ebook img

Absorption chillers and heat pumps PDF

386 Pages·2016·9.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Absorption chillers and heat pumps

ABSORPTION CHILLERS AND HEAT PUMPS S E C O N D E D I T I O N This page intentionally left blank This page intentionally left blank Keith E. Herold University of Maryland, College Park, USA Reinhard Radermacher University of Maryland, College Park, USA Sanford A. Klein University of Wisconsin, Madison, USA ABSORPTION CHILLERS AND HEAT PUMPS S E C O N D E D I T I O N CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20160211 International Standard Book Number-13: 978-1-4987-1435-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com v Contents List of Figures.................................................................................................................................xi List of Tables ................................................................................................................................ xix List of Examples ........................................................................................................................xxiii List of EES Files .......................................................................................................................... xxv Preface......................................................................................................................................... xxix About the Authors ..................................................................................................................xxxiii Nomenclature........................................................................................................................... xxxv 1. Introduction.............................................................................................................................1 1.1 Heat Pumps....................................................................................................................1 1.2 Heat-Driven Heat Pumps.............................................................................................3 1.3 Description of Current Absorption Chiller Products..............................................4 1.3.1 Water/Lithium Bromide Chillers ..................................................................4 1.3.2 Ammonia/Water Chillers...............................................................................5 1.3.3 Ammonia/Water/Hydrogen Refrigerators..................................................5 1.4 Overview of Absorption Technology Market Trends..............................................5 2. Absorption Cycle Fundamentals.........................................................................................7 2.1 Carnot Cycles.................................................................................................................7 2.2 Absorption Heat Pump, Type I ...................................................................................9 2.3 Absorption Heat Pump, Type II................................................................................ 11 2.4 Absorption Heat Pump as Combination of Rankine Cycles ................................12 2.5 Reversible Analysis with Variable Temperatures...................................................13 2.6 Irreversibilities in Absorption Cycle Processes...................................................... 14 2.7 Zero-Order Absorption Cycle Model.......................................................................15 2.8 Absorption Cycle Design Optimization..................................................................20 Homework Problems ............................................................................................................21 References ...............................................................................................................................22 3. Properties of Working Fluids.............................................................................................23 3.1 Analytical Treatment of Thermodynamic Properties ...........................................24 3.1.1 Property Relations for Systems of Fixed Composition.............................25 3.1.2 Open-System Property Relations ................................................................27 3.1.3 Equations of State...........................................................................................31 3.1.3.1 Thermodynamic Consistency ......................................................33 3.1.4 Mixture Volume.............................................................................................34 3.1.5 Mixture Energy Properties...........................................................................36 3.1.5.1 Specific Heat....................................................................................38 3.1.5.2 Reference States ..............................................................................39 3.1.6 Mixture Entropy ............................................................................................40 3.1.7 Phase Equilibrium .........................................................................................43 3.1.7.1 Heat of Vaporization......................................................................43 3.1.8 Summary.........................................................................................................49 vi Contents 3.2 Graphical Perspective on Thermodynamic Properties of Absorption Working Fluids............................................................................................................50 3.2.1 Temperature–Mass Fraction Diagram........................................................50 3.2.2 Pressure–Temperature Diagram..................................................................55 3.2.3 The Enthalpy–Mass Fraction Diagram.......................................................57 3.3 Transport Properties...................................................................................................59 Homework Problems ............................................................................................................61 References ...............................................................................................................................62 4. Thermodynamic Processes with Mixtures......................................................................65 4.1 Mixing of Fluids and the Heat of Mixing................................................................65 4.2 Specific Heat of Mixtures...........................................................................................68 4.3 Desorption....................................................................................................................69 4.4 Absorption ...................................................................................................................75 4.5 Condensation and Evaporation.................................................................................80 4.6 Compression ................................................................................................................81 4.7 Pumping.......................................................................................................................82 4.8 Throttling.....................................................................................................................83 4.9 Ammonia Purification................................................................................................86 4.9.1 Reflux Cooling or Partial Condensation.....................................................86 4.9.2 Rectification ....................................................................................................90 4.10 Heat Exchangers........................................................................................................ 101 4.10.1 Heat Exchanger Diagrams.......................................................................... 102 4.10.2 Heat Exchanger Models.............................................................................. 103 4.10.3 UA-Type Heat Exchanger Models ............................................................. 103 4.10.4 Effectiveness Type Heat Exchanger Models ............................................ 104 Homework Problems ..........................................................................................................105 References ............................................................................................................................. 106 5. Overview of Water/Lithium Bromide Technology...................................................... 107 5.1 Fundamentals of Operation..................................................................................... 107 5.1.1 Solution Circuit ............................................................................................ 107 5.1.2 Refrigerant Leg............................................................................................. 109 5.2 Crystallization and Absorber Cooling Requirements......................................... 110 5.3 Corrosion and Materials Compatibility................................................................. 111 5.4 Vacuum Requirements............................................................................................. 112 5.4.1 Component Size ........................................................................................... 115 5.4.2 Effect of Nonabsorbable Gases .................................................................. 116 5.4.3 Hydrostatic Head Effects in Evaporator Design ..................................... 117 5.5 Octyl Alcohol............................................................................................................. 117 5.6 Normal Maintenance and Expected Life .............................................................. 119 5.7 Controls ......................................................................................................................120 Homework Problems ..........................................................................................................120 References ............................................................................................................................. 121 6. Single-Effect Water/Lithium Bromide Systems ...........................................................123 6.1 Single-Effect Water/Lithium Bromide Chiller Operating Conditions..............123 6.1.1 Mass Flow Analysis.....................................................................................125 6.1.2 Thermodynamic States within the Cycle.................................................126 vii Contents 6.1.3 Energy Balance Analysis ............................................................................128 6.1.4 Discussion of the Operating Conditions..................................................129 6.1.4.1 Dühring Plot Representation......................................................129 6.1.4.2 Temperatures ................................................................................130 6.1.4.3 Mass Fractions ..............................................................................130 6.1.4.4 Solution Heat Exchanger............................................................. 131 6.2 Single-Effect Cycle with Heat Transfer Models.................................................... 132 6.2.1 Heat Exchanger Models..............................................................................134 6.2.2 Cycle Performance....................................................................................... 137 6.2.3 Desorber Inlet Temperature Variations.................................................... 137 6.2.4 Evaporator Temperature Variations.......................................................... 140 6.2.5 Rejection Temperature Variations ............................................................. 141 6.2.6 Solution Flow Rate Variations.................................................................... 142 6.2.7 Heat Transfer Loop Flow Rate Variations ................................................ 143 6.2.8 Evaporator–Absorber Pressure Drop Variations..................................... 144 6.2.9 Heat Exchanger Size Variations................................................................. 144 6.2.10 Summary of Single-Effect Operating Conditions................................... 148 6.3 Single-Effect Water/Lithium Bromide Heat Transformer (Type II Heat Pump) ................................................................................................. 148 6.3.1 Solution Heat Exchanger Size Effects .......................................................154 6.4 Discussion of Available Single-Effect Systems .....................................................154 Homework Problems ..........................................................................................................155 References .............................................................................................................................156 7. Double-Effect Water/Lithium Bromide Technology................................................... 157 7.1 Double-Effect Water/Lithium Bromide Cycles..................................................... 157 7.2 Solution Circuit Plumbing Options........................................................................ 160 7.3 Operating Conditions of Double-Effect Machines............................................... 162 7.3.1 Parallel Flow Double-Effect Machines...................................................... 162 7.3.2 Series Flow Double-Effect Machines ........................................................ 167 7.4 Systems on the Market ............................................................................................. 169 Homework Problems .......................................................................................................... 170 References ............................................................................................................................. 171 8. Advanced Water/Lithium Bromide Cycles.................................................................... 173 8.1 Half-Effect Cycle........................................................................................................ 173 8.2 Triple-Effect Cycle.....................................................................................................177 8.3 Resorption Cycle ....................................................................................................... 181 Homework Problems ..........................................................................................................184 References ............................................................................................................................. 185 9. Single-Stage Ammonia/Water Systems......................................................................... 187 9.1 Properties of Ammonia and Safety Concerns...................................................... 187 9.2 Material Considerations........................................................................................... 188 9.3 Water Content of the Refrigerant Vapor ................................................................ 188 9.4 Simple Single-Stage Ammonia/Water System ..................................................... 192 9.5 Measures to Improve Single-Stage Performance.................................................. 196 9.5.1 Condensate Precooler.................................................................................. 196 9.5.2 Rectifier Heat Integration ...........................................................................202 viii Contents 9.5.3 Solution Recirculation.................................................................................204 9.5.4 Solution-Cooled Absorber..........................................................................208 9.6 Comparison of Ammonia/Water and Water/Lithium Bromide........................208 9.7 Examples of Ammonia/Water Absorption Systems in Operation.................... 210 Homework Problems .......................................................................................................... 212 References ............................................................................................................................. 212 10. Two-Stage Ammonia/Water Systems............................................................................. 215 10.1 Double-Effect Ammonia/Water Systems.............................................................. 215 10.2 Double-Lift Ammonia/Water Systems..................................................................224 10.3 Two-Stage, Triple-Effect Ammonia/Water System ..............................................226 Homework Problems ..........................................................................................................232 References .............................................................................................................................232 11. Generator/Absorber Heat Exchange Cycles ..................................................................235 11.1 Concepts, Configurations, and Design Considerations.......................................235 11.2 Branched GAX Cycle ................................................................................................245 11.3 GAX Cycle Hardware...............................................................................................251 Homework Problems ..........................................................................................................252 References .............................................................................................................................252 12. Diffusion–Absorption Cycle............................................................................................255 12.1 Introduction...............................................................................................................255 12.2 Cycle Physics..............................................................................................................256 12.3 Choice of the Auxiliary Gas ....................................................................................259 12.4 Total Pressure of the System....................................................................................260 12.5 Cycle Performance .................................................................................................... 261 References .............................................................................................................................262 13. Applications of Absorption Chillers and Heat Pumps...............................................265 13.1 Industrial Waste Heat Utilization...........................................................................265 13.2 Gas Turbine Inlet Air Cooling.................................................................................266 13.3 Solar Absorption Cooling........................................................................................268 References .............................................................................................................................269 Appendix A: Using EES (Engineering Equation Solver) to Solve Absorption Cycle Problems...........................................................................................................................271 A.1 Overview....................................................................................................................271 A.2 Recommended Way to Use EES (Example Problem 2.2) .....................................271 A.3 Property Data in EES................................................................................................ 276 A.4 Lithium Bromide/Water Property Libraries.........................................................277 A.5 Ammonia/Water Property Library........................................................................282 A.6 Coaxing a Set of Equations to Converge (Example 10.1) .....................................284 A.7 Conclusion..................................................................................................................287 References .............................................................................................................................287 Appendix B: Absorption Cycle Modeling ............................................................................289 B.1 Introduction...............................................................................................................289 B.2 Mass Balance Considerations..................................................................................289 B.3 Energy Balances ........................................................................................................296 ix Contents B.4 Heat Transfer Processes ...........................................................................................296 B.5 Equation and Variable Counting ............................................................................297 B.6 Convergence Issues and the Importance of Selecting an Initial Guess ............302 B.7 Equation Solvers........................................................................................................303 References .............................................................................................................................304 Appendix C: Modeling a Water/Lithium Bromide Absorption Chiller.........................305 C.1 Mass Balances............................................................................................................305 C.2 Temperature Inputs ..................................................................................................305 C.3 Energy Balances ........................................................................................................308 C.4 UA Models .................................................................................................................309 C.5 Summary.................................................................................................................... 312 Appendix D: Modeling an Ammonia/Water Absorption Chiller ................................... 313 Appendix E: The ABSIM Software Package........................................................................323 E.1 Overview....................................................................................................................323 E.2 Introduction to ABSIM............................................................................................. 324 E.3 ABSIM Program Structure ......................................................................................325 E.4 Selected Examples of ABSIM Simulations ............................................................328 E.4.1 LiBr–Water Cycles........................................................................................328 E.4.2 Water–Ammonia Cycles .............................................................................330 E.4.3 LiCl–H2O Open and Hybrid Cycles..........................................................332 References .............................................................................................................................333 Appendix F: Vapor Surfactant Theory ..................................................................................335 F.1 Introduction...............................................................................................................335 F.2 Background................................................................................................................335 F.3 Vapor Surfactant Theory..........................................................................................336 F.4 Key Experimental Results........................................................................................340 F.4.1 Drop Proximity Experiment ......................................................................340 F.4.2 Active Surface Experiment.........................................................................340 F.4.3 Surface Tension Measurements .................................................................341 F.4.4 Effect of Flux on Enhancement..................................................................342 F.5 Modeling Marangoni Flows with Vapor Surfactant Effects...............................343 F.6 Summary....................................................................................................................344 References .............................................................................................................................344 Index .............................................................................................................................................347 This page intentionally left blank This page intentionally left blank xi List of Figures 1.1 Single-effect absorption cycle schematic............................................................................2 1.2 Vapor compression heat pump ............................................................................................2 1.3 Type I heat pump...................................................................................................................3 1.4 Type II heat pump..................................................................................................................4 2.1 The Carnot cycle for power generation on a temperature–entropy diagram...............8 2.2 The Carnot cycle for heat pumping on a temperature–entropy diagram.....................9 2.3 Idealized representation of an absorption heat pump as the combination of a Carnot heat engine and a Carnot heat pump............................................................... 10 2.4 Carnot cycles for a combined power generation/heat-pumping facility such as an absorption heat transformer .................................................................................... 11 2.5 Illustration of the combination of two Rankine cycles to a combined system...........12 2.6 Temperature versus cumulative heat transfer rate for condensation of steam at 100 kPa from 150°C to 50°C............................................................................................ 14 2.7 Zero-order model schematic .............................................................................................. 16 2.8 Cooling COP for a single-effect absorption machine.....................................................18 2.9 Temperatures associated with zero-order model of a single-effect Type I absorption heat pump......................................................................................................... 18 3.1 Chemical potential for an ideal mixture ..........................................................................31 3.2 Volume versus mass fraction for ammonia/water .........................................................35 3.3 Enthalpy versus mass fraction...........................................................................................37 3.4 Entropy of mixing for an ideal mixture ...........................................................................42 3.5 NH3/H2O bubble-point diagram with an example of the cooling of a superheated vapor mixture with initial dew formation.............................................44 3.6 Differential vaporization process......................................................................................45 3.7 Total evaporation process ...................................................................................................46 3.8 Mass transfer in total evaporation process ......................................................................48 3.9 Heat transfer and mass fractions in total evaporation process.....................................48 3.10 Enthalpy–mass fraction diagram for water/lithium bromide ....................................50 3.11 Enthalpy–mass fraction diagram for ammonia/water.................................................51 3.12 Schematic of temperature–concentration diagram (bubble-point diagram) ............52 3.13 Evaporation process in temperature–concentration diagram.....................................52 xii List of Figures 3.14 Size of temperature glide dependence on boiling point difference ...........................54 3.15 Schematic of the temperature–concentration diagrams for two variations of an azeotropic mixture...................................................................................................54 3.16 Pressure–temperature plots for pure ammonia and pure water................................55 3.17 Pressure–temperature diagram for water/lithium bromide.......................................56 3.18 Pressure–temperature diagram for ammonia/water ...................................................56 3.19 Schematic of an enthalpy–concentration diagram for a generic mixture showing a single isobar.....................................................................................................57 3.20 Schematic for finding the saturated vapor mass fraction from a given saturated liquid mass fraction using the auxiliary line...............................................58 3.21 Thermal conductivity of aqueous lithium bromide .....................................................59 3.22 Dynamic viscosity of aqueous lithium bromide...........................................................59 3.23 Thermal conductivity of ammonia/water .....................................................................60 3.24 Dynamic viscosity of ammonia/water...........................................................................60 4.1 Steady-state mixing of two fluid streams.........................................................................66 4.2 Constant pressure mixing process on an enthalpy–mass fraction diagram...............66 4.3 Desorption process..............................................................................................................69 4.4 Desorption process in an h–x diagram for a mixture such as NH3/H2O, where both components are volatile .................................................................................71 4.5 Graphical representation of the desorber heat requirement at constant pressure........................................................................................................................72 4.6 Desorption process in h–x diagram with subcooled inlet stream................................72 4.7 Absorption process.............................................................................................................. 76 4.8 Absorption in h–x diagram with saturated inlet and outlet liquid streams and saturated vapor............................................................................................................. 76 4.9 Absorption process in h–x diagram with two-phase solution inlet, saturated liquid outlet, and saturated vapor inlet............................................................................77 4.10 Adiabatic absorption .........................................................................................................78 4.11 Throttling process..............................................................................................................83 4.12 Reflux cooler .......................................................................................................................87 4.13 Reflux cooling process in an enthalpy–mass fraction diagram..................................88 4.14 Distillation column ............................................................................................................90 4.15 The pole of rectification determined by extending the line that connects the vapor and liquid states at one cross section of the column till it intersects with the isostere of the purified vapor ...........................................................................93 4.16 Determination of the pole of rectification ......................................................................94 xiii List of Figures 4.17 Determination of the number of theoretical plates. In this case, the rectification column has two theoretical plates.............................................................95 4.18 Counterflow desorber to minimize need for rectification...........................................96 4.19 Rectifier column with zero plates....................................................................................97 4.20 Rectifier column with one theoretical plate shown as a bubble cap ..........................97 4.21 Rectifier diagram for column with one theoretical plate.............................................99 4.22 Sensitivity of the pole position to the feed concentration.......................................... 101 4.23 Typical counterflow heat exchanger ............................................................................. 102 5.1 Single-effect absorption cycle schematic........................................................................ 108 5.2 Aqueous lithium bromide phase diagram..................................................................... 110 5.3 Vacuum terminology and units....................................................................................... 113 5.4 Cold trap design schematic .............................................................................................. 114 5.5 Ejector purge system ......................................................................................................... 117 6.1 Cycle schematic of a single-effect water/lithium bromide absorption chiller.......... 124 6.2 Hardware schematic of a single-effect water/lithium bromide absorption chiller....................................................................................................... 124 6.3 Dühring plot for cycle solution........................................................................................130 6.4 Cooling COP and solution heat exchanger heat transfer rate versus solution heat exchanger effectiveness for a single-effect chiller................................................ 131 6.5 Single-effect water/lithium bromide absorption chiller with external heat transfer models................................................................................................................... 132 6.6 Heat exchanger diagram for evaporator.........................................................................134 6.7 Heat exchanger diagram for condenser..........................................................................135 6.8 Heat exchanger diagram for desorber............................................................................136 6.9 Heat exchanger diagram for absorber ............................................................................ 137 6.10 Effect of desorber inlet temperature on COP and capacity for a single-effect water/lithium bromide absorption chiller .........................................138 6.11 Effect of desorber inlet temperature on heat transfer rates for a single-effect water/lithium bromide absorption chiller .........................................138 6.12 Effect of desorber inlet temperature on temperature for a single-effect water/lithium bromide absorption chiller......................................... 139 6.13 Effect of chilled water inlet temperature on COP and capacity for a single-effect water/lithium bromide absorption chiller......................................... 140 6.14 Effect of cooling water inlet temperature on COP and capacity for a single-effect water/lithium bromide absorption chiller ......................................... 141 xiv List of Figures 6.15 Effect of solution pump flow rate on COP, capacity, and solution heat exchanger heat transfer rate for a single-effect water/lithium bromide absorption chiller............................................................................................................. 142 6.16 Effect of desorber heat transfer fluid flow rate on COP and capacity for a single-effect water/lithium bromide absorption chiller ......................................... 144 6.17 Effect of pressure drop between evaporator and absorber on COP and capacity for a single-effect water/lithium bromide absorption chiller.................... 145 6.18 Effect of desorber heat exchanger UA on COP and capacity for a single-effect water/lithium bromide absorption chiller ......................................... 145 6.19 Effect of absorber heat exchanger UA on COP and capacity for a single-effect water/lithium bromide absorption chiller ......................................... 146 6.20 Effect of condenser heat exchanger UA on COP and capacity for a single-effect water/lithium bromide absorption chiller......................................... 146 6.21 Effect of evaporator heat exchanger UA on COP and capacity for a single-effect water/lithium bromide absorption chiller......................................... 147 6.22 Effect of solution heat exchanger UA on COP and capacity for a single-effect water/lithium bromide absorption chiller......................................... 147 6.23 Single-effect water/lithium bromide temperature booster heat pump (Type II absorption cycle) with external heat transfer models .................................150 6.24 Dühring plot for the cycle solution............................................................................... 152 6.25 Adiabatic absorption temperature calculation schematic .........................................153 6.26 Effect of solution heat exchanger effectiveness on COP and capacity of the Type II cycle...........................................................................................................154 7.1 Double-effect water/lithium bromide chiller Dühring chart schematic (parallel flow) ......................................................................................................................158 7.2 Double-effect water/lithium bromide chiller piping chart schematic (parallel flow)...................................................................................................................... 161 7.3 Series flow double-effect water/lithium bromide chiller Dühring chart schematic showing state points (solution to high desorber first)................................ 161 7.4 Series flow double-effect water/lithium bromide chiller Dühring chart schematic (solution to low desorber first)....................................................................... 162 7.5 Parallel flow double-effect water/lithium bromide chiller Dühring chart schematic showing state points........................................................................................ 163 7.6 Dühring state plot for baseline double-effect water/lithium bromide example from Section 7.3.1 (parallel flow) ...................................................................... 166 7.7 Parallel-flow double-effect absorption chiller performance as a function of the desorber inlet temperature .................................................................................... 167 8.1 Cycle schematic for the half-effect cycle......................................................................... 174 8.2 Dühring plot for the half-effect cycle ............................................................................. 175

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.