ebook img

Abstract Algebra PDF

683 Pages·2007·4.492 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Abstract Algebra

242 Graduate Texts in Mathematics Editorial Board S.Axler K.A.Ribet Graduate Texts in Mathematics 1 TAKEUTI/ZARING.Introduction to 34 SPITZER.Principles ofRandom Walk. Axiomatic Set Theory.2nd ed. 2nd ed. 2 OXTOBY.Measure and Category.2nd ed. 35 ALEXANDER/WERMER.Several Complex 3 SCHAEFER.Topological Vector Spaces. Variables and Banach Algebras.3rd ed. 2nd ed. 36 KELLEY/NAMIOKAet al.Linear 4 HILTON/STAMMBACH.A Course in Topological Spaces. Homological Algebra.2nd ed. 37 MONK.Mathematical Logic. 5 MACLANE.Categories for the Working 38 GRAUERT/FRITZSCHE.Several Complex Mathematician.2nd ed. Variables. 6 HUGHES/PIPER.Projective Planes. 39 ARVESON.An Invitation to C*-Algebras. 7 J.-P.SERRE.A Course in Arithmetic. 40 KEMENY/SNELL/KNAPP.Denumerable 8 TAKEUTI/ZARING.Axiomatic Set Theory. Markov Chains.2nd ed. 9 HUMPHREYS.Introduction to Lie 41 APOSTOL.Modular Functions and Algebras and Representation Theory. Dirichlet Series in Number Theory. 10 COHEN.A Course in Simple Homotopy 2nd ed. Theory. 42 J.-P.SERRE.Linear Representations of 11 CONWAY.Functions ofOne Complex Finite Groups. Variable I.2nd ed. 43 GILLMAN/JERISON.Rings of 12 BEALS.Advanced Mathematical Analysis. Continuous Functions. 13 ANDERSON/FULLER.Rings and 44 KENDIG.Elementary Algebraic Categories ofModules.2nd ed. Geometry. 14 GOLUBITSKY/GUILLEMIN.Stable 45 LOÈVE.Probability Theory I.4th ed. Mappings and Their Singularities. 46 LOÈVE.Probability Theory II.4th ed. 15 BERBERIAN.Lectures in Functional 47 MOISE.Geometric Topology in Analysis and Operator Theory. Dimensions 2 and 3. 16 WINTER.The Structure ofFields. 48 SACHS/WU.General Relativity for 17 ROSENBLATT.Random Processes.2nd ed. Mathematicians. 18 HALMOS.Measure Theory. 49 GRUENBERG/WEIR.Linear Geometry. 19 HALMOS.A Hilbert Space Problem 2nd ed. Book.2nd ed. 50 EDWARDS.Fermat's Last Theorem. 20 HUSEMOLLER.Fibre Bundles.3rd ed. 51 KLINGENBERG.A Course in Differential 21 HUMPHREYS.Linear Algebraic Groups. Geometry. 22 BARNES/MACK.An Algebraic 52 HARTSHORNE.Algebraic Geometry. Introduction to Mathematical Logic. 53 MANIN.A Course in Mathematical Logic. 23 GREUB.Linear Algebra.4th ed. 54 GRAVER/WATKINS.Combinatorics with 24 HOLMES.Geometric Functional Emphasis on the Theory ofGraphs. Analysis and Its Applications. 55 BROWN/PEARCY.Introduction to 25 HEWITT/STROMBERG.Real and Abstract Operator Theory I:Elements of Analysis. Functional Analysis. 26 MANES.Algebraic Theories. 56 MASSEY.Algebraic Topology:An 27 KELLEY.General Topology. Introduction. 28 ZARISKI/SAMUEL.Commutative 57 CROWELL/FOX.Introduction to Knot Algebra.Vol.I. Theory. 29 ZARISKI/SAMUEL.Commutative 58 KOBLITZ.p-adic Numbers,p-adic Algebra.Vol.II. Analysis,and Zeta-Functions.2nd ed. 30 JACOBSON.Lectures in Abstract Algebra 59 LANG.Cyclotomic Fields. I.Basic Concepts. 60 ARNOLD.Mathematical Methods in 31 JACOBSON.Lectures in Abstract Algebra Classical Mechanics.2nd ed. II.Linear Algebra. 61 WHITEHEAD.Elements ofHomotopy 32 JACOBSON.Lectures in Abstract Algebra Theory. III.Theory ofFields and Galois 62 KARGAPOLOV/MERIZJAKOV. Theory. Fundamentals ofthe Theory ofGroups. 33 HIRSCH.Differential Topology. 63 BOLLOBAS.Graph Theory. (continued after index) Pierre Antoine Grillet Abstract Algebra Second Edition Pierre Antoine Grillet Dept.Mathematics Tulane University New Orleans, LA 70118 USA [email protected] Editorial Board S.Axler K.A.Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley San Francisco,CA 94132 Berkeley,CA 94720-3840 USA USA [email protected] [email protected] Mathematics Subject Classification (2000):20-01 16-01 Library ofCongress Control Number: 2007928732 ISBN-13:978-0-387-71567-4 eISBN-13:978-0-387-71568-1 Printed on acid-free paper. © 2007 Springer Science+Business Media,LLC All rights reserved.This work may not be translated or copied in whole or in part without the written permission ofthe publisher (Springer Science+Business Media,LLC,233 Spring Street, New York,NY 10013,USA),except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,computer software,or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication oftrade names,trademarks,service marks,and similar terms,even if they are not identified as such,is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 9 8 7 6 5 4 3 2 1 springer.com Dedicated in gratitudeto AnthonyHaney Jeff and Peggy Sue Gillis Bob and Carol Hartt Nancy Heath Brandi Williams H.L. Shirrey Billand Jeri Phillips and all the other angels of the Katrina aftermath, with special thanks to Ruth and Don Harris Preface This book is a basic algebra text for first-year graduate students, with some additionsforthosewhosurviveintoasecondyear. Itassumesthatreadersknow some linear algebra, and can do simple proofs with sets, elements, mappings, andequivalencerelations. Otherwise, thematerialisself-contained. Aprevious semesterofabstractalgebrais,however,highlyrecommended. Algebratodayisadiverseandexpandingfieldofwhichthestandardcontents of a first-year course no longer give a faithful picture. Perhaps no single book can;butenoughadditionaltopicsareincludedheretogivestudentsafaireridea. Instructors will have some flexibility in devising syllabi or additional courses; studentsmayreadorpeekattopicsnotcoveredinclass. Diagrams and universal properties appear early to assist the transition from proofswithelementstoproofswitharrows;butcategoriesanduniversalalgebras, which provide conceptual understanding of algebra in general, but require more maturity, have been placed last. The appendix has rather more set theory than usual;thisputsZorn’slemmaandcardinalitiesonareasonablyfirmfooting. Theauthorisfondofsaying(somesay,overlyfond)thatalgebraislikeFrench pastry: wonderful, but cannot be learned without putting one’s hands to the dough. Over 1400 exercises will encourage readers to do just that. A few are simpleproofsfromthetext,placedthereinthebeliefthatusefulfactsmakegood exercises. Starredproblemsaremoredifficultorhavemoreextensivesolutions. Algebra owes its name, and its existence as a separate branch of mathemat- ics, to a ninth-century treatise on quadratic equations, Al-jabr wa’l muqabala, “the balancing of related quantities”, written by the Persian mathematician al- Khowarizmi. (TheauthorisindebtedtoProfessorBoumedienneBelkhouchefor thistranslation.) Algebraretaineditsemphasisonpolynomialequationsuntilwell into the nineteenth century, then began to diversify. Around 1900, it headed the revolutionthatmademathematicsabstractandaxiomatic. WilliamBurnsideand the great German algebraists of the 1920s, most notably Emil Artin, Wolfgang Krull, andEmmyNoether, usedtheclarityandgeneralityofthenewmathemat- ics to reach unprecedented depth and to assemble what was then called modern algebra. The next generation, Garrett Birkhoff, Saunders MacLane, and others, expanded its scope and depth but did not change its character. This history is viii Preface documentedbybriefnotesandreferencestotheoriginalpapers. Timepressures, sundryevents,andthestateofthelocallibrarieshavekeptthesereferencesabit short of optimal completeness, but they should suffice to place results in their historicalcontext,andmayencouragesomereaderstoreadtheoldmasters. ThisbookisasecondeditionofAlgebra,publishedbythegoodfolksatWiley in1999. Imeanttoaddafewtopicsandincorporateanumberofusefulcomments, particularlyfromProfessorGaribaldi,ofEmoryUniversity. Iendeduprewriting thewholebookfromendtoend.Iamverygratefulforthischancetopolishamajor work,madepossiblebySpringer,bythepatienceandunderstandingofmyeditor, Mark Spencer, by the inspired thoroughness of my copy editor, David Kramer, andbythehospitalityofthepeopleofMarshallandScottsville. Readerswhoarefamiliarwiththefirstversionwillfindmanydifferences,some ofthemmajor. Thefirstchaptershavebeenstreamlinedforrapidaccesstosolv- ability of equations by radicals. Some topics are gone: groups with operators, Lu¨roth’s theorem, Sturm’s theorem on ordered fields. More have been added: separabilityoftranscendentalextensions,Hensel’slemma,Gro¨bnerbases,primi- tiverings,hereditaryrings,ExtandTorandsomeoftheirapplications,subdirect products. Therearesome450moreexercises. Iapologizeinadvanceforthenew errors introduced by this process, and hope that readers will be kind enough to pointthemout. NewOrleans,Louisiana,andMarshall,Texas,2006. Contents Preface............................................................... vii Starredsectionsandchaptersmaybeskippedatfirstreading. I.Groups..............................................................1 1. Semigroups ......................................................... 1 2. Groups..............................................................8 3. Subgroups ......................................................... 12 4. Homomorphisms ...................................................18 5. TheIsomorphismTheorems .........................................23 6. FreeGroups........................................................27 7. Presentations.......................................................31 *8. FreeProducts.......................................................37 II.StructureofGroups..................................................43 1. DirectProducts.....................................................43 *2. TheKrull-SchmidtTheorem.........................................48 3. GroupActions......................................................54 4. SymmetricGroups..................................................58 5. TheSylowTheorems................................................64 6. SmallGroups ...................................................... 67 7. CompositionSeries.................................................70 *8. TheGeneralLinearGroup...........................................76 9. SolvableGroups....................................................83 *10. NilpotentGroups...................................................89 *11. SemidirectProducts.................................................92 *12. GroupExtensions...................................................95 III.Rings.............................................................105 1. Rings. ...........................................................105 2. SubringsandIdeals................................................109 3. Homomorphisms. .................................................112 4. DomainsandFields................................................116 5. PolynomialsinOneVariable........................................119 6. PolynomialsinSeveralVariables....................................125 *7. FormalPowerSeries...............................................130 8. PrincipalIdealDomains............................................133 *9. RationalFractions.................................................139 x Contents 10. UniqueFactorizationDomains .....................................141 11. NoetherianRings .................................................146 *12. Gro¨bnerBases ....................................................148 IV.FieldExtensions ..................................................155 1. Fields ............................................................155 2. Extensions........................................................159 3. AlgebraicExtensions ..............................................164 4. TheAlgebraicClosure ............................................ 165 5. SeparableExtensions ..............................................169 6. PurelyInseparableExtensions ......................................173 *7. ResultantsandDiscriminants .......................................176 8. TranscendentalExtensions .........................................181 *9. Separability ......................................................184 V.GaloisTheory ....................................................191 1. SplittingFields ...................................................191 2. NormalExtensions ................................................193 3. GaloisExtensions .................................................197 4. InfiniteGaloisExtensions ..........................................200 5. Polynomials ......................................................204 6. Cyclotomy .......................................................211 7. NormandTrace ..................................................215 8. SolvabilitybyRadicals ............................................221 9. GeometricConstructions ..........................................226 VI.FieldswithOrdersorValuations ....................................231 1. OrderedFields ....................................................231 2. RealFields .......................................................234 3. AbsoluteValues ..................................................239 4. Completions ......................................................243 5. Extensions........................................................247 6. Valuations.........................................................251 7. ExtendingValuations ..............................................256 8. Hensel’sLemma ..................................................261 9. FiltrationsandCompletions ........................................266 VII.CommutativeRings ..............................................273 1. PrimaryDecomposition ...........................................273 2. RingExtensions ..................................................277 3. IntegralExtensions ............................................... 280 4. Localization ......................................................285 5. DedekindDomains ...............................................290 6. AlgebraicIntegers ................................................294 7. GaloisGroups ....................................................297 8. MinimalPrimeIdeals .............................................300 9. KrullDimension ..................................................304 10. AlgebraicSets ....................................................307 Contents xi 11. RegularMappings ................................................310 VIII.Modules ........................................................315 1. Definition .........................................................315 2. Homomorphisms ..................................................320 3. DirectSumsandProducts...........................................324 4. FreeModules ......................................................329 5. VectorSpaces .....................................................334 6. ModulesoverPrincipalIdealDomains ...............................336 7. JordanFormofMatrices ............................................342 8. ChainConditions ..................................................346 *9. Gro¨bnerBases .....................................................350 IX.SemisimpleRingsandModules ....................................359 1. SimpleRingsandModules ......................................... 359 2. SemisimpleModules ...............................................362 3. TheArtin-WedderburnTheorem .....................................366 *4. PrimitiveRings ....................................................370 5. TheJacobsonRadical ..............................................374 6. ArtinianRings .....................................................377 *7. RepresentationsofGroups ..........................................380 *8. Characters ........................................................ 386 *9. ComplexCharacters ................................................389 X.ProjectivesandInjectives ...........................................393 1. ExactSequences ...................................................393 2. PullbacksandPushouts .............................................397 3. ProjectiveModules .................................................401 4. InjectiveModules ..................................................403 *5. TheInjectiveHull ..................................................408 *6. HereditaryRings ...................................................411 XI.Constructions ....................................................415 1. GroupsofHomomorphisms .........................................415 2. PropertiesofHom .................................................419 *3. DirectLimits ......................................................423 *4. InverseLimits .....................................................429 5. TensorProducts....................................................434 6. PropertiesofTensorProducts .......................................441 *7. DualModules .....................................................448 *8. FlatModules ......................................................450 *9. Completions.......................................................456 *XII.ExtandTor ........................................................463 1. Complexes ........................................................463 2. Resolutions .......................................................471 3. DerivedFunctors ..................................................478 4. Ext ...............................................................487 5. Tor ...............................................................493

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.