ebook img

Above-threshold ionization with highly-charged ions in super-strong laser fields: II. Relativistic Coulomb-corrected strong field approximation PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Above-threshold ionization with highly-charged ions in super-strong laser fields: II. Relativistic Coulomb-corrected strong field approximation

Above-thresholdionizationwithhighly-chargedionsinsuper-stronglaserfields: II.RelativisticCoulomb-correctedstrongfieldapproximation Michael Klaiber,∗ Enderalp Yakaboylu, and Karen Z. Hatsagortsyan Max-Planck-Institut fu¨r Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany (Dated:January25,2013) WedeveloparelativisticCoulomb-correctedstrongfieldapproximation(SFA)fortheinvestigationofspin effectsatabove-thresholdionizationinrelativisticallystronglaserfieldswithhighlychargedhydrogen-like ions. TheCoulomb-correctedSFAisbasedontherelativisticeikonal-Volkovwavefunctiondescribingthe ionizedelectronlaser-drivencontinuumdynamicsdisturbedbytheCoulombfieldoftheioniccore.TheSFA indifferentpartitionsofthetotalHamiltonianisconsidered.Theformalismisappliedfordirectionizationof ahydrogen-likesysteminastronglinearlypolarizedlaserfield.Thedifferentialandtotalionizationratesare 3 calculatedanalytically.TherelativisticanalogueofthePerelomov-Popov-Terent’evionizationrateisretrieved 1 withintheSFAtechnique.ThephysicalrelevanceoftheSFAindifferentpartitionsisdiscussed. 0 2 PACSnumbers:32.80.Rm,42.65.-k n a J I. INTRODUCTION exactly,whiletheCoulombfieldviatheeikonalapproxima- 4 tion. The nonrelativistic Coulomb-corrected SFA based on 2 theeikonal-Volkovwavefunctionhasbeenappliedrecently SincethepioneeringexperimentbyMooreetal. [1]laser ] fieldsofrelativisticintensities(exceeding1018 W/cm2 atan formolecularhigh-orderharmonicgeneration[48–50]. The h infraredwavelength)havebeenappliedfortheinvestigation eikonalapproximationhasbeengeneralizedtoincludequan- p tumrecoileffects[51,52]. TherelativisticSFAbasedonthe of strong field ionization dynamics of highly charged ions m- [2–8], see also [9]. A lot of effort has been devoted to the generalizedeikonalwavefunctionhasbeenproposedin[53]. However,thefinalresultshavebeenobtainedonlyintheBorn numericalinvestigationofthedynamicsofhighly-chargedions o approximation. inasuper-strongfields[10–20]. t a Acommonanalyticalapproachforstrongfieldatomicpro- InthispaperwedeveloptheCoulombcorrectedSFAforthe . s cessesisthestrongfieldapproximation(SFA)[21–23]which relativisticregimebasedontheDiracequation,extendingthe c hasbeenappliedforthetreatmentofrelativisticeffects[24,25]. correspondingnonrelativistictheory,seepaperI(thefirstpaper i s ThemaindeficiencyofthestandardSFAisthattheinfluence ofthissequel),intotherelativisticdomain. Thiswillallowus y oftheCoulombfieldoftheatomiccoreisneglectedforthe tocalculatespin-resolvedionizationprobabilitiestakinginto h electrondynamicsinthecontinuumandthelatterisdescribed accountaccuratelytheCoulombfieldeffectsoftheioniccore. p [ bytheVolkovwavefunction[26]. Whilethisiswell-justified IntheCoulombcorrectedSFA,theeikonal-Volkovwavefunc- fortheionizationofanegativeion,foratomsand,moreover, tionisemployedforthedescriptionofthefinalstateinstead 1 for highly-charged ions it is not valid and the standard SFA oftheVolkovone. TheinfluenceoftheCoulombpotentialof v canprovideonlyqualitativelycorrectresults. Amodification theatomiccoreontheionizedelectroncontinuumdynamics 4 6 ofthetheoryisrequiredtotakeintoaccounttheinfluenceof is taken into account via the eikonal approximation. Direct 7 theatomiccoreonthefreeelectronmotion. ionizationofahydrogen-likesysteminastronglinearlypolar- 5 The Coulomb field effects during ionization have been izedlaserfieldisconsidered. Twoversionsoftherelativistic . treatedinthePerelomov-Popov-Terent’ev(PPT)theorybased Coulomb corrected SFA are proposed that are based on the 1 0 ontheimaginarytimemethod [27,28]. InthePPTtheorythe usage of different partitions of the total Hamiltonian in the 3 barrierformedbythelaserandatomicfieldisassumedtobe SFAformalism. Thephysicalrelevanceofthetwoversionsis 1 quasi-staticandthetunnelingthroughitiscalculatedusingthe discussed. : WKB-approximation. TherelativisticPPT-theory[29–32]has v Theplanofthepaperisthefollowing: InSec.IItherela- i providedthetotaltunnelingrate. However,spineffectsarenot tivisticCoulomb-correctedSFAisdeveloped. Thedifferential X investigatedthoroughly[33]. andtotalionizationratesforhydrogen-likesystemsarederived. r ThestandardSFAtechniquehasbeenmodifiedtoinclude a ThemodifiedSFAusingaspecificpartitionoftheHamiltonian the Coulomb field effects of the atomic core. A heuristic is considered in Sec. III and is used for the calculation of Coulomb-Volkovansatzhasbeenusedforthispurpose, see ionizationrates. [34–45]. Inamorerigorousway,theSFAismodifiedbyre- placingtheVolkovwave-functionintheSFAtransitionmatrix elementbythe,so-called,eikonal-Volkovone[46,47].Thelat- terdescribestheelectroncontinuumdynamicsinthelaserand theCoulombfield. Herethelaserfieldistakenintoaccount II. RELATIVISTICCOULOMB-CORRECTEDSFA Weconsidertheinteractionofahighly-chargeionwitha ∗Correspondingauthor:[email protected] stronglaserfieldintherelativisticregimewhichisdescribed 2 bythetime-dependentDiracequation: The hydrogen-like system interacts with a strong linearly polarizedlaserfield (cid:32) (cid:33) 1 V(c) iγµ∂ + γµA −γ0 −c ψ=0, (1) µ c µ c E(η)=−E cos(ωη), (8) 0 whereγµ aretheDiracmatrices,V(c) =−κ/ristheCoulomb potential of the atomic core, κ the typical electron momen- tumintheboun√dstate,determinedbytheboundstateenergy whereη=kµx /ω,andkµ =(ω/c,k)isthelaser4-wave-vector. µ via c2 − Ip = c4−c2κ2, Ip the ionization potential, Aµ is [thecoordinateandthemomentumprojectionsaredefinedas the4-vectorpotentialofthelaserfield(atomicunitsareused r ≡r·eˆ,r ≡r·kˆ, p ≡p·eˆ, p ≡p·kˆ,and p ≡p·(kˆ×eˆ), E k E k B throughout). The transition amplitude for the laser induced withtheunitvectorskˆ andeˆ inthelaserpropagationandthe ionizationprocessfromtheinitialboundstateφ(c)intoanexact polarizationdirection, respectively]. Thevector-potentialis i continuum state ψ with an asymptotic momentum p can be chosenintheGo¨ppert-Mayergauge: written[24] (cid:90) i M(c) =− d4xψ(r,t)A/φ(c)(r,t), (2) Aµ ≡(ϕ,cA)=(−r·E,−kˆ(r·E)). (9) fi c i Generally, the SFA in different gauges do not coincide and correspondtodifferentphysicalapproximations[55–57]. In withA/ ≡γµA . Equation(2)isstillexactwiththeexactwave µ paper I we have seen that in the nonrelativistic regime the functionψ(r,t)describingthedynamicsoftheelectroninthe Coulomb-corrected SFA in the length gauge leads, first, to ionic and the laser field. Here, we have used the standard rathersimpleexpressionsfortheCoulomb-correctedionization partitionofthetotalHamiltonian: amplitude,seeEq. (I.28)[referstoEq. (28)ofpaperI],which H = H +H , (3) isduetothecancellationofther·EinteractionHamiltonian 0 int inthematrixelementbytheCoulomb-correctionfactor;and, H = cα·pˆ +βc2+V(c)(r) (4) 0 second, to results coinciding with the PPT-ionization rates. Hint = βA/, (5) Asthelatterprovidesagoodapproximationtoexperimental observations, in the relativistic regime we choose a gauge whereα=γ0γ,β=γ0aretheDiracmatrices,andcthespeed whichgeneralizesthelengthgaugeintotherelativisticdomain oflight. Weconsiderahydrogen-likehighlychargedionin [58],thatistheGo¨ppert-MayergaugedefinedbyEq. (9). the relativistic parameter regime, i.e., the wave function of theinitialboundstateφ(c)fulfillstheDiracequationwiththe In the conventional SFA the exact continuum state is ap- i HamiltonianH andisgivenby[54] proximatedbytheVolkov-wavefunctionwhichisidenticalto 0 thefirstorderWKB-approximationofthecontinuumelectron φ(ic)(r,t) = κ√3/π2 (cid:118)(cid:117)(cid:117)(cid:116)Γ(cid:16)23−−cI2p2Ip(cid:17)(2κr)−cIp2 imbnyatthtihoeenlarisseeparlcafihceieelmdve.edAntinsoytfhstetehmreealeatxitciavciitmstwipcraoCvveoeumfluoenmncttbio-ocfnotrhψrie(srca,tept)dprwSoFixtAhi- c2 (cid:104) (cid:105) therelativisticeikonal-Volkovwavefunction. Similartothe ×exp −κr−i(c2−Ip)t vi, (6) non-relativisticcase,seepaperI,firstweapplytheWKBap- proximationtothesolutionoftheDiracequation(1),thenthe wherethebispinor resultingequationswillbesolvedviaaperturbativeexpansion (cid:32) (cid:33) intheCoulombpotentialV(c). χ v = i (7) i iIp σ·rχ Due to the gauge covariance of the Dirac equation, we cκ r i switch to the velocity gauge with its vector potential A˜µ = describesthespin-upand-downstates(i=±),withthetwo- A˜µ(η) = (0,cA˜), A˜ = −(cid:82)η dη(cid:48)E(η(cid:48)) and after solving the −∞ componentspinorsχ+ = (1,0)andχ− = (0,1),respectively, wave-equation go back to the Go¨ppert-Mayer gauge. The andthePauli-matricesσ. quadraticDiracequationinvelocitygaugebecomes (cid:32) (cid:33)(cid:32) (cid:33) 1 V(c) 1 V(c) i(cid:126)γµ∂ + γµA˜ −γ0 +c i(cid:126)γµ∂ + γµA˜ −γ0 −c ψ=0, (10) µ c µ c µ c µ c   −(cid:126)2∂2+ ic(cid:126)(cid:16)k/A/˜(cid:48)+2A˜·∂+α·∇V(c)−2V(c)∂0(cid:17)+ Ac˜22 + Vc(c2)2 −c2ψ=0. (11) whereA˜(cid:48) ≡ 1 dA˜,andwehaveinserted(cid:126)toindicatetheWKB-expansion. Letusassumethatthesolutionhastheformψ=eiS/(cid:126), ωdη 3 thenthecorrespondingequationforS is (cid:32) A˜ V(c)(cid:33)(cid:32) A˜µ V(c)(cid:33) (cid:126)(cid:32) k/A/˜(cid:48) α·∇V(c)(cid:33) ∂ S − µ +g ∂µS − +gµ0 + ∂2S − − =c2. µ c µ0 c c c i c c (cid:126) TheWKBexpansionS =S + S +...yieldsfollowingequationsupthefirstorderin(cid:126)/i 0 i 1 (cid:32)(cid:126)(cid:33)0 2A˜ ∂µS A˜2 2V(c)∂ S V(c)2 : ∂ S ∂µS − µ 0 + −c2 =− 0 0 − , (12) i µ 0 0 c c2 c c2 (cid:32)(cid:126)(cid:33)1 2A˜ ∂µS k/A/˜(cid:48) 2V(c)∂ S α·∇V(c) : 2∂ S ∂µS − µ 1 =−∂2S + − 0 1 + . (13) i µ 0 1 c 0 c c c (cid:112) Theseequationscanbesolvedperturbativelywithrespectto withε = c c2+p2 andtheconstantofmotionΛ ≡ k· p/ω thepotentialtermV(c). Ifwedefine Further, Eqs.(17)and(19)canbesolvedviathemethodof characteristicsas S = S(0)+S(1), (14) 0 0 0 dS(1) dxµ V(c) S1 = S1(0)+S1(1), (15) dσ0 = ∂µS0(1)dσ =− c π0, (24) thefollowingequationscanbederived dS(1) dxµ 1 = ∂ S(1) (25) dσ µ 1 dσ ∂µS0(0)∂µS0(0)− 2A˜µ∂cµS0(0) + Ac˜22 −c2 =0, (16) = −α·∇V(c) + ∂2S0(1) +∂ S(1)∂µS(0)+ V(c)∂tS1(0), V(c) 2c 2 µ 0 1 c2 ∂ S(1)πµ =− π0, (17) µ 0 c wherethetrajectoryisgivenby 2∂ S(0)πµ =∂2S(0)−k/A/˜(cid:48), (18) µ 1 0 dxµ α·(∇V(c)) =πµ. (26) ∂ S(1)πµ =− dσ µ 1 2c Thisleadstodσ=dη/Λ,withtherelativistickineticmomen- ∂2S(1) V(c)∂S(0) + 0 +∂ S(1)∂µS(0)+ t 1 , (19) tuminthelaserfield 2 µ 0 1 c2 π(η) ≡ p(η)=∇S(0)+A˜(η) A˜µ 0 whereπµ = −∂µS0(0) + c istherelativisticmomentum. Eq. = p+A˜(η)+kˆ(p+A˜(η)/2)·A˜(η), (27) (16)givestheVolkov-action,i.e., cΛ ω (cid:90) ∞(cid:32) A˜2(cid:33) andthecorrespondingrelativistickineticenergy S(0) =−p·x− A˜·p+ dη(cid:48). (20) 0 c(k·p) 2c η (p+A˜(η)/2)·A˜(η) cπ0(η)≡ε(η)=−∂S(0) =ε+ . (28) Ontheotherhand,thesolutionofEq. (18)is t 0 Λ k/A/˜ ThenthesolutionsofEqs. (24)and(25)read S(0) =− . (21) 1 2c(k·p) S(1)(r,η) = (cid:90) ∞dη(cid:48)ε(η(cid:48))V(c)(cid:0)r(η(cid:48))(cid:1), (29) HereweshouldnotethatS(0)andS(0)generatethefullVolkov 0 η c2Λ solution. Thecorrespondin0gequati1onsintheGo¨ppert-Mayer (cid:90) ∞ dη(cid:48) (cid:34)α·∇V(c)(r(η(cid:48))) S(1)(r,η) = (30) gaugecanbefoundviaagaugetransformationwithangener- 1 Λ 2c atingfunctionχ=A˜(η)·r. Afteracoordinatetransformation η  from(t,r)to(η,r)theybecome − V(c)(r(ηc(cid:48)))∂0S1(0) −∂µS0(1)∂µS1(0)− ∂2S20(1) (cid:18) ε (cid:19) S(0)(r,η) = p+A˜(η)− kˆ ·r (22) 0 c withtherelativistictrajectoryoftheelectroninthelaserfield +(cid:90) ∞η(cid:48)(cid:32)ε+ (p+A˜(η(cid:48)Λ)/2)·A˜(η(cid:48))(cid:33), r(η(cid:48))=r+(cid:82)ηη(cid:48)dη(cid:48)(cid:48)p(η(cid:48)(cid:48))/Λ,startingattheionizationphaseη η withcoordinater. (1+kˆ ·α)(α·A˜) We can evaluate the explicit parameters for the applied S1(0)(η) = 2cΛ , (23) eikonalapproximationestimatingtheimposedconditionsfor 4 the expansion of Eqs. (14) and (15): S(1) (cid:28) S(0), and Thus,therelativisticeikonal-Volkovwavefunctionreads 0 0 S(0) (cid:28) S(1). For this purpose we use order of magnitude 1 0 ψ (r,t) estimations: f S0(0) ∼ Ipτc ∼ EEa, (31) = 1+ (1+kˆ ·α)α·A˜(η)+2c(cid:82)Λη∞dη(cid:48)α·∇V(c)(r(η(cid:48))) 0 (cid:114)  cu S0(1) ∼ log EEa∼1 (32) ×(cid:112)(2πf)3εexp[iS0(0)(r,η)+iS0(1)(r,η)], (42) 0 (cid:114) S(0) ∼ A˜ ∼ E0τc ∼ Ip (33) with the bispinor uf for the spin-up and -down final states 1 cΛ c c2 (f =±) (cid:90) (cid:114) (cid:114) S1(1) ∼ dtcrr˙EE((tt))2 ∼ cr1Ec ∼ cIp2 EE0a. (34) uf = (cid:112)(1+√(σε·p/)cχ2f)/2χf , (43) 2(c2+ε) Here, the first two equations were already derived in paper I,seeEq. (I.22), Ea ≡ (2Ip)3/2. Further,takingintoaccount where χ+ = (1,0) and χ− = (0,1). The last term in the pre- thetypicaltimeduringtunnelingτc ∼ γ/ω = κ/E0,withthe exponential[∝∇V(c)]describesthespin-orbitcouplingduring Keldyshparameterγ = ωκ/E0 [21], thevalueofthet(cid:112)ypical ionization(under-the-barriermotion). Viaa p/c-expansionof velocityoftheelectronduringtunnelingr˙Ec ∼κ[κ≈ 2Ip], theDiracequationintheatomicandthelaserfielditcanbe the interaction lengt√h rEc ∼ r˙Ecδτc, the uncertainty of the shownthatthespin-orbitcoupling,givenintheHamiltonian initialtimeδτc ∼1/ κE0 [fromthesaddle-pointintegration bytheterm δτ2 ∼ 1/S¨˜(t )], ε(η) ∼ c2, Λ ∼ 1 [the electron is at rest at c s c (cid:104) (cid:105) the tunnel exit], and A˜ ∼ E τ , we come to the following σ· p(η)×∇V(c)(r(η)) 0 c H = , (44) conditionsfortheapplicabilityoftheeikonalapproximation: SO 4c2 (cid:114) E I canbeevaluatedalongthemostprobabletrajectoryasfollows p (cid:28)1 and (cid:28)1. (35) Ea c2 p ∂V(c) p ∂V(c) (cid:32)I (cid:33)3/2 H τ ∼ k τ , E τ ∼ p , (45) TheactionfunctionS(1)canbeapproximatedbythefirstterm SO c c2 ∂rE c c2 ∂rk c c2 1 inEq. (30): wherethetypicalvaluesfor p ∼ κ, p ∼ κ2/c, r ∼ r κ/c E k k Ec (cid:90) ∞ α·∇V(c)(r(η(cid:48))) havebeenused. Itisofhigherordersmallnessthantheterms S(1)(r,η)= dη(cid:48) . (36) keptintheeikonalwavefunctionandisneglectedinthefurther 1 2cΛ η calculation. Finally,theionizationamplitudeintheCoulomb-corrected Infact,theorderofmagnitudeofthetermsinr.h.s. ofEq.(30) SFAwillhavethefollowingformintherelativisticregime: are T ∼ (cid:90) dηV(c) ∼ (cid:114)E0 (cid:114)Ip, (37) M(fci) = −i(cid:90) ∞dη(cid:104)p(η)r,m|Hintexp[−iS0(1)(r,η))]|0r,i(cid:105) 1 cr E c2 −∞ Ec a ×exp[−iS˜(η)]. (46) E (cid:90) E (cid:32)I (cid:33)3/2 T ∼ 0 dηV(c) ∼ 0 p , (38) 2 c3 Ea c2 withthespatialpartsoftheinitial|0r,i(cid:105)andthefinal|p(η)r, f(cid:105) (cid:90) spinorsandthecontractedaction E τ E I T ∼ 0 dηV(c) c ∼ 0 p, (39) 3 c2 rEc Eac2 (cid:90) ∞ (cid:40) [p+A˜(η(cid:48))/2]·A˜(η(cid:48))(cid:41) S˜(η)= dη(cid:48) ε−c2+I + . (47) p Λ andT isvanishingbecauseinthetunnelingregion∆V(c) =0. η 4 Fromthelatter,weestimatetheratios: In the adiabatic regime (ω (cid:28) I ,U , with the pondero- p p (cid:114) motive potential U = E2/4ω2) the time integration in the T I E p 0 2 ∼ p (cid:28)1, (40) amplitudeofEq.(46)iscalculatedwithSPM.Asinthenon- T1 c2 Ea relativisticcase,herealsothedisturbanceofthesaddle-point (cid:114) (cid:114) T I E conditionsduetotheCoulombfieldisneglected. Thisisinac- 3 ∼ p (cid:28)1, (41) cordancewithourapproachtotakeintoaccounttheCoulomb T c2 E 1 a fieldperturbativelyinthephaseoftheWKBwavefunction: therefore, only the first integrand term may be maintained S(1)isalreadyproportionaltotheCoulombfieldV(c)(r),there- 0 in Eq. (30). Further, one can see from Eqs. (33) and (34) fore, in the trajectory r(η) it should be neglected. Mathe- that S(0) (cid:28) 1 and S(1) (cid:28) 1, which allows us to expand the maticallythisisjustifiedasonecanseefromtheestimation 1 1 √ correspondingexponents. ∂ S(1) ∼ I E /E [similartoestimationsinEqs. (31)-(34)]. η 0 p 0 a 5 Itshowsthat∂ S(1) isnegligiblysmallcomparedto I , and, approximatedby: η p consequently, the saddle-point condition ∂ηS˜(ηs) = 0 is not (cid:90) η0 iκ disturbed. Thelatterleadstothefollowingtwosaddlepoints −iS(1)(r,η )= dη(cid:48) s Λc2 percycle: ηs ε(η )+∂ ε(η )(η(cid:48)−η )+ ∂2η,ηε(ηs)(η(cid:48)−η )2  (cid:115)  × s(cid:12) η s s 2 (cid:12) s ωη1 = arcsin−Ep0/Eω +i 2Λ(ε−(Ec02/+ωI)2p)−p2E (48) −(cid:90) η(cid:12)(cid:12)0xd+η(cid:48)piEκΛ(ηs)(η(cid:48)−ηs)− E2(rΛηks()η(η(cid:48))(cid:48)2−ηs)2(cid:12)(cid:12) ,(51) ωη2 = π−arcsin−Ep/Eω −i(cid:115)2Λ(ε−(Ec2/+ωI)2p)−p2E. where ηs 2 (cid:12)(cid:12)(cid:12)x+ pEΛ(ηs)(η(cid:48)−ηs)− E2(Ληs)(η(cid:48)−ηs)2(cid:12)(cid:12)(cid:12)3 0 0 (cid:112) (cid:112) i 2I r 2I iE(η ) 2I r (η) = p E − p(η−η )+ 0 p(η−η )2 k 3c 3c s 2c s The amplitude is now evaluated at these phases. First, we considertheactionS˜(ηs)intheexponent: −E(6ηc0)2(η−ηs)3, (52) (cid:113) (cid:113) (cid:16) (cid:17) (cid:104)2Λ(ε−c2+I )−p2(cid:105)3/2 pE(ηs) = i 2Λ(ε−c2+Ip)−p2E ≈i 2Ip 1−5Ip/36c2 . Im{S˜(η )}= p E (49) (53) s 3|E(η )|Λ 0 ε(η ) = c2−I (54) s p with|E(η )|= E (cid:112)1−(p /(E /ω))2. Sincetherealpartgives ∂ηε(ηs) = −pE(ηs)E(η0)/Λ (55) 0 0 E 0 ∂2 ε(η ) = E(η )2/Λ (56) anunimportantphaseintheresultingamplitude,onlytheimag- η,η s 0 inarypartisgiven. Thisfunctionintheexponentdominates Otherparametersareωη =arcsin(cid:2)−p /E /ω(cid:3),κ≈ (cid:112)2I (1− 0 E 0 p themomentumdistributionanddeterminesthemaximumof I /4c2), Λ ≈ 1 − I /3c2, r (η) ≈ 0, E(η ) ≈ E(η ). To themomentumdistributionwhichislocatedataparabolawith p p B s 0 have compact expressions, expansions on the small param- p = I /3c+p2/2c(1+I /3c2), p =0. Inthefollowing,we, k p E p B eterI /c2 havebeenusedabove[I /c2 ≈ 0.25forhydrogen- therefore, evaluate the less important pre-exponential factor p p like uranium]. The starting coordinate of the trajectory onlyatthisparabolaandneglectdeviationsfromit. Inevalu- r is found from the saddle-point condition of the integral atingS0(1) atthesaddlepointη=ηs,notethattheintegration (cid:82) d3rexp[−ip(ηs)·r−κr], that is rs/rs = p(ηs)/(iκ). With inS0(1) startsatthesaddlepointηs,whentheelectronenters theseparameterstheintegralinEq.(51)canbecalculated: thebarrierduetotheeffectivepotential,andgoestoinfinity (cid:104) (cid:105) when the electron is far away from the core. However, the Qr ≡ exp −iS(1)(r,ηs) upperintegrationlimitcouldbesetatthemomentη0,when (cid:34)2I (cid:35)1− Ip the electron leaves the barrier since further integration over = exp p 6c2 thecontinuumleadseventuallyonlytoanunimportantphase c2 λ1−cIp2 othfethbeararmieprliistusdheo.rTthceomtimpaerewdhwicihththteheelleacsterronpesrpieonddasnudndtheer = exp(cid:34)2cI2p(cid:35)(cid:32)1− 6Icp2(cid:33)Q1nr−cIp2 (57) integrandcanbeexpandedaroundthesaddlepointη : s withthesmallparameterλ=−r·E(η )/4I . Intheexpression s p above only the leading order term in 1/λ are retained. For −iS(1)(r,η )=(cid:90) η0dη(cid:48) iκ (50) justificationofourapproximations,wecompareinFig.1our s ηs Λc2 analytically derived Coulomb-correction factor Qr with the ε(η )+∂ ε(η )(η(cid:48)−η )+ ∂2η,ηε(ηs)(η(cid:48)−η )2 exactresultofanumericalcalculationofEq.(50),andwith ×(cid:12) s η s s 2 s (cid:12), theCoulomb-correctionfactoroftherelativisticPPT[31]. De- (cid:12)(cid:12)r+ p(ηs)(η(cid:48)−η )+ FL(ηs)(η(cid:48)−η )2+ kˆE(ηs)2(η−η )3(cid:12)(cid:12) viation of our approximate Coulomb-correction factor from (cid:12) Λ s 2Λ s 6cΛ2 s (cid:12) the exact one occurs mostly due to a linearization of the λ- dependenceintheanalyticalexpressionswhich,however,is whereF (η)=−E(η)−kˆ(p(η)·E(η))/cΛistheLorentz-force neededforthefurtheranalyticalintegration. L due to the laser field. As the correction factor is evaluated Using the Coulomb-correction factor Qr of Eq. (57), the at the parabola with p = I /3c + p2/2c(1 + I /3c2) and spatialintegrationinEq.(46)canbecarriedout.TheCoulomb- k p E p p = 0, we derive the trajectories at these special values of correctedpre-exponentialmatrixelementreads B momentum.Duringthemotionunderthebarrierthemagnitude m˜ (η )=(cid:104)p(η ) , f|r·E(η )(1−kˆ ·α)Q |0 ,i(cid:105). (58) of the coordinate variation in the kˆ-direction (imaginary) is fi s s r s r r significantly smaller than in eˆ-direction [r (η)/r (η) ∼ κ/c] ItisremarkablethattheCoulomb-correctionfactorinEq. (58) k E andtheintegrandcanbeexpandedbyr (η). Itistakeninto cancels the dependence of the matrix element on the elec- k account also that the ionization event happens close to the tric dipole operator r · E and, approximately, also the pre- laser polarization axis: rk (cid:28) rE. The integral is, therefore, exponentialtermr−Ip/c2 oftheinitialstatewavefunction[when 6 (cid:112) withβ= 2Ip/candm−+ =m+− =0. Eqs. (61)and(62)are 200 exactin p /c,the p /ctermcanbeimportantatξ (cid:29)1. Asin E E 100 thenon-relativisticcase,seepaperI,thematrixelementhasa singularityatthesaddlepointη andthemodifiedSPMhasto 50 s beappliedwhichinducesanadditionalpre-exponentialfactor Qr 20 1 1 = . (63) 10 [p(ηs)2+κ2]2 4(p(ηs)·p˙(ηs))2(η−ηs)2 5 The total pre-exponential factor after the η-integration in 0.05 0.10 0.15 Eq.(46)becomes: FγI=G.01.0:1TahnedCIpo/ucl2o=mb0-.c2o5r(reeqctuiiovnalfeancΛttotorZQr=v9s1t)h:e(bplaarcakm,estoelridλ)tfhoer mˆfi(ηs)= √2π32−(cid:113)2cI2Γp((cid:16)23Ip−)322c−I2p23cI(cid:17)p2|Ee(xηps(cid:104))|2c32I2−p(cid:105)cIp2 mˆfi, (64) numericalcalculationviaEq. (50)withoutapproximations, (blue, short-dashed)theanalyticalresultofEq.(57),(red,long-dashed)the with Coulomb-correctionfactoroftherelativisticPPT[31]. √ (cid:16) (cid:17) 2c(2c+ip ) 1+ β mˆ++ = (cid:113) E 2 (65) 8c4+6c2p2 +p4 E E theapproximationr≈rE,i.e.,ionizationhappensatthelaser β2c(cid:16)20c4+2ic3p +13c2p2 +icp3 +2p4(cid:17) pploileadriGzao¨tpiopnerat-xMisa,yiserugsaeudg].eTwhhiischissiagncoifincsaenqtulyenscimepolfifitheestahpe- + 3√2(2c−ip )(cid:16)E2c2+p2(cid:17)E3/2 (cid:113)4cE2+p2E , calculationoftheionizationmatrixelement. E E E √ (cid:16) (cid:17) In this paper we are concerned with spin-unresolved ion- 2c(2c−ip ) 1− β ization probabilities. Therefore, we are free to choose the mˆ−− = (cid:113) E 2 (66) orientation of the quantization axis. In the following we as- 8c4+6c2p2 +p4 E E sumethattheinitialspinoroftheboundstateisalignedalong (cid:16) (cid:17) tehleemlaesnetrimnaEgqn.e(t5ic8)fiienldthdisirceacstieoyni.eTldhse:spin-dependentmatrix +β23c√220(c24c−+2ipic3)p(cid:16)E2c+21+3cp22p(cid:17)2E3/2−(cid:113)ic4pc3E2++2pp24E , m˜fi(ηs) = (cid:90) d3r2πc2κ√3/22Iεp (cid:118)(cid:117)(cid:116)Γ(23−−cI2p2Ip)(cid:32)|E8(κηIsp)|(cid:33)−cIp2 aisnudsmeˆd−+ =mˆ+− =0. InthelEaststeptheEfollowingexpEansion c2 ×exp(cid:34)2cI2p(cid:35)exp(cid:2)−ip(ηs)·r−κr(cid:3) (59) −(cid:113)2πiS¨˜0(ηs) ≈ √2π (cid:32)1+ 41Ip(cid:33). (67) ×(cid:32)1− Ip (cid:33)u+(cid:16)1−kˆ ·α(cid:17)v 4(p(ηs)·p˙(ηs))2 4(2Ip)3/4|E(ηs)|3/2 24c2 6c2 f i Wenotethatanarbitraryconfigurationofthequantization = 23−π2cI(cid:113)2p(Γ2I(cid:16)p3)−49−223cIIp2p|(cid:17)E(cid:2)(pη(sη)|)cIp22e+xκp2(cid:104)(cid:3)22cI2p(cid:105)mfi, (60) ”athuxepis”incaaintnidabl”edaonawcdcntoh”m,eip.fielni.s,ahmlesdjt=avtie±ah1aa/rv2oetfaottwrioojn=.inE1dx/ep2pl,eictnhidteleyrn,otstasinoteclduetsbitooantthes c2 s isgivenby wherethefactorm fordifferentspintransitionsis (cid:88) fi |1/2,m(cid:105)(cid:48) = |1/2,m(cid:48)(cid:105)D (R) (68) √ (cid:16) (cid:17) m(cid:48),m m++ = (cid:113)2c(2c+ipE) 1+ β2 (61) where D (R)isthe j =m1(cid:48)/2representationoftherotation 8c4+6c2p2 +p4 m(cid:48),m E E matrix. Since the initial quantization axis is along the laser (cid:16) (cid:17) β2c 168c4−16ic3p +142c2p2 −8icp3 +25p4 magneticfield,anyquantizationaxiscanbealignedwithtwo − 24√2(2c−ip )E(cid:16)2c2+p2(cid:17)E3/2 (cid:113)4c2E+p2 E , angles,seeFig. 2,withtherotationmatrix m−− = √(cid:113)2c(2c−ipE)(cid:16)1−E β2(cid:17) E E (62) Dm(cid:48)m =ee−iiζζ11//22scions((ζζ22//22)) −eei−ζ1i/ζ21/c2ossin(ζ(2ζ/22/2)). (69) 8c4+6c2p2 +p4 (cid:16) E E (cid:17) Therefore the transition matrix element mˆ(cid:48) for arbitrarily β2c 168c4+16ic3p +142c2p2 +8icp3 +25p4 fi − 24√2(2c+ipE)E(cid:16)2c2+p2E(cid:17)E3/2 (cid:113)4c2E+p2E E , rotatedspinorsisgivenmˆb(cid:48)fyi = D∗fjmˆjkDki (70) 7 FIG.2:Anyquantizationaxiscanbealignedwithtwoangles. in terms of the initial one mˆ . For instance, in the case the fi quantizationaxisisalongthelaserelectricfieldthematrixis 1−i −1−i Dm(cid:48)m =12+i 1+2i , (71) 2 2 while in the case the quantization axis lays along the laser propagationdirection,ityields Dfi =√√112 −√1√12, (72) 2 2 andthecalculationofthecorrespondingtransitionamplitudes isstraightforward. Thedifferentialionizationrateaveragedbytheinitialspin polarization and summed up over the final polarizations is definedas FIG.3:ThedifferentialionizationratefortheparametersI /c2=0.25, p andE /E =1/25:(a)relativisticcalculationviaEq.(74);(b)non- dw ω(cid:16) 0 a √ d3p = 2π |mˆ++(ηs)|2+|mˆ+−(ηs)|2+|mˆ−+(ηs)|2 relativistic calculation via Eq. (I.31), ∆(cid:107) ≡ Ea/E0(E0/ω) is the longitudinalmomentumwidth. (cid:17) +|mˆ (η )|2 exp{−2Im[S0(η )]}, (73) −− s s whichwiththehelpofEq. (64)willread dw 23−4cI2p (cid:18)1+ 2pc2E2 − 45cIp2 − 1924pc2E4Ip(cid:19)(2Ip)3(cid:16)1−cIp2(cid:17)ωexp(cid:16)4cI2p(cid:17) = d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 ×(cid:32)1+ 41Ip(cid:33)exp−2(cid:104)2Λ(ε−c2+Ip)−p2E(cid:105)3/2. 12c2  3|E(ηs)|Λ  respecttothenonrelativisticone. Whilethenonrelativisticdis- tributionpeakisat p =0, p =0,intherelativisticcaseitis E k (74) shiftedto p =0, p = I /3c. Aswehaveshownin[64],this E k p momentumshiftisduetotheunder-thebarrierdynamicsand Notethatthereisanadditionalfactoroftwo,thatarisesdue arisesalreadyattheionizationtunnelexitbut,notwithstanding tosummingupoverthetwosaddlepointsperlasercycle. The of the large momentum transfer from the laser field during momentumdistributionationizationintherelativisticregime theelectronexcursionaftertheionization,thecharacteristic isplottedinFig.3. Asitisalreadymentioned,thedistribution momentumshiftofthepeakofthedistributionisdetectable islocatedaroundaparabola,seealso[59–63]. farawayfromtheinteractionzoneatthedetector. Characteristicfeaturesofthemomentumdistributioninthe relativisticregimearethelargeparabolicwingscorresponding tothelargelongitudinalmomentum(alongthelaserpropaga- tiondirection)whichariseduringthefreeelectronmotionin thelaserfield. However,amoreinterestingfeatureofthisdis- Whentheexponentinthedifferentialionizationrateisex- tributionisthesmallshiftofthepeakofthedistributionwith pandedquadraticallyaroundtheparabola p = p , p =δp , E E B B 8 p = I /3c+p2/2c(1+I /3c2)+δp ,therateexpressionreads 10 k p E p k dw 23−4cI2p (cid:18)1+ 2pc2E2 − 45cIp2 − 1924pc2E4Ip(cid:19)exp(cid:16)4cI2p(cid:17)(2Ip)3(cid:16)1−cIp2(cid:17)ω u. 8 (cid:68) = d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 a. 6 (cid:64) 0 4 ×(cid:32)1+ 41Ip(cid:33)exp(cid:40)− 2Ea (cid:32)1− Ip (cid:33) (75) w1 (cid:144) 12c2 3|E(η )| 12c2 2 s   −|E(cid:112)(2ηIsp)|(cid:16)1−δp7722BIcp2(cid:17)2 + (cid:18)1+ 8Icp2 + 2δpc2Ep22k(cid:16)1+ 2141cIp2(cid:17)(cid:19)2. 00.00 0.05 0I.p10c² 0.15 0.20 InEq. (74)anexpansionontheIp/c2parameterhasbeenused FIG.4:ThetotalionizationratevsionizationpotentialforE0/Ea= toclearlyindicatetheIp/c2-scaling. WithoutIp/c2-expansion 1/32:(blue,short-dashed)intherelativisticCoulomb-correctedSFA theexponentialfactorofthedifferentialionizationratereads viaEq.(78),(red,long-dashed)inthe(cid:144)relativisticCoulomb-corrected dd3wp ∝ exp−(1+2√Ξ32Ξ)|E3c(3ηs)| − E(cid:112)(ηIsp) (cid:113)√13+Ξ(√δΞp2−2B1) mReofd.i[fi3e2d].SFAviaEq.(98),and(black,solid)relativisticPPTfrom 1+Ξ2 − E(cid:112)(2ηIsp)(cid:114)83Ξ(cid:16)Ξ2+3(cid:17)δDp22k, (76) afrnedetehveowlvaivnegfautnocmtiiocnsyosfttehme,infuitlifialllisntagtethφe(ice)q(ru,att)iodnescribesthe (cid:113) √ (i∂t−H0)φ(ic)(r,t)=0, (80) whereΞ= 1−Υ/2( Υ2+8−Υ),Υ=1−I /c2,and p withH = H−H = H = cα·pˆ +βc2+V(c)(r). However, 0 int 0 (cid:115) (cid:16) (cid:17) √ 2 in general, as it is pointed out in [55, 56], the SFA can be D ≡ Ξ2+2 4 Ξ2+1− √ +1 (77) developed employing different partitions of the total Hamil- Ξ2+1 tonianwhichwillresultindifferentphysicalapproximations. + p2E(cid:113)4 (cid:0)Ξ2+1(cid:1)3(cid:16)(cid:16)√Ξ2+1+1(cid:17)Ξ2− √Ξ2+1+1(cid:17). TthheesmtaanidnadrdefipcairetintcioynoifntdhiecaCteodulaobmovbe-c,oisrrtehcattedthSeFiAnflbuaesnecdeoonf c2 the laser field on the atomic bound dynamics is completely UsingtheexpressionEq. (76),theintegrationovermomentum neglected. In this section we propose a modified version of spacecanbedoneanalytically. Ityieldsforthetotalionization theSFAemployinganotherpartitionoftheHamiltonianinthe rate: SFAformalism. Themainmotivationistousesuchaparti- w = (cid:16)23−4cI2p (cid:17)(cid:114)3(cid:32)1+ 161Ip(cid:33)exp(cid:32)4Ip(cid:33) teivoonluwtihoenr.eItnhepalartsiecrufilaerl,dwheasusaectohnetrfioblulotiwoinngtoptahretibtioounn:dstate Γ 3− 2Ip π 72c2 c2 c2 H = H˜ +H˜ , (81) 0 int ×(2Ip)47−3cI2p exp(cid:34)−2Ea (cid:32)1− Ip (cid:33)(cid:35). (78) H˜0 = cα·(cid:104)pˆ −kˆ(r·E(η))/c(cid:105)+βc2+V(c)(r) (82) E12−2cI2p 3E0 12c2 H˜int = r·E(η). (83) 0 InFig. 4thetotalionizationrateofEq. (78)iscomparedwith Inthispartitionthetransitionmatrixelementreads theITMresultofRef.[32]. TheCoulomb-correctedrelativistic (cid:90) SFAandtherelativisticPPTyieldsresultsforthetotalioniza- M˜(c) =−i dtd3rψ+(r,t)H˜ φ˜(c)(r,t), (84) fi f int i tionratewhichareclose,thoughtheyarenotidentical. Inthe nextsectionwemodifytheCoulomb-correctedSFAwiththe wheretheboundstatedynamicsisdeterminedbythefollowing aimtoobtainionizationprobabilitiesclosertotherelativistic time-dependentDiracequation: PPTresult. (cid:110) (cid:104) (cid:105) (cid:111) i∂φ˜(c) = cα· pˆ −kˆ(r·E(η))/c +βc2+V(c)(r) φ˜(c). (85) t i i III. MODIFIEDCOULOMB-CORRECTEDRELATIVISTIC Inthisspecificpartitiontheinitialboundstatewavefunction STRONG-FIELDAPPROXIMATION φ˜(c)istheeigenstateoftheinstantaneousenergyoperator i InthestandardSFAintheGo¨ppert-Mayergauge,thetransi- Eˆ =cα(p+A(η))+βc2 (86) tionmatrixelementisgivenbyEq. (2)where [65, 66], with A(η) = −kˆ(r·E(η))/c in the Go¨ppert-Mayer H =r·E(1−kˆ ·α) (79) gauge, seeEq. (9). Notethatinthenonrelativisticlimitthe int 9 standardSFAinthelengthgaugecorrespondstothepartition andthetransitionstoexcitedstatesaresuppressedbyafactor inwhichtheinitialboundstateistheeigenstateoftheenergy ofE /E . 0 a operator[55]. Thispointprovidesanotherargumentinfavor With the wave functions of the bound state Eq. (90), the oftheappliedpartitionintherelativisticcase. differentialandthetotalionizationratescanbecalculatedin ThetermincorporatingthelaserelectricfieldinEq. (85) thesamewayasintheprevioussectionbefore. Thestructure describesthespindynamicsoftheboundelectronbeforeion- oftheionizationmatrixelementremainsthesame izationandhastobeconsideredinthefurthercalculation. We athreedcyonnacmerinceadlZbeyetmheanspsipnlidttyinngamoficthseinbothuendbostuantedesntaetregiaensddbuye M(c) =−im˜ (η )exp−(cid:104)2Λ(ε−c2+Ip)−p2E(cid:105)3/2 (92) tothespininteractionwiththelasermagneticfield. Therefore, fi fi s  3|E(η0)|Λ  in solving Eq. (85) we will restrict the bound-bound transi- tions only to the transitions between different spin-states at wherem˜ (η )isgivenbyEq.(59),inwhichthefollowingre- fi s fixedquantumnumbers{n, j,mj}. Thedipoleapproximation placementshouldbedoneinordertoaccountforthedifference for the laser field will be adopted for the description of the in the spinor operator of the interaction Hamiltonian in the boundstateevolution: E(η) ≈ E(t), sincethetypicallength- modifiedSFA: scaleforthebounddynamicsismuchsmallerthanthelaser wave length: rb/λ ∼ ω/κc ∼ γ(E0/Ea)(κ/c) (cid:28) 1. When (cid:16) (cid:17) (cid:34) A(η )·α(1+kˆ ·α)(cid:35) theinitialspin-polarizationisalongthelasermagneticfield u+f 1−kˆ ·α vi →u+f 1+ s 2cΛ v˜i, (93) |φ(c)(cid:105)=|φ(c) (cid:105),thennospintransitionsoccurbecausetheinter- B,± actiontermVˆint(t)≡−(α·kˆ)(r·E(t))doesnotcausespin-flip wherev˜ =v exp[±iA˜(η)(1−2I /3c2)]isthespinorpartofthe (cid:104)φ(c) |Vˆ (t)|φ(c) (cid:105)=0.Accordingly,inthiscasewearelooking i i p B,∓ int B,± statesgiveninEq.(90). ThespinoroperatorinbracketsinEq. forthesolutionofEq.(85)intheform: (93)comesfromthespinorpartoftheVolkovwavefunction. φ˜(c) (r,t)=φ(c) (r,t)eiS(t), (87) NotethatthephaseintheexponentialinEq.(90)variesslowly B,± B,± compared with the contracted action S˜. Therefore, it does where φ(c) (r,t) = φ(c) (r)e−iε±t is the ground state before not modify the saddle point integration, but alters the pre- B,± B,± exponentialterm. switchingonthelaserfield, i.e., aneigenstateoftheatomic unperturbedHamiltonian √ (cid:104)cα·pˆ +βc2+V(c)(r)(cid:105)φ(Bc,)±(r)=ε±φ(Bc,)±(r). (88) m˜++ = (cid:113)28cce4−+i2pcE6(c22cp2++ippE4) (94) E E Thespinquantizationaxisforφ(c) (r,t)statesisalongthelaser (cid:16) (cid:17) magneticfielddirection. TakingB,±intoaccountthat β2e−i2pcE(2c+ipE) 8c5−40ic4pE +14c3p2E (cid:90) η A˜(η)(cid:32) 2I (cid:33) − 12√2(cid:16)8c4+6c2p2 +p4(cid:17)3/2 , dt(cid:48)(cid:104)φ(c) |Vˆ (t(cid:48))|φ(c) (cid:105)= 1− p , (89) E E whereA˜(−η∞)≡−(cid:82)B−η,∞± Ei(nηt(cid:48))dη(cid:48)B,,t±hewav2ecfunctio3nc2ofthebound −β2e−i2pcE(122c√+2ip(cid:16)8Ec)4(cid:16)−+268cic22pp23E++p34c(cid:17)p3/4E2−4ip5E(cid:17), statewillread E E (cid:34) (cid:32) (cid:33)(cid:35) A˜(η) 2I φ˜(c) (t) = φ(c) (t)exp i 1− p φ˜(BBc,,)+−(t) = φ(BBc,,)+−(t)exp(cid:34)−i2A˜c2(cη)(cid:32)1−3c322cIp2(cid:33)(cid:35) (90) m˜−− = (cid:113)√82cc4e+i2pcE6(c22cp−2Ei+pEp)4E (95) (cid:16) (cid:17) TishoefZoeredmeranofspA˜l/itctin∼gEte0rτmc/icn∼theκ/pcha(cid:28)seo1f.tIhteiswasmveafllunwchtiiocnh −β2ei2pcE 8√c5+40ic4pE(cid:16)+14c3p2E(cid:17)+(cid:113)28ic2p3E +3cp4E +4ip5E arisesfromthefactthattheperturbationtermVˆint(t)couples 12 2(2c+ipE) 2c2+p2E 8c4+6c2p2E +p4E thelarge/smallspinorpartoftheinitialstatebispinorwiththe small/largespinorpartsofthefinalstatebispinor. andm˜+− =m˜−+ =0. Withthisthedifferentialionizationrate Theexplicitconditionjustifyingtheneglectoftransitionsto inthemodifiedSFAyields: excited states can be given as follows. The transition prob- aωbninl(cid:48)ity∼bIeptw(neeanndthne(cid:48)satraetetshenp→rincnip(cid:48)awl qituhanetnuemrgynudmiffbeerresn)cies dw = 23−4cI2p (cid:18)1+ 2pc2E2 − 1327cIp2 − 4124pc2E4Ip(cid:19)(2Ip)3(cid:16)1−cIp2(cid:17)ωexp(cid:16)4cI2p(cid:17) tPrannn(cid:48)si∼tioEn0irnb/tωhenns(cid:48)ta∼teEn0irsb/PIsps,(cid:48)w∼hEil0erbthτeKp(rsoabnadbisl(cid:48)itayreofthaessppiinn- d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 quantumnumbers).PPTnhne(cid:48)r∼efoIre1τ, ∼ EE0, (91) × (cid:32)1+ 1421cIp2(cid:33)exp−2(cid:16)2Λ(ε3−|Ec(2η+s)|IΛp)−p2E(cid:17)3/2. (96) ss(cid:48) p K a 10 andthetotalionizationrateis intotherelativisticregime. TheappliedCoulomb-corrected strong-field approximation incorporates the eikonal-Volkov w = Γ(cid:16)233−−4cI22pIp(cid:17)(cid:114)π3(cid:32)1− 772Icp2(cid:33)exp(cid:32)4cI2p(cid:33) (97) wdyanvaemfuicnsc.tiTonhefolarttthereidsedsecrriivpetidoninotfhteheWeKleBctraopnprcooxnitminautuiomn c2 takingintoaccounttheCoulombfieldoftheatomiccoreper- ×(2Ip)47−3cI2p exp(cid:34)−2Ea (cid:32)1− Ip (cid:33)(cid:35). ttuerrmbast,ivtehleydinisttuhrebpahnacseeoofftthheeeWleKctBrownaevneefrugnycbtiyonth.eInCpohuylsoimcabl E12−2cI2p 3E0 12c2 fieldisassumedtobesmallerwithrespecttotheelectronen- 0 ergyinthelaserfield. Theeikonal-Volkovwavefunctionis InFig.4,thetotalionizationprobabilitycalculatedviathe applicablewhenthelaserfieldissmallerthantheatomicfield modifiedCoulomb-correctedrelativisticSFAiscomparedwith E (cid:28) E andI (cid:46)c2. 0 a p theresultofthestandardSFA,aswellaswiththatoftherela- Wehavederivedananalyticalexpressionfortheionization tivisticPPT.Theconclusioncanbedrawnthatbothrelativistic amplitudeinalinearlypolarizedlaserfieldwithintheCoulomb- Coulomb-corrected SFA give slightly different results com- correctedrelativisticSFAwhenadditionallysmallnessofthe pared to the PPT for large Ip. The modified SFA is closer parametersofIp/c2 (cid:28)andγ(cid:28)1isused.Asimpleexpression tothePPTresultthanthestandardSFA.Thetotalionization fortheamplitudeisobtainedwhenusingtheGo¨ppert-Mayer probabilities in the relativistic Coulomb-corrected standard gauge. Moreover,inthisgaugeaCoulombcorrectionfactor SFAislargerthantherelativisticPPTbyafactorsmallerthan (ratiooftheCoulombcorrectedamplitudetothestandardSFA 1+3Ip/c2. one)coincideswiththatderivedwithinthePPTtheory. The ThestandardSFAyieldslargerionizationprobabilitiesthan differentialandtotalionizationratesarecalculatedanalytically. themodifiedSFAwhichcanbeexplainedbyasimpletunneling Thecalculatedtotalionizationrateisslightlylargerthanthe picture. Inthefirstcasethemagneticfieldactsontheelectron PPT rate at large ionization potentials. To improve the pre- onlywhenitentersthebarrier.Inthiscaseduringthetunneling dictionsoftheCoulomb-correctedrelativisticSFA,wehave theelectronkineticenergywillchangeontheamountofthe proposedamodifiedSFAapproachwhichisbasedonanother interactionenergywiththemagneticfieldµB0 =−sE0/2c(s= partitionofthetotalHamiltonian. InthisapproachtheSFA ±1forspinalongthemagneticfieldoropposite),givingriseto matrixelementcontainstheeigenstateoftheenergyoperator akineticenergysplittingfordifferentspinorientationsofthe inthelaserfieldasthewavefunctionoftheinitialboundstate. electronand,consequently,todifferenttunnelingprobabilities. ThemodifiedSFAtakesintoaccountthedynamicalZeeman Whereas,inthesecondcasethemagneticfieldisalsoacting splittingoftheboundstateenergyduetothespininteraction beforetunnelingandnokineticenergysplittingoccurs. The withthelasermagneticfield(whentheelectroninitialpolar- ratiosoftheKeldysh-exponentforthesetwoscenarioscanthen izationisalongthelasermagneticfield)andtheprecessionof beexpandedinthespinenergy: theelectronspinintheboundstate(whentheelectroninitial (cid:20) (cid:21) (cid:20) (cid:21) polarizationisalongthelaserpropagationdirection). ΓΓmstaonddifiaerdd = exp −2(2(Ip+3EE020/2ecx))p3/2(cid:20)−+2(2e(xIpp))3−/2(cid:21)2(2(Ip−3EE00/2c))3/2 iicoanOlizcuaartlircoeunsluarltatistoensshoionfwqthutehaanrtetilttahatetiivvSiesFltAyicctreoecrghrienmcitqeudweiffhaeilcrlehonwttaiskatlehsaeniandntotaolatyactl-- 3E0 counttheimpactoftheCoulombfieldoftheatomiccoreas ∼ 1+I /c2 (98) p well as the electron spin dynamics in the bound state. This methodcanbeviewedasanalternativetothePPT.Inthefol- To decide which SFA partition is best suited to model the lowingpaperofthesequeltheCoulomb-correctedrelativistic ionizationprocess,acomparisonwithnumericalsimulations SFAwillbeusedtoinvestigatespin-resolvedionizationprob- orexperimentaldataisnecessary. (cid:82) abilities. Whileforthetotalionizationratethepredictionof Further,wenotethattheCoulomb-correctionterm dηα· thestandardSFAisclosetothatofthemodifiedSFA,forspin ∇V(c)/cthatisneglectedinbothstrongfiel√dapproximations effectstheirpredictionsarequitedifferent. Thenextpaperof givesacorrectionfactorofonly1+(I /c2) E /E ,whichis p 0 a thesequelwillbedevotedtothisissue. oftheorderofafewpercentsforthemostextremeparameters (E /E =1/16,Z =90). 0 a IV. CONCLUSION Acknowledgments We have generalized the Coulomb-corrected SFA for the WeappreciatevaluablediscussionswithC.H.KeitelandC. ionization of hydrogen-like systems in a strong laser field Mu¨ller. [1] C.I.Moore,A.Ting,S.J.McNaught,J.Qiu,H.R.Burris,and [2] E.A.Chowdhury,C.P.J.Barty,andB.C.Walker,Phys.Rev.A P.Sprangle,Phys.Rev.Lett.82,1688(1999).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.