmassivestarscol- Lodders,K.,Palme,H.,&Gail,H.-P.2009,LandoltBörnstein,NewSeries,As- lapses, a large flux of neutrinos is emitted and these neutrinos tronomyandAstrophysics,SpringerVerlag,Berlin interact with heavy elements through neutral-current reactions Lai,D.K.,Johnson,J.A.,Bolte,M.,&Lucatello,S.2007,ApJ,667,1185 producinginparticularFandK. Lawler,J.E.,Guzman,A.,Wood,M.P.,Sneden,C.,&Cowan,J.J.2013,ApJS, 205,11 The HST has permitted an extension of the pattern of the Lawler,J.E.,Sneden,C.,&Cowan,J.J.2015,ApJS,220,13 light elements produced by the explosion of the progenitor of Lind,K.,Melendez,J.,Asplund,M.,Collet,R.,&Magic,Z.2013,A&A,554, a very old, metal-poor, unevolved star whose composition is A96 highlyrepresentativeofthe earlieststagesofpriormassivestar Ludwig,H.-G.,Caffau,E.,Steffen,M.,etal.2009,Mem.Soc.Astron.Italiana, nucleosynthesis.Theseelementsareakeytoabetterunderstand- 80,711 Mashonkina, L.,Gehren, T.,Shi,J.-R.,Korn,A.J.,&Grupp,F.2011,A&A, ing of the nucleosynthetic processes that have formed the el- 528,A87 ements in the early massive supernovae/hypernovae.It is very Masseron,T.,Plez,B.,VanEck,S.,etal.2014,A&A,571,A47 importantthat futureaccess to the UV regionof the spectra be Matteucci,F.2016,JournalofPhysicsConferenceSeries,703,012004 preserved. This region is a very powerful tool for the study of Molaro, P., Levshakov, S. A., D’Odorico, S., Bonifacio, P., & Centurión, M. 2001,ApJ,549,90 theearlyphasesoftheGalacticevolution. Moore,C.E.1945,ContributionsfromthePrincetonUniversityObservatory,vol. Acknowledgements. WearegratefultoLyudmilaMashonkinaforaveryuseful 20,p.1 andcompetent reportandforthecommunication ofseveral unpublished non- Peterson,R.C.,&Schrijver,C.J.,1997,ApJ,480,L47 LTEcorrections.WealsothankPiercarloBonifaciowhocomputedtheATLAS9 Peterson,R.C.,&Kurucz,R.L.2015,ApJS,216,1 modelandWIDTHprofiles forustocheck theCilines. Thisworkwas sup- Peterson,R.C.,Kurucz,R.L.,&Ayres,T.R.2016,inpreparation portedbythe“ProgrammeNationaldePhysiqueStellaire”andthe“Programme Placco,V.M.,Beers,T.C.,Reggiani,H.,Meléndez,J.2016, NationaldeCosmologieetGalaxies”(CNRS-INSU).PartialsupportforR.Pe- PlanckCollaboration,Adam,R.,Ade,P.A.R.,etal.2015,arXiv:1502.01586 tersonwasprovidedbyNASAunderHSTGO-14161.R.Petersonthanksher PlezB.,2012,http://2012ascl.soft05004P GO-14161coinvestigatorsTomAyresforhisassistanceinacquiringandreduc- Roederer,I.U.,Jacobson,H.R.,Thanathibodee,T.,Frebel,A.,&Toller,E.2014, ingtheHSTspectraandRobertKuruczforhisadviceinanalysingthem.A.J. ApJ,797,69 GallagheracknowledgesthefundingbyFONDATIONMERACandthematch- Roederer,I.U.,Placco,V.M.,Beers,T.C. 2016,ApJ,824,L19 ingfundgrantedbytheScientificCouncilofObservatoiredeParis.B.Barbuy Shi,J.R.,Gehren,T.,Mashonkina,L.,&Zhao,G.2009,A&A,503,533 waspartiallysupportedbyFAPESP,CNPq,andCAPES. Sneden,C.,Cowan,J.J.,Kobayashi,C.,etal.2016,ApJ,817,53 Spite,M.,Cayrel,R.,Plez,B.,etal.2005,A&A,430,655 Spite,M.,Caffau,E.,Andrievsky,S.M.,etal.2011,A&A,528,A9 Spite,M.,Andrievsky,S.M.,Spite,F.,etal.2012,A&A,541,A143 References Takeda,Y.,Zhao,G.,Chen,Y.-Q.,Qiu,H.-M.,&Takada-Hidai,M.2002,PASJ, 54,275 Abia,C.,&Mashonkina,L.2004,MNRAS,350,1127 Takeda,Y.,Hashimoto,O.,Taguchi,H.,etal.2005,PASJ,57,751 AlvarezR.,&PlezB.,1998,A&A330,1109 Takeda,Y.,Kaneko,H.,Matsumoto,N.,etal.2009,PASJ,61,563 Amarsi,A.M.,Lind,K.,Asplund,M.,Barklem,P.S.,&Collet,R.2016,MN- Takeda,Y.,&Takada-Hidai,M.2011,PASJ,63,547 RAS,inpress(ArXiv:1608.06390) Timmes,F.X.,Woosley,S.E.,&Weaver,T.A.1995,ApJS,98,617 Andrievsky,S.M.,Spite,M.,Korotin,S.A.,etal.2010,A&A,509,A88 VandenBerg,D.A.,Bond,H.E.,Nelan,E.P.,etal.2014,ApJ,792,110 Anstee,S.D.,&O’Mara,B.J.1991,MNRAS,253,549 West,C.,&Heger,A.2013,ApJ,774,75 Barklem,P.S.,Piskunov,N.,&O’Mara,B.J.2000,A&AS,142,467 Woosley,S.E.,&Weaver,T.A.1995,ApJS,101,181 Barklem,P.S.,&O’Mara,B.J.2000,MNRAS,311,535 Zhao,G.,Mashonkina,L.,Yan,H.L.,etal.2016,arXiv:1610.00193 Bergemann,M.,Lind,K.,Collet,R.,Magic,Z.,&Asplund,M.2012,MNRAS, 427,27 Bonifacio,P.,Spite,M.,Cayrel,R.,etal.2009,A&A,501,519 Bonifacio,P.,Caffau,E.,Spite,M.,etal.2015,A&A,579,A28 Caffau,E.,Bonifacio,P.,Faraggiana,R.,etal.2005,A&A,441,533 Caffau,E.,&Ludwig,H.-G.2007,A&A,467,L11 Caffau,E.,Bonifacio,P.,Faraggiana,R.,&Steffen,M.2011,A&A,532,A98 Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., & Bonifacio, P. 2011, Sol.Phys.,268,255 Caffau,E.,Andrievsky,S.,Korotin,S.,etal.2016,A&A,585,A16 Carney,B.W.,&Latham,D.W.1987,AJ,93,116 Cescutti,G.,Matteucci,F.,Caffau,E.,&François,P.2012,A&A,540,A33 deBruijne,J.H.J.,&Eilers,A.-C.2012,VizieROnlineDataCatalog,354, Ducati,J.R.2002,VizieROnlineDataCatalog,2237, Fabbian,D.,Asplund,M.,Carlsson,M.,&Kiselman,D.2006,A&A,458,899 Fabbian,D.,Asplund,M.,Barklem,P.S.,Carlsson,M.,&Kiselman,D.2009a, A&A,500,1221 Fabbian, D., Nissen, P. E., Asplund, M., Pettini, M., & Akerman, C. 2009b, A&A,500,1143 François,P.1986,A&A,165,183 Freytag,B.,Steffen,M.,Ludwig,H.-G.,etal.2012,JournalofComputational Physics,231,919 Gallagher,A.J.,Caffau,E.,Bonifacio,P.,etal.2016,A&A,593,A48 Gallagher,A.J.,Steffen,M.,Caffau,E.,etal.2016,arXiv:1610.04427 Gehren,T.,Shi,J.R.,Zhang,H.W.,Zhao,G.,&Korn,A.J.2006,A&A,451, 1065 Goswami,A.,&Prantzos,N.2000,A&A,359,191 GustafssonB.,EdvardssonB.,ErikssonK.,Graae-Jørgensen U.,NordlundÅ., PlezB.,2008,A&A,486,951 Jacobson,H.R.,Thanathibodee,T.,Frebel,A.,etal.2014,ApJ,796,L24 Kobayashi,C.,Umeda,H.,Nomoto,K.,Tominaga,N.,&Ohkubo,T.2006,ApJ, 653,1145 Kobayashi,C.,Karakas,A.I.,&Umeda,H.2011,MNRAS,414,3231 Articlenumber,page8of8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.