ebook img

Absence of day-night asymmetry of 862 keV Be-7 solar neutrino rate in Borexino and MSW oscillation parameters PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Absence of day-night asymmetry of 862 keV Be-7 solar neutrino rate in Borexino and MSW oscillation parameters

Absence of a day–night asymmetry in the 7Be solar neutrino rate in Borexino G.Bellinih,J.Benzigerl,D.Bickr,S.Bonettih,G.Bonfinie,M.BuizzaAvanzinih,B.Caccianigah,L.Cadonatip, F.Calapricel,C.Carraroc,P.Cavalcanteh,A.Chavarrial,D.D’Angeloh,S.Davinic,A.Derbinm,A.Etenkog, F.vonFeilitzschn,K.Fomenkob,D.Francoa,C.Galbiatil,S.Gazzanae,C.Ghianoe,M.Giammarchih, M.Go¨ger-Neffn,A.Gorettil,e,L.Grandil,E.Guardincerric,S.Hardyq,AldoIannie,AndreaIannil,V.Kobychevf, D.Korablevb,G.Korgae,Y.Koshioe,D.Kryna,M.Laubensteine,T.Lewken,E.Litvinovichg,B.Loerl,P.Lombardih, F.Lombardie,L.Ludhovah,I.Machuling,S.Maneckiq,W.Maneschgi,G.Manuzioc,Q.Meindln,E.Meroni1, L.Miramonti1,M.Misiaszekd,D.Montanarie,l,P.Mosteirol,V.Muratovam,L.Oberauern,M.Obolenskya,F.Orticaj, M.Pallavicinic,L.Pappq,C.Pen˜a-Garayo,L.Perassoh,S.Perassoc,A.Pocarp,R.S.Raghavanq,G.Ranuccih, A.Razetoe,A.Reh,A.Romanij,A.Sabelnikovg,R.Saldanhal,C.Salvoc,S.Scho¨nerti,H.Simgeni, M.Skorokhvatovg,O.Smirnovb,A.Sotnikovb,S.Sukhoting,Y.Suvorove,g,R.Tartagliae,G.Testerac,D.Vignauda, 2 R.B.Vogelaarq,J.Wintern,M.Wojcikd,A.Wrightl,M.Wurmn,J.Xul,O.Zaimidorogab,S.Zavatarellic,G.Zuzeld 1 0 aAPC,LaboratoireAstroParticuleetCosmologie,75231Pariscedex13,France 2 bJointInstituteforNuclearResearch,Dubna141980,Russia cDipartimentodiFisica,Universita´eINFN,Genova16146,Italy n dM.SmoluchowskiInstituteofPhysics,JagiellonianUniversity,Krakow,30059,Poland a eINFNLaboratoriNazionalidelGranSasso,Assergi67010,Italy J fKievInstituteforNuclearResearch,Kiev06380,Ukraine 5 gNRCKurchatovInstitute,Moscow123182,Russia hDipartimentodiFisica,Universita´degliStudieINFN,Milano20133,Italy ] iMax-Plank-Institutfu¨rKernphysik,Heidelberg69029,Germany x jDipartimentodiChimica,Universita´eINFN,Perugia06123,Italy e kChemicalEngineeringDepartment,PrincetonUniversity,Princeton,NJ08544,USA - lPhysicsDepartment,PrincetonUniversity,Princeton,NJ08544,USA p mSt.PetersburgNuclearPhysicsInstitute,Gatchina188350,Russia e nPhysikDepartment,TechnischeUniversita¨tMu¨nchen,Garching85747,Germany h oInstitutodeF`ısicaCorpuscular,CSIC-UVEG,ValenciaE-46071,Espan˜a [ pPhysicsDepartment,UniversityofMassachusetts,Amherst01003,USA 2 qPhysicsDepartment,VirginiaPolytechnicInstituteandStateUniversity,Blacksburg,VA24061,USA v rInstitutfu¨rExperimentalphysik,Universita¨tHamburg,Germany 0 5 1 2 4. Abstract 0 Wereporttheresultofasearchforaday–nightasymmetryinthe7BesolarneutrinointeractionrateintheBorexino 1 1 detectorattheLaboratoriNazionalidelGranSasso(LNGS)inItaly.ThemeasuredasymmetryisAdn=0.001±0.012 : (stat) ± 0.007 (syst), in agreement with the prediction of MSW-LMA solution for neutrino oscillations. This result v disfavorsMSWoscillationswithmixingparametersintheLOWregionatmorethan8.5σ. Thisregionis,forthefirst i X time,stronglydisfavoredwithouttheuseofreactoranti-neutrinodataandthereforetheassumptionofCPTsymmetry. r Theresultcanalsobeusedtoconstrainsomeneutrinooscillationscenariosinvolvingnewphysics. a Keywords: solarneutrinos,day–nighteffect,CPTviolation,neutrinooscillations Inthelasttwodecadessolarneutrino[1,2,3]andre- oscillations[5]withLargeMixingAngle(LMA)oscil- 1 7 actor anti-neutrino [4] experiments have demonstrated lationparameters.Agenericfeatureofmatter-enhanced 2 8 that solar electron neutrinos undergo flavor conversion neutrinooscillationsisthepotentialforthecoherentre- 3 9 along their trip from the Sun’s core to the Earth. The generationoftheν flavoreigenstatewhensolarneutri- 4 10 e conversioniswelldescribedbytheso-calledMikheyev- nos propagate through the Earth [6], as they do during 5 11 Smirnov-Wolfenstein(MSW)matter-enhancedneutrino thenight.Thus,thereisthepotentialforthosesolarneu- 6 12 PreprintsubmittedtoElsevier January19,2013 trinoexperimentsthatareprincipally,orentirely,sensi- 13 tive to ν to detect different solar neutrino interaction 14 rates dureing the day and during the night. Solar neu- eg 20 15 d Ideal exposure function (3 years of live time) 16 trino day-night asymmetry measurements are sensitive ays/ 18 17 tobothνeappearanceanddisappearance. d 16 Experimental exposure function Themagnitudeofthisday-nighteffectisexpectedto 18 14 depend on both neutrino energy and the neutrino os- 19 12 cillation parameters. Previous experiments [7, 8] have 20 shown that for high energy (∼5-15 MeV) solar neutri- 10 21 22 nos, the day–night asymmetry is less than a few per- 8 cent, in agreement with the MSW-LMA prediction. 23 6 At lower neutrino energies (around 1 MeV), the pre- 24 4 dicted day–night asymmetry for MSW-LMA is also 25 small (<0.1%) [9]; however, other scenarios including 2 26 different MSW solutions and neutrino mixing involv- 27 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 28 ing new physics [10] predict much larger day–night q z (deg) effects. For example, in the so-called LOW region 29 (10−8 eV2<δm2<10−6 eV2) of MSW parameter space, Figure1:Theexperimentalexposurefunction(blackcontinuousline) 30 whichiscurrentlystronglydisfavoredonlybytheKam- andtheidealexposurefunction(reddottedline). Theintervalfrom 31 −180◦to−90◦correspondstodaytimeandtheonefrom−90◦to0◦ LAND anti-neutrino measurement under the assump- 32 tonighttime. WerecallthatatLNGSlatitudetheSunisneveratthe 33 tionofCPTsymmetry,theday-nightasymmetrywould zenith. range between about 10% and 80% for neutrino ener- 34 giesnear1MeV.Wepresentherethefirstmeasurements 35 sensitivetotheday–nightasymmetryforsolarneutrinos 36 new physics scenarios that cannot be rejected with the below1MeV.Thisresultisanessentiallynewandinde- 65 37 currentlyavailabledata. pendentwaytoprobetheMSW-LMApredictionandis 66 38 39 potentiallysensitivetonewphysicsaffectingthepropa- 67 The Borexino detector [12, 13] is located in Hall C 40 gationoflowenergyelectronneutrinoinmatter. Partic- 68 of the Laboratori Nazionali del Gran Sasso (latitude 41 ularly, this result is independent from the KamLAND 69 42.4275◦N)inItalyandhastakendatasinceMay2007. 42 measurement, which probes anti-neutrino interactions 70 Thesensitivedetectorconsistsof∼278tonsofverypure 43 athigherenergies(>1.8MeV). 71 organic liquid scintillator contained in a 4.25 m radius 44 The Borexino experiment at LNGS detects low en- 72 nylonvessel. Thescintillatorisviewedby2212photo- 45 ergysolarneutrinosbymeansoftheirelasticscattering 73 multipliersandisshieldedagainstexternalneutronsand 46 onelectronsinalargevolumeliquidscintillatordetec- 74 γradiation[14]. Theenergyofeachcandidateeventis 47 tor. Real-timedetection(with≈1µsabsolutetimereso- 75 measured by the total amount of collected light, while 48 lution)ofalleventsismadebycollectingthescintilla- 76 thepositionoftheeventisreconstructedusingthetime- 49 tionlightwithalargesetofphotomultipliers. Thevery 77 of-flightofthelighttothephotomultipliers. low intrinsic radioactivity of the scintillator and of the Thedatausedinthisanalysiswerecollectedbetween 50 78 materialssurroundingitallowsacleanspectralsepara- May 16th, 2007 and May 8th, 2010 and correspond to 51 79 tionbetweentheneutrinosignalsandtheresidualback- 740.88 live days after applying the data selection cuts. 52 80 ground.Astheneutrino-electronelasticscatteringcross Wedefine“day”and“night”usingθ ,theanglebetween 53 81 z sectionisdifferentforν andν -ν ,Borexinocanmea- theverticalz-axisofthedetector(positiveupward)and 54 e µ τ 82 suretheelectronneutrinosurvivalprobabilityandis,as thevectorpointingtothedetectorfromtheSun,follow- 55 83 aresult,sensitivetotheday-nighteffect. ing[2]. Notethat,withthisdefinition,cosθ isnegative 56 84 z We recently released a precise measurement of the during the day and positive during the night. The dis- 57 85 7Be neutrino interaction rate in Borexino with a total tance that the neutrinos propagate within the Earth is 58 86 uncertaintylessthan5%[11]. InthisLetter,wepresent small for negative cosθ (the ∼1.4 km LNGS overbur- 59 87 z astudyoftheday-nightasymmetryinthesame7Beso- den)andrangesupto12049kmforpositivecosθ . Our 60 88 z larneutrinorate,placingastringentlimitonthesizeof day and night livetimes were 360.25 and 380.63 days, 61 89 the possible effect. We show that this limit improves respectively. Thedistributionofθ correspondingtothe 62 90 z theconstraintonthesolarneutrinooscillationparame- live time (experimental exposure function) is shown in 63 91 tersfromsolarneutrinoexperimentsaloneandexcludes Fig.1anditsasymmetrywithrespectto-90◦ ismainly 64 92 2 duetomaintenanceandcalibrationactivitieswhichare 93 normallycarriedoutduringtheday. 9945 As discussed in [11], scintillation events due to 7Be eV 400 k 96 solar neutrinos cannot be distinguished from back- 5 104 300 97 gevroeunnt-dbye-veevnetnst(bcaossism.oTgheneicsisgnaanldarnaddiboaaccktigvriotyu)ndoncoann- s / 200 98 t n 99 tributionsarethereforedeterminedusingaspectralfitto e 100 100 theenergyspectrumoftheeventsreconstructedwithina ev103 suitablefiducialvolume(86.01m3in[11]),andpassing 0.55 0.6 0.65 0.7 0.75 0.8 101 aseriesofcutswhicheliminatemuonsandshort–lived 102 cosmogenicevents,timecorrelatedbackgroundevents, 103 102 Day spectrum andspuriousnoiseevents(detailsofthiseventselection 104 will be published in [15]). The experimental signature Night spectrum 105 ofthemono–energetic862keV7Besolarneutrinosisa 106 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 107 Compton-likeelectronscattering“shoulder”atapprox- MeV imately660keV. 108 Intheanalysisreportedhereweuseasphericalfidu- 109 Figure2: Theenergyspectrumofeventsduringday(red)andnight cial volume significantly larger than the one used in 110 (black)normalizedtothedaylive–timeintheenlargedFV.Theinsert [11]inordertoincreasethesizeofthedatasample.This showsthe7Beneutrinoenergywindow. See[11]fordetailsonthis 111 choice is justified by the fact that the additional exter- spectralshape. 112 nalbackgroundthatentersthislargerfiducialvolumeis 113 duetogammaradioactivityemittedbythematerialssur- 114 roundingthescintillatorvolume. Asthisbackgroundis 115 count rate measured in [11], a correction has been ap- expectedtobethesameduringdayandnight,itshould 135 116 notaffecttheday–nightasymmetry1. 136 pliedtotheexposurefunctiontoaccountfortheannual 117 modulationoftheneutrinofluxduetotheseasonalvari- We determined that our sensitivity to the day– 137 118 night effect is maximized by a 3.3m fiducial ra- 138 ation of the Earth-Sun distance. Before correction, the 119 asymmetric distribution of our day and night livetime dius, which gives a 132.5ton fiducial mass containing 139 120 4.978×1031 e−. With this choice of fiducial mass, the 140 throughouttheyearisexpectedtoincreasethemeasured 121 signal–to–background (S/B) ratio in the “7Be neutrino 141 7Be neutrino count rate by 0.37% during the night and 122 energywindow”(550to800keV)is0.70±0.04. This 142 decreaseitby0.39%duringtheday. Thedayandnight 123 spectrainFig 2arestatisticallyidentical,asprovedby valueissmallerthantheonein[11]duetotheincrease 143 124 the fit to the data shown in Fig. 3. Indeed, by fitting in spatially non-uniform backgrounds produced by ex- 144 125 ternalgammaraysand222Rnevents. 145 withaconstantdistributionthedatainFig.3weobtain 126 Theday–nightasymmetry,Adn,ofthe7Becountrate 146 a χ2 probability = 0.44. Any deviation from a straight linewouldbeasignatureofday–nightmodulation. For isdefinedas: 147 illustration,weincludeinFig.3theexpectedshapefor Adn =2 RRNN +−RRDD = R(cid:104)Rdi(cid:105)ff (1) 114489 t=he0L.9O55W).soFliutttiionng(t∆hem21d2i=st1ri.b0u·ti1o0n−7weitVh2aanfldattasntr2a(iθg1h2)t 150 line yields χ2/ndf = 141.1/139, showing that the data whereR andR arethe7Beneutrinointeractionrates 151 127 N D areconsistentwiththenoday–nighteffecthypothesis. 128 during the night and the day, respectively, Rdiff is their 152 129 difference,and(cid:104)R(cid:105)istheirmean. 153 One way to quantitatively constrain Adn is to deter- 130 Fig. 2showsthedayandnightenergyspectrasuper- 154 mine RD and RN separately by independently fitting 131 imposedandnormalizedtothesamelive–time(theday 155 the day and night spectra using the same spectral fit- 132 one),whileFig.3showstheθzdistributionoftheevents 156 ting technique used in determining the total 7Be flux 133 in the 7Be neutrino energy window normalized by the 157 in [11] and then comparing the results using Eq. 1. 134 experimentalexposurefunction. Byusingthetotal7Be 158 Note that because these neutrinos are mono–energetic, we expect the shape of the 7Be electron recoil spec- 159 trum to be identical during day and night. This yields 160 1Asexplainedlateron,notallbackgroundsrelevantforthisanal- A = 0.007±0.073. Thismethodhasthevirtueofal- ysisarethesameduringdayandnight. Particularly,thebackground 161 dn inducedby210Poαsisnotthesamebecauseofthelong210Polifetime 162 lowingforthepossibilityofdifferentbackgroundrates andofthedifferentlengthofdaysandnightsinsummerorwinter. 163 duringdayandnight.However,thisanalysisislesssen- 3 ingelectronrecoilspectruminducedbytheinteraction 194 of7BeneutrinosistoosmalltobeshowninFig.4. In ) 195 g de 30 196 order to see its spectral shape we plot the recoil spec- y * 197 trum with an amplitude corresponding to the expected s / (da 25 119989 dfraoyTm–hnetihgRehdditffaayrseyasmnudlmtniesitgrcyhotnfsofiprremtcheterdaLbuOysWirnegmsaoolvpuiutnilogsena.slphhapaeevaennatls- t 200 n 20 ysis based statistical subtraction technique [11] before e 201 v creatingthedifferencespectrum. Inthiscase,noresid- e 202 15 ual210Popeakisexpectedorobservedinthedifference 203 spectrum. Fitting the data between 0.25 and 0.8 MeV 204 10 using only the 7Be recoil shape yields a result consis- 205 tentwiththepreviousone. Thedifferenceinthecentral 206 -160 -140 -120 -100 -80 -60 -40 -20207 valuesisincludedinthesystematicuncertainty. q (deg) Using(cid:104)R(cid:105)=46±1.5(stat)+1.6 (syst) cpd/100t[11] z −1.5 weobtainA =0.001±0.012(stat)±0.007(syst)from dn Eq. 1. ThestatisticalerrorinA isgivenby dn Figure3:Normalizedθz–angledistributionoftheeventsintheFVin toLhrOebWi7tBhseaoslnubeteuioetrnninr(oe∆mmeno21ve2re=gd1y..0Tw·hin1ed0bo−lw7ue.eVlTin2heeaniesdffttehacent2eo(xθfp1te2hc)et=eEd0ae.r9ffth5e’5cs)t.ewlliitphtitchael σAdn = R(cid:104)dRif(cid:105)f (cid:118)(cid:116)σR22diff + σ<2(<RR>2>)(cid:39) σ(R(cid:104)Rdi(cid:105)ff) diff because the total relative experimental error associated sitive than the one described below and is not used for 208 164 with(cid:104)R(cid:105)isnegligiblewithrespectto σ(Rdiff). 165 thefinalresult. 209 Rdiff ThemainsystematicerrorsarelistedinTable1. The A stronger constraint on A is obtained by mak- 210 166 dn dominant uncertainties are associated with the differ- ingtheveryreasonableassumptionthatthemainback- 211 167 groundsthatlimitthesensitivityin[11](85Krand210Bi) 212 encebetweentheRdiff centralvaluesobtainedwithand 168 without statistical subtraction of the α events, and the are the same during day and night. With this assump- 213 169 tion, A is obtained by subtracting the day and night 214 maximum effect on Rdiff from potential small changes 170 dn in the 210Bi background in the detector. These uncer- spectra (normalized to the day live time) following the 215 171 taintieswillbedetailedin[15]. second term in Eq. (1) and then searching for a resid- 216 172 This new tight constraint on the day-night effect in ual component having the shape of the electron recoil 217 173 spectrumdueto7Beneutrinos. IfA =0andtheback- 218 7Be solar neutrinos has interesting implications on our 174 dn understanding of neutrino oscillations. To investigate groundcountrateswereconstantintimethesubtracted 219 175 this, we calculated the expected day–night asymme- spectrumwouldbeflat. 220 176 try for 862keV neutrinos under different combinations ThesubtractedspectrumisshowninFig.4,wherethe 221 177 ofmixingparametersintheMSWoscillationscenario. lowerplotisazoomoftheupperoneintheenergyre- 222 178 The comparison of these predictions with our experi- gionbetween0.55and0.8MeV.Theresultisaflatspec- 223 179 mentalnumberisdisplayedontherightpanelofFig.5. trum, consistent with zero, except for a clear negative 224 180 Theredregionisexcludedat99.73%c.l. (2d.o.f.). In 210Popeakvisibleinthelowenergyregion. Thisnega- 225 181 particular,theminimumday–nightasymmetryexpected tivepeakarisesbecausethe210Pobackgroundcountrate 226 182 in Borexino is decaying in time (τ = 138.38 days), 227 in the LOW region (10−8 eV2 (cid:47) ∆m2 (cid:47) 10−6 eV2) is 183 1/2 andthedayandnightlivetimearenotevenlydistributed 184 185 overthe3yearsofdatataking.The210Pocountratewas Sourceoferror ErroronAdn 186 highestatthetimeoftheinitialfillinginMay2007,and Live–time <5·10−4 187 has since decayed. Therefore, the 210Po count rate has Cutefficiencies 0.001 188 beenhigheronaverageduringthesummers(whendays Variationof210Biwithtime ±0.005 189 are longer), leading to a noticeable effect in the sub- Fitprocedure ±0.005 tracted spectrum. This effect is taken into account by 190 Totalsystematicerror 0.007 includingboththe210Poand7Bespectralshapesinthe 191 192 fit. Fittingbetween0.25and0.8MeV,weobtainRdiff = 193 0.04±0.57(stat)cpd/100t. Theamplitudeoftheresult- Table1:ListofsystematicerrorsonAdn. 4 V e k 5 0 s / 210Po = -21.8 – 0.9 cpd/100t nt-500 e 7Be = 0.04 – 0.57 cpd/100t v e 7Be = 12 cpd/100t -1000 Night - Day spectrum -1500 0.4 0.6 0.8 1 1.2 1.4 1.6 MeV V e k 150 5 s / 100 nt 50 e v e 0 -50 Figure5: Neutrinooscillationsparameterestimationinthreesolar 0.55 0.6 0.65 0.7 0.75 neutrinodataanalyses(with2d.o.f.):1)99.73%c.l.excludedregion MeV bytheBorexino7Beday–nightdata(hatchedredregionintheright panel);2)68.27%,95.45%,and99.73%c.l. allowedregionsbythe solarneutrinodatawithoutBorexinodata(leftpanel); 3)Samec.l. Figure 4: Difference of night and day spectra in the FV. The fit is allowedregionsbyallsolarneutrinodataincludingBorexino(filled performedintheenergyregionbetween0.25and0.8MeVwiththe contoursinrightpanel). Thebestfitpointintheleft(right)panel residual210Pospectrumandtheelectronrecoilspectrumduetothe is∆m2 =(5.2+1.6)·10−5,tan2θ=0.47+0.04 (0.46+0.04). TheLOW 7Besolarneutrinointeraction.Thefitresultsareincpd/100t.Thetop regionisstrong−l0y.9excludedbythe7Be−d0a.0y3–night−d0a.t0a3whiletheal- panelshowsanextendedenergyrangeincludingtheregiondominated lowedLMAparameterregiondoesnotchangesignificantlywiththe bythe11Cbackgroundwhilethebottompanelisazoomofthe7Be inclusionofthenewdata. energywindowbetween0.55and0.8MeV.Thebluecurveshowsthe shape ofelectron recoilspectrum thatwouldbe seenassuming the LOWsolutionasinFig.3. 99.73%c.l. neutrinomixingparameterregionsallowed 249 byallsolarneutrinodatawithoutBorexino. Thebest-fit 250 228 0.117, which is more than 8.5σ away from our mea- 251 pointisintheLMAregion(∆m2 =(5.2+−10..69)·10−5 eV2 229 surement,assuminggaussianerrorsforAdn. 252 and tan2θ =0.47+−00..0043) and a small portion of the LOW 230 Thiseffectcanalsobeseeninaglobalanalysisofall 253 regionisstillallowedat∆χ2 =11.83. solarneutrinodata. Wehavecarriedoutsuchananaly- The right panel of Fig. 5 shows the regions of al- 231 254 sis,assumingtwoneutrinooscillations(i.e. θ =0,we lowed parameter space after adding the Borexino data 232 13 255 havecheckedthattheinclusionofthethirdfamilydoes (the 7Be total count rate [11], the day–night asymme- 233 256 notchangeanyoftheconclusionsandwillbepublished try reported in this paper, and the 8B total count rate 234 257 in[15]),includingtheradiochemicaldata[1],theSuper- above3MeV(0.22±0.04(stat)±0.01(syst))cpd/100 235 258 KamiokandephaseIandphaseIIIdata[2],andtheSNO tandspectralshape(5binsfrom3to13MeV)[18])to 236 259 LETA data and phase III rates [3]. The analysis takes theanalysis. TheLMAregionisonlyslightlymodified 237 260 intoaccounttheexperimentalerrors(thesystematicand (thenewbestfitpointis∆m2 =(5.2+1.6)10−5 eV2 and 238 261 −0.9 statisticalerrorssummedinquadrature)andthetheoret- tan2θ = 0.46+0.04), but the LOW region is strongly ex- 239 262 −0.03 icalerrorsinthetotalcountrates,includingthecorrela- cluded at ∆χ2 > 190. Therefore, after the inclusion of 240 263 tionofthe7Beand8Btheoreticalfluxes [16]. Weuse the Borexino day–night data, solar neutrino data alone 241 264 fluxpredictionsfromarecenthighmetallicitystandard can single out the LMA solution with very high confi- 242 265 solar model [17] and we include the bin-to-bin corre- dence, without the inclusion of anti-neutrino data and 243 266 lationsintheuncertaintiesinthepredicted8Bneutrino thereforewithoutinvokingCPTsymmetry. 244 267 245 recoil spectrum resulting from the uncertainties in the 268 Thisresultisanessentiallynewandindependentway 246 predictedneutrinospectrum,andfromenergythreshold 269 to probe the MSW-LMA prediction and is potentially 247 uncertaintiesandenergyresolutionintheexperiments. 270 sensitive to new physics affecting low energy electron The left panel of Fig. 5 shows the 68.27, 95.45 and neutrinointeractions. Asanexample, wenotethatour 248 271 5 272 day-nightasymmetrymeasurementisverypowerfulin 329 [12] G.Alimontietal.(BorexinoColl.), Nucl.Instrum.Methods 273 testingmassvaryingneutrinoflavorconversionscenar- 330 Phys.Res.A600(2009),568. ios. We find, for example, that our A data excludes 331 [13] G.Alimontietal.(BorexinoColl.), Nucl.Instrum.Methods 274 dn 332 Phys.Res.A609(2009),58. the set of MaVaN parameters chosen in [10] to fit all 275 333 [14] G. Bellini et al. (Borexino Coll.) JINST 6 (2011) P05005; 276 neutrinodataatmorethan10σ. 334 arXiv:1101.3101v2[physics.ins-det]. 277 asyImnmcoentrcyluisniotnh,e wineterhaacvtieonseraartcehoefd8f6o2r kaeVda7yB–neigsoh-t 333356 [15] Gta.ilBsealblionuite7tBale.(dBaotareaxnianloysCiso,lld.)a,ya–rntiicglhetinseparrecpharaantdiosnowlairthndeue-- 278 lar neutrinos in Borexino. The result is A = 0.001 ± 337 trinooscillationsanalysis. 279 dn 338 [16] J.N.Bahcall,Phys.Rev.Lett.12(1964),300;C.Pen˜a-Garay 280 0.012(stat)±0.007(syst),consistentbothwithzeroand 339 andA.SerenelliarXiv:0811.2424[astro-ph](2008). withthepredictionoftheLMA-MSWneutrinooscilla- 340 [17] A.Serenelli,W.Haxton,andC.Pen˜a-Garay,arXiv:1104.1639 281 tionscenario.Withthisresult,theLOWregionofMSW 341 [astro-ph]. 282 342 [18] G. Bellini et al. (Borexino Coll.) Phys. Rev. D 82 (2010), 283 parameterspaceis,forthefirsttime,stronglydisfavored 343 033006;arXiv:0808.2868v3(astro-ph). bysolarneutrinodataalone. Theresultconstrainscer- 284 tainflavorchangescenariosinvolvingnewphysics. 285 ThisworkwasfundedbyINFNandMIURPRIN 286 2007(Italy),NSF(USA),BMBF,DFG,andMPG(Ger- 287 many),NRCKurchatovInstitute(Russia),andMNiSW 288 (Poland). Wegratefullyacknowledgethegeneroussup- 289 portoftheLaboratoriNazionalidelGranSasso. 290 This work is dedicated to the memory of our friend 291 Raju Raghavan, the father of this experiment, and a 292 greatscientist. 293 References 294 295 [1] B.T.Clevelandetal.,Astrophys.J.496(1998),505;K.Lande 296 andP.Wildenhain,Nucl.Phys.B,Proc.Suppl.118(2003),49; 297 W.Hampeletal.(GALLEXColl.),Phys.Lett.B447(1999), 298 127;J.N.Abdurashitovetal.(SAGEColl.),Phys.Rev.Lett. 299 83(1999),4686;M.Altmannetal.(GNOColl.),Phys.Lett.B 300 616(2005),174. 301 [2] K.S.Hirataetal.(KamiokaNDEColl.),Phys.Rev.Lett.63 302 (1989),16;J.Hosakaetal.(SuperKamiokaNDEColl.),Phys. 303 Rev.D73(2006),112001;J.P.Cravensetal.(SKColl.),Phys. 304 Rev.D78(2008),032002;K.Abeetal.(SKColl.),Phys.Rev. 305 D83(2011),052010. 306 [3] Q.R.Ahmadetal.(SNOColl.),Phys.Rev.Lett.87(2001), 307 071301;Q.R.Ahmadetal.(SNOColl.),Phys.Rev.Lett.89 308 (2002), 011301; B.Aharmimetal.(SNOColl.), Phys.Rev. 309 Lett. 101 (2008), 111301; B. Aharmim et al. (SNO Coll.), 310 Phys.Rev.C81(2010),055504. 311 [4] A.Gandoetal.(KamLANDColl.),Phys.Rev.D83(2011), 312 052002. 313 [5] S. P. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42 314 (1985),913;L.Wolfenstein,Phys.Rev.D17(1978),2369;K. 315 Nakamuraetal.(ParticleDataGroup)J.Phys.G37(2010), 316 075021. 317 [6] J.Bouchezetal.,Z.Phys.32(1986),499; M.Cribieretal., 318 Phys.Lett.B182(1986),89;A.J.Baltzetal.Phys.Rev.D35 319 (1987);S.T.Petcov,Phys.Lett.B434(1998),321. 320 [7] B. Aharmim et al. (SNO Coll.), Phys. Rev. C 72 (2005), 321 055502. 322 [8] M.B.Smyetal.(SuperKamiokaNDEColl.)Phys.Rev.D69 323 (2004),011104. 324 [9] J.N.Bahcalletal.,JHEP04(2002),007;A.deGouveˆaetal. 325 JHEP03(2001),009. 326 [10] P.C.deHolanda,JCAP0907(2009),024. 327 [11] G.Bellinietal.(BorexinoColl.)Phys.Rev.Lett.107(2011), 328 141302;arXiv:1104.1816v1(hep-ex) 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.