ebook img

Abundances of neutron-capture elements in the Hot Extreme-Helium Stars V1920 Cygni and HD 124448 PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Abundances of neutron-capture elements in the Hot Extreme-Helium Stars V1920 Cygni and HD 124448

DRAFTVERSIONJANUARY1,2004 PreprinttypesetusingLATEXstyleemulateapjv.11/12/01 ABUNDANCESOFNEUTRON-CAPTUREELEMENTSINTHEHOTEXTREME-HELIUMSTARSV1920 CYGNIANDHD1244481 GAJENDRAPANDEY2,3,DAVIDL.LAMBERT2,N.KAMESWARARAO3,C.SIMONJEFFERY4 DraftversionJanuary1,2004 ABSTRACT AnalysisofHST STISultravioletspectraoftwohotextremeheliumstars(EHes):V1920CygandHD124448 providethefirstmeasurementsofabundancesofneutron-captureelementsforEHes. Althoughthetwostarshave similar abundancesforelementsupthroughtheiron-group,theydifferstrikinglyintheirabundancesofheavier elements: V1920Cyg is enriched by a factor of 30 in light neutron-captureelements (Y/Fe, Zr/Fe) relative to 4 HD124448.Thesedifferencesinabundancesofneutron-captureelementsamongEHesmirrorsthatexhibitedby 0 theRCrBstars, andisevidencesupportingtheviewthatthereisanevolutionaryconnectionbetweenthesetwo 0 groupsofhydrogen-deficientstars. Also,theabundancesofYandZrinV1920Cygprovideevidencethatatleast 2 oneEHestarwentthroughas-processsynthesisepisodeinitsearlierevolution. n Subjectheadings:stars: abundances–stars: chemicallypeculiar–stars: evolution a J 4 1. INTRODUCTION dance analyses for a pair of hot EHes of similar temperature 1 and gravityand with almost identicalcompositionsexceptfor Extremeheliumstars(EHes)arecarbon-richB-andA-type abundancesofYandZr. supergiants in which surface hydrogen is merely a trace ele- 1 ment(Jefferyetal. 1987). RCrBstarsaresimilarlyhydrogen- v 2. OBSERVATIONS 3 poor carbon-rich F- and G-type supergiants characterised by 6 steep and irregular declines in visual brightness (Asplund et Ultraviolet: V1920Cyg (aka HD225642 and LS II +33 5) 2 al. 2000). Understanding the origins of these rare luminous andHD124448wereobserved(programID:GO9417)on2002 1 H-deficient stars remains a challenge. Detailed analyses of October 18 and 2003 July 21, respectively, with the HST’s 0 thestar’schemicalcompositionsholdcluestotheirorigins. A STISNear-UV/MAMA,using the E230Mgratingand 0.′′2 × 4 significantlacunapresentlyexists: theabundancesofneutron- 0.′′06 aperture, which provides a resolving power (λ/∆λ) of 0 captureelementsinEHesareunknown. Here,weprovideand 30,000. Two spectra for each star were obtained: V1920Cyg / h commentonthefirstestimatesoftheseabundancesforapairof (DataSetsO6MB06010andO6MB06020withexposuretimes p EHes. 1844 s and 2945 s, respectively) and HD124448 (Data Sets - Two scenarios are contenders to account for the EHes and O6MB02010andO6MB02020withexposuretimes1977sand o the RCrB stars: the merger of a He white dwarf with a C-O 3054 s, respectively). The spectrum covered the wavelength r t white dwarf (Webbink1984), and a final shellflash in a post- rangefrom1840Åto2670Å.Sincetheabsorptionprofilesare s a AGB star onthe whitedwarfcoolingtrack(Ibenet al. 1983). broadforV1920Cyg(projectedrotationalvelocityvsini∼40 : A final shell flash appears most likely responsible for the re- km s- 1; Jeffery et al. 1998) and HD124448 (vsini ∼ 20 km v markablestarsFGSge(Langer,Kraft&Anderson1974;Gon- s- 1;Schönberner&Wolf1974),thecoaddedspectrafromtwo i X zalezetal. 1998)andV4334Sgr(Sakurai’sobject- Duerbeck exposureswere rebinned to a lower resolution to improve the r & Benetti 1996; Asplund et al. 1997) with RCrB-like light signal-to-noise(S/N) ratio, which is about100at 2500Å.The a curves, high overabundancesof the neutron-captureelements, resultingspectrahavearesolvingpowerof7500(V1920Cyg) andprobableorcertainH-deficiency.Whitedwarfmergersap- and15000(HD124448). peartoaccountforthecompositionsofEHesand(probably)the Optical: A high-resolution optical spectrum of V1920Cyg RCrBs (Pandeyet al. 2001; Saio & Jeffery2002; Asplundet wasobtainedon1996July25attheW.J.McDonaldObserva- al. 2000). Thes-processabundancesinEHesarecrucialclues tory’s 2.7-m telescope with the coudé cross-dispersed echelle because, in the merger model, enrichment of neutron-capture spectrograph(Tulletal. 1995)ataresolvingpowerof60,000. elementsisnotexpectedunlesssomes-processingoccursdur- Theobservingprocedure,thedetector,andthewavelengthcov- ingthemerger(Pandeyetal. 2001). erageareasdescribedinPandeyetal. (2001). For hot EHes (T >14000 K), the lighter neutron-capture eff elements(Sr,Y, Zr)andtheheavierelements(Baandthelan- 3. ABUNDANCE ANALYSIS thanides) are undetectable in optical spectra because ioniza- Model atmospheres from the code STERNE and synthetic tion equilibrium ensures that the dominant ion is X2+, whose spectra computedwith the Belfast LTE code SPECTRUM are strongest lines are principally in the ultraviolet. Fortunately, combined in the analysis (Jeffery, Woolf, & Pollacco 2001). the EHes have appreciable ultraviolet flux and are observable InputparametersforSTERNEincludingthecompositionwere athigh-spectralresolutionwiththeHubbleSpaceTelescope′s takenfrompreviousabundanceanalyses. Theseparametersare SpaceTelescopeImagingSpectrograph.Here,wereportabun- theeffectivetemperatureT =16180±500K,thesurfacegrav- eff 1BasedonobservationsobtainedwiththeNASA/ESAHubbleSpaceTelescope,whichisoperatedbytheAssociationofUniversitiesforResearchinAstronomy,Inc. (AURA)underNASAcontractNAS5-26555 2DepartmentofAstronomy;UniversityofTexas;Austin,TX78712-1083;[email protected] 3IndianInstituteofAstrophysics;Bangalore,560034India;[email protected],[email protected] 4ArmaghObservatory;CollegeHill,Armagh,BT619DG,UK;[email protected] 1 2 Abundancesofneutron-captureelementsinhotextreme-HeliumStars itylogg=2.00±0.25(cgsunits),themicroturbulentvelocityξ respectively. Theestimatedabundanceuncertaintyisfollowed = 15±5km s- 1, andthe abundanceratio C/He = 1% by num- in brackets by the number of useful lines. The uncertainty is ber of atoms for V1920Cyg (Jeffery et al. 1998), and T = the combined uncertainty from the estimated errors in the at- eff 15500±800K, log g = 2.10±0.20(cgs units), ξ = 10 km s- 1, mosphericparametersor,iflarger,theline-to-linescatterinthe and C/He = 1% for HD124448 (Schönberner & Wolf 1974; abundances.Notethatfortheultravioletspectra,thesamelines Heber1983). Derivedabundancesare sufficientlyclose to the weregenerallyusedforbothstarsand,hence,theabundancera- inputvaluesthatiterationisunnecessary.Thecontinuousopac- tiosbetweenthestarsareindependentoftheadoptedgf-values. ityisdominatedbyphotoionizationofneutralheliumandelec- Severalconsistencycheckswereappliedtoouranalyses,es- tronscatteringwithelectronssuppliedbyhelium. Inthissitua- peciallyto themorecompleteanalysisofV1920Cyg. Ioniza- tion, the HeI line strengths are insensitive to the abundances tionequilibriumforFeII/FeIIIissatisfiedforbothstars,andfor of the trace elements, and to Teff, but are sensitive to grav- SII/SIIIforV1920Cyg.Excitationequilibriumisfoundforthe ity because the strong lines have Stark-broadenedwings. The FeIII opticallinesforV1920Cyg; theultravioletlinesusedin adopted models satisfactorily reproduce the optical and ultra- our analysesdo not offera range in their lower excitation po- violetHeI lineprofiles(V1920Cyg). Thederivedabundances tential. Whenan elementprovideslinesin the opticalandthe (Table1)fromspectumsynthesesaregivenaslogǫ(X)andnor- ultraviolet spectra of V1920Cyg, the abundances are in good malizedwithrespecttototalmasswherelogΣµ ǫ(X)=12.15 agreement. Our results for V1920Cyg are in good agreement X withµastheatomicweight. withthosebyJefferyetal. fromalowerresolutionopticalspec- trumoflimitedbandpass.TheagreementforHD124448isless TABLE 1 goodbetweenourultraviolet-basedabundancesandthosefrom Chemi al Abundan es in two hot EHes aphotographicopticalspectrum(Heber1983).Ourlimitonthe H abundance for V1920Cyg from the absence of the Hα line V1920Cyg is more than 2 dex less than the abundanceofferedby Jeffery etal. fromtheHβ line. Heber(1983)puttheHabundanceof Spe ies Z Solara Opti al UV HD124448 HD124448atlogǫ(H)<7.5. Hi 1 12.00 <6.2(H(cid:11)) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) 4. NEUTRON-CAPTURE ELEMENTS Hei 2 10.98 11.5(4) 11.5(1) (cid:1)(cid:1)(cid:1) OuropticalandultravioletspectraofhotEHeswerescanned Cii 6 8.46 9.6(cid:6)0.2(8) 9.7(cid:6)0.1(3) 9.4(cid:6)0.1(1) forlinesofYIII, ZrIII,andofthedoubly-ionizedlanthanides. Nii 7 7.90 8.6(cid:6)0.3(7) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) InspectionoftheultravioletspectrashowedthatthetwoEHes Oii 8 8.76 9.6(cid:6)0.2(2) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) differdramaticallyintheabundancesofYandZr. Thispointis Mgii 12 7.62 7.7(cid:6)0.2(1) 7.8(cid:6)0.2(1) 7.7(cid:6)0.2(1) highlightedbyFigure1. InFigure1a,theZrIIIlineat2656.47 Siii 14 7.61 (cid:1)(cid:1)(cid:1) 7.1(cid:6)0.3(1) 6.9(cid:6)0.3(1) Sii 16 7.26 7.3(cid:6)0.2(5) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) Å is comparable in strength to the MgII lines at 2660.8 Å in Siii 7.1(cid:6)0.1(3) (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) V1920Cyg(lowerspectrum)butinHD124448theZrIIIlineis Mnii 25 5.58 (cid:1)(cid:1)(cid:1) 4.6(cid:6)0.3(1) 4.7(cid:6)0.3(1) extremelyweak.Figure1bshowsasimilar,albeitlessdramatic Mniii (cid:1)(cid:1)(cid:1) 5.0(cid:6)0.2(4) 4.8(cid:6)0.2(4) comparisononaccountofblends,fortheYIIIlineat2367.2Å. Feii 26 7.54 (cid:1)(cid:1)(cid:1) 6.8(cid:6)0.3(10) 7.0(cid:6)0.3(10) These differences are not attributable to differences in stellar Feiii 7.0(cid:6)0.3(4) 6.8(cid:6)0.1(4) 7.2(cid:6)0.1(4) parameters. Thiscomparisoneliminatesthepossibilitythatthe Coii 27 4.98 (cid:1)(cid:1)(cid:1) 4.6(cid:6)0.3(1) 4.6(cid:6)0.3(1) lineswhichweattributetoYIIIandZrIIIaremerelyunidenti- Niii 28 6.29 (cid:1)(cid:1)(cid:1) 5.6(cid:6)0.3(2) 5.6(cid:6)0.3(3) fiedlinesofironorothermoreabundantspecies. Znii 30 4.70 (cid:1)(cid:1)(cid:1) 4.6(cid:6)0.3(1) 4.2(cid:6)0.3(1) The measured wavelengths of YIII and ZrIII lines were Srii 38 2.99 <4.3 (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) taken from Epstein & Reader (1975) and Khan, Chaghtal & Yiii 39 2.28 (cid:1)(cid:1)(cid:1) 3.1(cid:6)0.3(3) 1.8(cid:6)0.3(1) Rahimullah (1981), respectively. The YIII resonance lines at Zriii 40 2.67 (cid:1)(cid:1)(cid:1) 3.6(cid:6)0.2(8) 2.6(cid:6)0.2(3) 2414.60,2367.23,and 2327.31Åare detected in the spectrum Laiii 57 1.25 (cid:1)(cid:1)(cid:1) <2.2 (cid:1)(cid:1)(cid:1) of V1920Cyg with the 2367.23Å line seen as a contributor Ceiii 58 1.68 (cid:1)(cid:1)(cid:1) <2.0 <1.5 to a blended line in the spectrum of HD124448 (Figure 1). Ndiii 60 1.54 <1.8 (cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1) LinesofZrIIIat2664.27,2656.47,2643.82,2620.56,2593.70, a 2102.26,1921.94,and1863.98ÅinthespectrumofV1920Cyg Re ommendedsolarsystemabundan esfromTable2ofLodders (20T0h3e).adoptedgf-valuesweretakenfromtheNISTdatabase5 were used to set the abundance. Three of the ZrIII lines at 2664.27, 2656.47, and 2643.82Åwere detectable in the spec- for H, He, Mg, Si, S, MnII, Co, Ni, Zn, and Sr, Wiese, Fuhr trumofHD124448. & Deters (1996) for C, N, and O, and Kurucz’s database6 for Figure 1 showsour synthesesof the regionaround2656.47 MnIII andFeIII. ForZrIII, threesetsoftheoreticalgf-values Å. A small change in the assumed Fe abundance between are in good agreement: Redfors (1991), Reader & Acquista V1920Cyg (logǫ(Fe) = 6.8) and HD124448 (logǫ(Fe) = 7.1) (1997),andCharro,López-Ayuso&Martín(1999). Weadopt isrecognized. Redfors(1991)gf-valueswiththesuggestedcorrectionbySik- An upper limit to the Sr abundance for V1920 Cyg is es- strömetal. (1999)forYIIIandZrIII;theestimateduncertainty timated from the non-detection of the resonance line of SrII in the gf-values is reportedto be within 10%. The gf-values 4215.52Å. forLaIII, CeIII, andNdIII arefromDREAM database7, Bié- An unsuccessful search was conducted for the doubly- mont,Quinet&Ryabchikova(2002),andZhangetal. (2002), ionized lanthanides. We mention here only those lanthanides 5http://physics.nist.gov/cgi-bin/AtData/lines_form 6http://kurucz.harvard.edu 7ftp://mail.umh.ac.be/pub/ftp_astro/dream/LaIII Pandey,G.etal. 3 1.2 1.2 1 1 0.8 0.8 0.6 0.6 2656 2658 2660 2662 2364 2365 2366 2367 2368 FIG. 1.— TheobservedspectraofV1920CygandHD124448arerepresentedbyfilledcirclesandcrosses,respectively. Panel-ashowstheregionincludingthe ZrIIIlineat2656.5Å.SyntheticspectraforfourdifferentZrabundancesareshownforV1920Cygwithlogǫ(Zr)=3.6providingasatisfactoryfittotheobserved line.Theabundancelogǫ(Zr)=2.6providesafittothesharperlineintheHD124448spectrum.Panel-bshowstheregionincludingtheYIIIlineat2367.2Åwhich isblendedwithaNiIIline.Thesyntheticspectrumwithlogǫ(Y)=3.1providesafittoV1920Cyg’sspectrum,andlogǫ(Y)=1.8toHD124448’sspectrum.Ineach Panel,principallinesareidentified. providing significant upper limits to the abundances. A star-to-star variation in the abundancesof the neutron-capture LaIII 2379.37Å resonance line provides the upper limit for elements.For‘majority’RCrBs(Lambert&Rao1994),[Y/Fe] V1920Cyg. An upper limit to the Ce abundance is obtained and [Zr/Fe] ranges from +0.3 to about +1.6 but with smaller bycomparingthesyntheticandobservedprofileofthelowex- valuesfor[Ba/Fe], [La/Fe], andpresumablyotherlanthanides citationCeIII2603.59Åline.Thetwostrongestresonancelines (Asplund et al. 2000). This range and the non-solar ratio of Y and Zr to Ba and lanthanides was confirmed by Rao & ofNdIIIat5193.06Åandat5294.10Åsettheupperlimittothe Lambert (2003) from a differential analysis of the newly dis- NdabundanceinV1920Cyg. covered RCrB star V2552 Oph and RCrB. Among ‘minor- ity’RCrBs (i.e., veryFe-poorstars), somewhatmoreextreme 5. DISCUSSION values are known with a similar contrast between light and Our abundance analysis of optical and ultraviolet spectra neutron-captureelements. ThecoolpeculiarRCrBUAqrhas of V1920Cyg confirms the results obtained by Jeffery et al. very extreme neutron-capture element enrichments: [Y/Fe] = (1998) for elements from C to the iron-group. We extend the +3.3and[Ba/Fe]=+2.1(Vanture,Zucker&Wallerstein1999; earlier analysis to Mn, Co, Ni, and Zn, and, in particular, to alsoBond,Luck&Newman1979).LimiteddataforcoolEHes the neutron-capture elements Y and Zr. We similarly con- suggest Sr, Y, or Zr abundances within the RCrB range, say firm and extend the previous analyses of HD124448 (Schön- [X/Fe]of0.0to+0.9(Pandeyetal. 2001). berner&Wolf1974;Heber1983). Wehaveprovidedthefirst, Our STIS spectra demonstrate that the star-to-star variation abundances of neutron-captureelements for hot EHes. These in [Y/Fe] and [Zr/Fe] among hot EHes is at least as great as neutron-captureelementabundancessuggestthatatleastinthe among the ‘majority’ RCrB stars: V1920Cyg with [Y/Fe] ≃ EHestarV1920Cyg,s-processnucleosynthesisdidoccurinits [Zr/Fe] ≃ 1.6 is at one end of the range and HD124448with earlierevolution. [Y/Fe]≃[Zr/Fe]≃+0.1isattheotherend. Unfortunately,the An interesting similarity is suggested by these abundances upperlimitssetonabundancesoflanthanidesdonotpermitus andthoseoftheRCrBs. AfeatureoftheRCrBstarsisthelarge to check that EHes follow RCrBs in showing smaller enrich- 4 Abundancesofneutron-captureelementsinhotextreme-HeliumStars ments of these heavier elements. The upper limits set for Ce duringthemerger(Pandeyetal. 2001).ThesurfaceoftheC-O andNdinV1920Cyg([Ce/Fe]≤+1.1and[Nd/Fe]≤+1.0)hint white dwarf, the former core of an AGB star, will be rich in atabehaviorsimilartotheRCrBs. s-processproductsbutlittle of this C-rich materialis required As noted in the Introduction, two scenarios are potential at the surfaceof the star after accretionof He-rich materialto sources of H-deficientluminousstars. A final-flash in a post- accountfor the observedabundancesof the lightelements. A AGBstars,andamergerofaHewithaC-Owhitedwarf. The thin residual He-shellaroundthe C-O white dwarf core could C and O abundancesof the hot EHes are consistent with pre- contributes-processproducts.TheHewhitedwarfanditspos- dictions of white dwarf mergersbutnot the currentfinal-flash sibleH-richskinarenotexpectedtoberichinneutron-capture models (Pandey et al. 2001; Saio & Jeffery 2002). Saio & elements. One supposes that accretion of the He white dwarf Jeffery(2002)alsoshowthataEHestarformedbyaccretionof maybeaccompaniedbyanepisodeofnucleosynthesisinclud- He-richmaterialbyaC-Owhitedwarfhasthepulsationalprop- ing release of neutronsthrough13C(α,n)16O with 13C created ertiesofrealEHestars. Additionally,amergerbetteraccounts byH-burning.If,asseemsplausible,thestrengthoftheneutron forlargelinewidthsseeninspectraofEHes;theaccretingstar sourceandefficiencyofneutroncapturesvariesfrommergerto is spun up by the accreted gas from the (former) orbiting He merger, the range in the neutron-captureelement abundances, white dwarf. Yet, the neutron-captureelement abundances of asseen here forthe EHe pair V1920Cyg andHD124448and theEHesare,perhaps,morereadilyexplainedbythefinal-flash knownamong RCrBs, results. Aspects of the compositionof scenario,assuggestedbythefinal-flashcandidatesFGSgeand the minority RCrBs suggest nucleosynthesismay accompany V4334Sgrwithneutron-captureelementoverabundances. The theaccretionofHe-richmaterialbytheC-Owhitedwarf. The- rangeinrelativeoverabundancesofYandZrtoBaandthelan- oretical studies of the merger scenario are to be sought with thanidesvariesgreatlybetweenthepair: V4334Sgrhasahigh carefulexaminationoftheattendantnucleosynthesis. relativeoverabundance(Asplundetal. 1997),butFGSgehasa WethanktherefereeGlennWahlgrenforanincisivereport, lowrelativeoverabundance(Gonzalezetal. 1998). CarlosAllendePrietoforreadingandcommentingonadraftof Enrichmentof neutron-captureelementsis notexpectedfor thispaper. WeacknowledgesupportfromtheSpaceTelescope theEHesunlesssynthesisbyneutronsviathes-processoccurs ScienceInstitutethroughgrantGO-09417. REFERENCES Asplund,M.,Gustafsson,B.,Lambert,D.L.,&Rao,N.K.,1997,A&A,321, Langer,G.E.,Kraft,R.P.,&Anderson,K.S.,1974,ApJ,189,509 L17 Lodders,K.,2003,ApJ,591,1220 Asplund,M.,Gustafsson,B.,Lambert,D.L.,&Rao,N.K.,2000,A&A,353, Pandey,G.,Rao,N.K.,Lambert,D.L.,Jeffery,C.S.,&Asplund,M.,2001, 287 MNRAS,324,937 Biémont,E.,Quinet,P.,&Ryabchikova,T.A.,2002,MNRAS,336,1155. Rao,N.K.,&Lambert,D.L.,2003,PASP,115,1304 Bond,H.E.,Luck,R.E.,&Newman,M.J.,1979,233,205 Reader,A.,&Acquista,N.,1997,Phys.Scripta,55,310 Charro,E.,López-Ayuso,J.L.,&Martín,I.,1999,J.Phys.B,32,4555 Redfors,A.,1991,A&A,249,589 Duerbeck,H.W.,&Benetti,S.,1996,ApJ,468,L111 Saio,H.,&Jeffery,C.S.,2002,MNRAS,333,121 Epstein,G.L.,&Reader,J.,1975,J.Opt.Soc.Am.A65,310 Schönberner,D.,&Wolf,R.E.A.,1974,A&A,37,87 Gonzalez, G., Lambert, D. L., Wallerstein, G., Rao, N. K., Smith, V. V., & Sikström,Lundberg,H.,Wahlgren,G.M.,Li,Z.S.,Lynga,C.,Johansson,S., McCarthy,J.K.,1998,ApJS,114,133. &Leckrone,D.S.,1999,A&A,343,297 Heber,U.,1983,A&A,118,39 Tull,R.G.,MacQueen,P.J.,Sneden,C.,&Lambert,D.L.,1995,PASP,107, Iben,I.Jr.,Kaler,J.B.,Truran,J.W.,&Renzini,A.,1983,ApJ,264,605 251 Jeffery,C.S.,Drilling,J.S.,&Heber,U.,1987,MNRAS,226,317 Vanture,A.D.,Zucker,D.,&Wallerstein,G.,1999,ApJ,514,932 Jeffery,C.S.,Hamill,P.J.,Harrison,P.M.,&Jeffers,S.V.,1998,A&A,340, Webbink,R.F.,1984,ApJ,277,355 476 Wiese, W. L., Fuhr, J. R., & Deters, T. M., 1996, Journal of Physical and Jeffery,C.S.,Woolf,V.M.,Pollacco,D.L.2001,A&A,376,497 ChemicalReferenceData,MonographNo.7 Khan,Z.A.,Chaghtal,M.S.Z.,&Rahimullah,K.,1981,Phys.Scripta,23,29 Zhang,Z.G.,Svanberg,S.,Palmeri,P.,Quinet,P.,&Biémont,E.,2002,A&A, Lambert,D.L.,&Rao,N.K.,1994,JAA,15,47 385,724

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.