Above-thresholdionizationwithhighly-chargedionsinsuper-stronglaserfields: II.RelativisticCoulomb-correctedstrongfieldapproximation Michael Klaiber,∗ Enderalp Yakaboylu, and Karen Z. Hatsagortsyan Max-Planck-Institut fu¨r Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany (Dated:January25,2013) WedeveloparelativisticCoulomb-correctedstrongfieldapproximation(SFA)fortheinvestigationofspin effectsatabove-thresholdionizationinrelativisticallystronglaserfieldswithhighlychargedhydrogen-like ions. TheCoulomb-correctedSFAisbasedontherelativisticeikonal-Volkovwavefunctiondescribingthe ionizedelectronlaser-drivencontinuumdynamicsdisturbedbytheCoulombfieldoftheioniccore.TheSFA indifferentpartitionsofthetotalHamiltonianisconsidered.Theformalismisappliedfordirectionizationof ahydrogen-likesysteminastronglinearlypolarizedlaserfield.Thedifferentialandtotalionizationratesare 3 calculatedanalytically.TherelativisticanalogueofthePerelomov-Popov-Terent’evionizationrateisretrieved 1 withintheSFAtechnique.ThephysicalrelevanceoftheSFAindifferentpartitionsisdiscussed. 0 2 PACSnumbers:32.80.Rm,42.65.-k n a J I. INTRODUCTION exactly,whiletheCoulombfieldviatheeikonalapproxima- 4 tion. The nonrelativistic Coulomb-corrected SFA based on 2 theeikonal-Volkovwavefunctionhasbeenappliedrecently SincethepioneeringexperimentbyMooreetal. [1]laser ] fieldsofrelativisticintensities(exceeding1018 W/cm2 atan formolecularhigh-orderharmonicgeneration[48–50]. The h infraredwavelength)havebeenappliedfortheinvestigation eikonalapproximationhasbeengeneralizedtoincludequan- p tumrecoileffects[51,52]. TherelativisticSFAbasedonthe of strong field ionization dynamics of highly charged ions m- [2–8], see also [9]. A lot of effort has been devoted to the generalizedeikonalwavefunctionhasbeenproposedin[53]. However,thefinalresultshavebeenobtainedonlyintheBorn numericalinvestigationofthedynamicsofhighly-chargedions o approximation. inasuper-strongfields[10–20]. t a Acommonanalyticalapproachforstrongfieldatomicpro- InthispaperwedeveloptheCoulombcorrectedSFAforthe . s cessesisthestrongfieldapproximation(SFA)[21–23]which relativisticregimebasedontheDiracequation,extendingthe c hasbeenappliedforthetreatmentofrelativisticeffects[24,25]. correspondingnonrelativistictheory,seepaperI(thefirstpaper i s ThemaindeficiencyofthestandardSFAisthattheinfluence ofthissequel),intotherelativisticdomain. Thiswillallowus y oftheCoulombfieldoftheatomiccoreisneglectedforthe tocalculatespin-resolvedionizationprobabilitiestakinginto h electrondynamicsinthecontinuumandthelatterisdescribed accountaccuratelytheCoulombfieldeffectsoftheioniccore. p [ bytheVolkovwavefunction[26]. Whilethisiswell-justified IntheCoulombcorrectedSFA,theeikonal-Volkovwavefunc- fortheionizationofanegativeion,foratomsand,moreover, tionisemployedforthedescriptionofthefinalstateinstead 1 for highly-charged ions it is not valid and the standard SFA oftheVolkovone. TheinfluenceoftheCoulombpotentialof v canprovideonlyqualitativelycorrectresults. Amodification theatomiccoreontheionizedelectroncontinuumdynamics 4 6 ofthetheoryisrequiredtotakeintoaccounttheinfluenceof is taken into account via the eikonal approximation. Direct 7 theatomiccoreonthefreeelectronmotion. ionizationofahydrogen-likesysteminastronglinearlypolar- 5 The Coulomb field effects during ionization have been izedlaserfieldisconsidered. Twoversionsoftherelativistic . treatedinthePerelomov-Popov-Terent’ev(PPT)theorybased Coulomb corrected SFA are proposed that are based on the 1 0 ontheimaginarytimemethod [27,28]. InthePPTtheorythe usage of different partitions of the total Hamiltonian in the 3 barrierformedbythelaserandatomicfieldisassumedtobe SFAformalism. Thephysicalrelevanceofthetwoversionsis 1 quasi-staticandthetunnelingthroughitiscalculatedusingthe discussed. : WKB-approximation. TherelativisticPPT-theory[29–32]has v Theplanofthepaperisthefollowing: InSec.IItherela- i providedthetotaltunnelingrate. However,spineffectsarenot tivisticCoulomb-correctedSFAisdeveloped. Thedifferential X investigatedthoroughly[33]. andtotalionizationratesforhydrogen-likesystemsarederived. r ThestandardSFAtechniquehasbeenmodifiedtoinclude a ThemodifiedSFAusingaspecificpartitionoftheHamiltonian the Coulomb field effects of the atomic core. A heuristic is considered in Sec. III and is used for the calculation of Coulomb-Volkovansatzhasbeenusedforthispurpose, see ionizationrates. [34–45]. Inamorerigorousway,theSFAismodifiedbyre- placingtheVolkovwave-functionintheSFAtransitionmatrix elementbythe,so-called,eikonal-Volkovone[46,47].Thelat- terdescribestheelectroncontinuumdynamicsinthelaserand theCoulombfield. Herethelaserfieldistakenintoaccount II. RELATIVISTICCOULOMB-CORRECTEDSFA Weconsidertheinteractionofahighly-chargeionwitha ∗Correspondingauthor:[email protected] stronglaserfieldintherelativisticregimewhichisdescribed 2 bythetime-dependentDiracequation: The hydrogen-like system interacts with a strong linearly polarizedlaserfield (cid:32) (cid:33) 1 V(c) iγµ∂ + γµA −γ0 −c ψ=0, (1) µ c µ c E(η)=−E cos(ωη), (8) 0 whereγµ aretheDiracmatrices,V(c) =−κ/ristheCoulomb potential of the atomic core, κ the typical electron momen- tumintheboun√dstate,determinedbytheboundstateenergy whereη=kµx /ω,andkµ =(ω/c,k)isthelaser4-wave-vector. µ via c2 − Ip = c4−c2κ2, Ip the ionization potential, Aµ is [thecoordinateandthemomentumprojectionsaredefinedas the4-vectorpotentialofthelaserfield(atomicunitsareused r ≡r·eˆ,r ≡r·kˆ, p ≡p·eˆ, p ≡p·kˆ,and p ≡p·(kˆ×eˆ), E k E k B throughout). The transition amplitude for the laser induced withtheunitvectorskˆ andeˆ inthelaserpropagationandthe ionizationprocessfromtheinitialboundstateφ(c)intoanexact polarizationdirection, respectively]. Thevector-potentialis i continuum state ψ with an asymptotic momentum p can be chosenintheGo¨ppert-Mayergauge: written[24] (cid:90) i M(c) =− d4xψ(r,t)A/φ(c)(r,t), (2) Aµ ≡(ϕ,cA)=(−r·E,−kˆ(r·E)). (9) fi c i Generally, the SFA in different gauges do not coincide and correspondtodifferentphysicalapproximations[55–57]. In withA/ ≡γµA . Equation(2)isstillexactwiththeexactwave µ paper I we have seen that in the nonrelativistic regime the functionψ(r,t)describingthedynamicsoftheelectroninthe Coulomb-corrected SFA in the length gauge leads, first, to ionic and the laser field. Here, we have used the standard rathersimpleexpressionsfortheCoulomb-correctedionization partitionofthetotalHamiltonian: amplitude,seeEq. (I.28)[referstoEq. (28)ofpaperI],which H = H +H , (3) isduetothecancellationofther·EinteractionHamiltonian 0 int inthematrixelementbytheCoulomb-correctionfactor;and, H = cα·pˆ +βc2+V(c)(r) (4) 0 second, to results coinciding with the PPT-ionization rates. Hint = βA/, (5) Asthelatterprovidesagoodapproximationtoexperimental observations, in the relativistic regime we choose a gauge whereα=γ0γ,β=γ0aretheDiracmatrices,andcthespeed whichgeneralizesthelengthgaugeintotherelativisticdomain oflight. Weconsiderahydrogen-likehighlychargedionin [58],thatistheGo¨ppert-MayergaugedefinedbyEq. (9). the relativistic parameter regime, i.e., the wave function of theinitialboundstateφ(c)fulfillstheDiracequationwiththe In the conventional SFA the exact continuum state is ap- i HamiltonianH andisgivenby[54] proximatedbytheVolkov-wavefunctionwhichisidenticalto 0 thefirstorderWKB-approximationofthecontinuumelectron φ(ic)(r,t) = κ√3/π2 (cid:118)(cid:117)(cid:117)(cid:116)Γ(cid:16)23−−cI2p2Ip(cid:17)(2κr)−cIp2 imbnyatthtihoeenlarisseeparlcafihceieelmdve.edAntinsoytfhstetehmreealeatxitciavciitmstwipcraoCvveoeumfluoenmncttbio-ocfnotrhψrie(srca,tept)dprwSoFixtAhi- c2 (cid:104) (cid:105) therelativisticeikonal-Volkovwavefunction. Similartothe ×exp −κr−i(c2−Ip)t vi, (6) non-relativisticcase,seepaperI,firstweapplytheWKBap- proximationtothesolutionoftheDiracequation(1),thenthe wherethebispinor resultingequationswillbesolvedviaaperturbativeexpansion (cid:32) (cid:33) intheCoulombpotentialV(c). χ v = i (7) i iIp σ·rχ Due to the gauge covariance of the Dirac equation, we cκ r i switch to the velocity gauge with its vector potential A˜µ = describesthespin-upand-downstates(i=±),withthetwo- A˜µ(η) = (0,cA˜), A˜ = −(cid:82)η dη(cid:48)E(η(cid:48)) and after solving the −∞ componentspinorsχ+ = (1,0)andχ− = (0,1),respectively, wave-equation go back to the Go¨ppert-Mayer gauge. The andthePauli-matricesσ. quadraticDiracequationinvelocitygaugebecomes (cid:32) (cid:33)(cid:32) (cid:33) 1 V(c) 1 V(c) i(cid:126)γµ∂ + γµA˜ −γ0 +c i(cid:126)γµ∂ + γµA˜ −γ0 −c ψ=0, (10) µ c µ c µ c µ c −(cid:126)2∂2+ ic(cid:126)(cid:16)k/A/˜(cid:48)+2A˜·∂+α·∇V(c)−2V(c)∂0(cid:17)+ Ac˜22 + Vc(c2)2 −c2ψ=0. (11) whereA˜(cid:48) ≡ 1 dA˜,andwehaveinserted(cid:126)toindicatetheWKB-expansion. Letusassumethatthesolutionhastheformψ=eiS/(cid:126), ωdη 3 thenthecorrespondingequationforS is (cid:32) A˜ V(c)(cid:33)(cid:32) A˜µ V(c)(cid:33) (cid:126)(cid:32) k/A/˜(cid:48) α·∇V(c)(cid:33) ∂ S − µ +g ∂µS − +gµ0 + ∂2S − − =c2. µ c µ0 c c c i c c (cid:126) TheWKBexpansionS =S + S +...yieldsfollowingequationsupthefirstorderin(cid:126)/i 0 i 1 (cid:32)(cid:126)(cid:33)0 2A˜ ∂µS A˜2 2V(c)∂ S V(c)2 : ∂ S ∂µS − µ 0 + −c2 =− 0 0 − , (12) i µ 0 0 c c2 c c2 (cid:32)(cid:126)(cid:33)1 2A˜ ∂µS k/A/˜(cid:48) 2V(c)∂ S α·∇V(c) : 2∂ S ∂µS − µ 1 =−∂2S + − 0 1 + . (13) i µ 0 1 c 0 c c c (cid:112) Theseequationscanbesolvedperturbativelywithrespectto withε = c c2+p2 andtheconstantofmotionΛ ≡ k· p/ω thepotentialtermV(c). Ifwedefine Further, Eqs.(17)and(19)canbesolvedviathemethodof characteristicsas S = S(0)+S(1), (14) 0 0 0 dS(1) dxµ V(c) S1 = S1(0)+S1(1), (15) dσ0 = ∂µS0(1)dσ =− c π0, (24) thefollowingequationscanbederived dS(1) dxµ 1 = ∂ S(1) (25) dσ µ 1 dσ ∂µS0(0)∂µS0(0)− 2A˜µ∂cµS0(0) + Ac˜22 −c2 =0, (16) = −α·∇V(c) + ∂2S0(1) +∂ S(1)∂µS(0)+ V(c)∂tS1(0), V(c) 2c 2 µ 0 1 c2 ∂ S(1)πµ =− π0, (17) µ 0 c wherethetrajectoryisgivenby 2∂ S(0)πµ =∂2S(0)−k/A/˜(cid:48), (18) µ 1 0 dxµ α·(∇V(c)) =πµ. (26) ∂ S(1)πµ =− dσ µ 1 2c Thisleadstodσ=dη/Λ,withtherelativistickineticmomen- ∂2S(1) V(c)∂S(0) + 0 +∂ S(1)∂µS(0)+ t 1 , (19) tuminthelaserfield 2 µ 0 1 c2 π(η) ≡ p(η)=∇S(0)+A˜(η) A˜µ 0 whereπµ = −∂µS0(0) + c istherelativisticmomentum. Eq. = p+A˜(η)+kˆ(p+A˜(η)/2)·A˜(η), (27) (16)givestheVolkov-action,i.e., cΛ ω (cid:90) ∞(cid:32) A˜2(cid:33) andthecorrespondingrelativistickineticenergy S(0) =−p·x− A˜·p+ dη(cid:48). (20) 0 c(k·p) 2c η (p+A˜(η)/2)·A˜(η) cπ0(η)≡ε(η)=−∂S(0) =ε+ . (28) Ontheotherhand,thesolutionofEq. (18)is t 0 Λ k/A/˜ ThenthesolutionsofEqs. (24)and(25)read S(0) =− . (21) 1 2c(k·p) S(1)(r,η) = (cid:90) ∞dη(cid:48)ε(η(cid:48))V(c)(cid:0)r(η(cid:48))(cid:1), (29) HereweshouldnotethatS(0)andS(0)generatethefullVolkov 0 η c2Λ solution. Thecorrespondin0gequati1onsintheGo¨ppert-Mayer (cid:90) ∞ dη(cid:48) (cid:34)α·∇V(c)(r(η(cid:48))) S(1)(r,η) = (30) gaugecanbefoundviaagaugetransformationwithangener- 1 Λ 2c atingfunctionχ=A˜(η)·r. Afteracoordinatetransformation η from(t,r)to(η,r)theybecome − V(c)(r(ηc(cid:48)))∂0S1(0) −∂µS0(1)∂µS1(0)− ∂2S20(1) (cid:18) ε (cid:19) S(0)(r,η) = p+A˜(η)− kˆ ·r (22) 0 c withtherelativistictrajectoryoftheelectroninthelaserfield +(cid:90) ∞η(cid:48)(cid:32)ε+ (p+A˜(η(cid:48)Λ)/2)·A˜(η(cid:48))(cid:33), r(η(cid:48))=r+(cid:82)ηη(cid:48)dη(cid:48)(cid:48)p(η(cid:48)(cid:48))/Λ,startingattheionizationphaseη η withcoordinater. (1+kˆ ·α)(α·A˜) We can evaluate the explicit parameters for the applied S1(0)(η) = 2cΛ , (23) eikonalapproximationestimatingtheimposedconditionsfor 4 the expansion of Eqs. (14) and (15): S(1) (cid:28) S(0), and Thus,therelativisticeikonal-Volkovwavefunctionreads 0 0 S(0) (cid:28) S(1). For this purpose we use order of magnitude 1 0 ψ (r,t) estimations: f S0(0) ∼ Ipτc ∼ EEa, (31) = 1+ (1+kˆ ·α)α·A˜(η)+2c(cid:82)Λη∞dη(cid:48)α·∇V(c)(r(η(cid:48))) 0 (cid:114) cu S0(1) ∼ log EEa∼1 (32) ×(cid:112)(2πf)3εexp[iS0(0)(r,η)+iS0(1)(r,η)], (42) 0 (cid:114) S(0) ∼ A˜ ∼ E0τc ∼ Ip (33) with the bispinor uf for the spin-up and -down final states 1 cΛ c c2 (f =±) (cid:90) (cid:114) (cid:114) S1(1) ∼ dtcrr˙EE((tt))2 ∼ cr1Ec ∼ cIp2 EE0a. (34) uf = (cid:112)(1+√(σε·p/)cχ2f)/2χf , (43) 2(c2+ε) Here, the first two equations were already derived in paper I,seeEq. (I.22), Ea ≡ (2Ip)3/2. Further,takingintoaccount where χ+ = (1,0) and χ− = (0,1). The last term in the pre- thetypicaltimeduringtunnelingτc ∼ γ/ω = κ/E0,withthe exponential[∝∇V(c)]describesthespin-orbitcouplingduring Keldyshparameterγ = ωκ/E0 [21], thevalueofthet(cid:112)ypical ionization(under-the-barriermotion). Viaa p/c-expansionof velocityoftheelectronduringtunnelingr˙Ec ∼κ[κ≈ 2Ip], theDiracequationintheatomicandthelaserfielditcanbe the interaction lengt√h rEc ∼ r˙Ecδτc, the uncertainty of the shownthatthespin-orbitcoupling,givenintheHamiltonian initialtimeδτc ∼1/ κE0 [fromthesaddle-pointintegration bytheterm δτ2 ∼ 1/S¨˜(t )], ε(η) ∼ c2, Λ ∼ 1 [the electron is at rest at c s c (cid:104) (cid:105) the tunnel exit], and A˜ ∼ E τ , we come to the following σ· p(η)×∇V(c)(r(η)) 0 c H = , (44) conditionsfortheapplicabilityoftheeikonalapproximation: SO 4c2 (cid:114) E I canbeevaluatedalongthemostprobabletrajectoryasfollows p (cid:28)1 and (cid:28)1. (35) Ea c2 p ∂V(c) p ∂V(c) (cid:32)I (cid:33)3/2 H τ ∼ k τ , E τ ∼ p , (45) TheactionfunctionS(1)canbeapproximatedbythefirstterm SO c c2 ∂rE c c2 ∂rk c c2 1 inEq. (30): wherethetypicalvaluesfor p ∼ κ, p ∼ κ2/c, r ∼ r κ/c E k k Ec (cid:90) ∞ α·∇V(c)(r(η(cid:48))) havebeenused. Itisofhigherordersmallnessthantheterms S(1)(r,η)= dη(cid:48) . (36) keptintheeikonalwavefunctionandisneglectedinthefurther 1 2cΛ η calculation. Finally,theionizationamplitudeintheCoulomb-corrected Infact,theorderofmagnitudeofthetermsinr.h.s. ofEq.(30) SFAwillhavethefollowingformintherelativisticregime: are T ∼ (cid:90) dηV(c) ∼ (cid:114)E0 (cid:114)Ip, (37) M(fci) = −i(cid:90) ∞dη(cid:104)p(η)r,m|Hintexp[−iS0(1)(r,η))]|0r,i(cid:105) 1 cr E c2 −∞ Ec a ×exp[−iS˜(η)]. (46) E (cid:90) E (cid:32)I (cid:33)3/2 T ∼ 0 dηV(c) ∼ 0 p , (38) 2 c3 Ea c2 withthespatialpartsoftheinitial|0r,i(cid:105)andthefinal|p(η)r, f(cid:105) (cid:90) spinorsandthecontractedaction E τ E I T ∼ 0 dηV(c) c ∼ 0 p, (39) 3 c2 rEc Eac2 (cid:90) ∞ (cid:40) [p+A˜(η(cid:48))/2]·A˜(η(cid:48))(cid:41) S˜(η)= dη(cid:48) ε−c2+I + . (47) p Λ andT isvanishingbecauseinthetunnelingregion∆V(c) =0. η 4 Fromthelatter,weestimatetheratios: In the adiabatic regime (ω (cid:28) I ,U , with the pondero- p p (cid:114) motive potential U = E2/4ω2) the time integration in the T I E p 0 2 ∼ p (cid:28)1, (40) amplitudeofEq.(46)iscalculatedwithSPM.Asinthenon- T1 c2 Ea relativisticcase,herealsothedisturbanceofthesaddle-point (cid:114) (cid:114) T I E conditionsduetotheCoulombfieldisneglected. Thisisinac- 3 ∼ p (cid:28)1, (41) cordancewithourapproachtotakeintoaccounttheCoulomb T c2 E 1 a fieldperturbativelyinthephaseoftheWKBwavefunction: therefore, only the first integrand term may be maintained S(1)isalreadyproportionaltotheCoulombfieldV(c)(r),there- 0 in Eq. (30). Further, one can see from Eqs. (33) and (34) fore, in the trajectory r(η) it should be neglected. Mathe- that S(0) (cid:28) 1 and S(1) (cid:28) 1, which allows us to expand the maticallythisisjustifiedasonecanseefromtheestimation 1 1 √ correspondingexponents. ∂ S(1) ∼ I E /E [similartoestimationsinEqs. (31)-(34)]. η 0 p 0 a 5 Itshowsthat∂ S(1) isnegligiblysmallcomparedto I , and, approximatedby: η p consequently, the saddle-point condition ∂ηS˜(ηs) = 0 is not (cid:90) η0 iκ disturbed. Thelatterleadstothefollowingtwosaddlepoints −iS(1)(r,η )= dη(cid:48) s Λc2 percycle: ηs ε(η )+∂ ε(η )(η(cid:48)−η )+ ∂2η,ηε(ηs)(η(cid:48)−η )2 (cid:115) × s(cid:12) η s s 2 (cid:12) s ωη1 = arcsin−Ep0/Eω +i 2Λ(ε−(Ec02/+ωI)2p)−p2E (48) −(cid:90) η(cid:12)(cid:12)0xd+η(cid:48)piEκΛ(ηs)(η(cid:48)−ηs)− E2(rΛηks()η(η(cid:48))(cid:48)2−ηs)2(cid:12)(cid:12) ,(51) ωη2 = π−arcsin−Ep/Eω −i(cid:115)2Λ(ε−(Ec2/+ωI)2p)−p2E. where ηs 2 (cid:12)(cid:12)(cid:12)x+ pEΛ(ηs)(η(cid:48)−ηs)− E2(Ληs)(η(cid:48)−ηs)2(cid:12)(cid:12)(cid:12)3 0 0 (cid:112) (cid:112) i 2I r 2I iE(η ) 2I r (η) = p E − p(η−η )+ 0 p(η−η )2 k 3c 3c s 2c s The amplitude is now evaluated at these phases. First, we considertheactionS˜(ηs)intheexponent: −E(6ηc0)2(η−ηs)3, (52) (cid:113) (cid:113) (cid:16) (cid:17) (cid:104)2Λ(ε−c2+I )−p2(cid:105)3/2 pE(ηs) = i 2Λ(ε−c2+Ip)−p2E ≈i 2Ip 1−5Ip/36c2 . Im{S˜(η )}= p E (49) (53) s 3|E(η )|Λ 0 ε(η ) = c2−I (54) s p with|E(η )|= E (cid:112)1−(p /(E /ω))2. Sincetherealpartgives ∂ηε(ηs) = −pE(ηs)E(η0)/Λ (55) 0 0 E 0 ∂2 ε(η ) = E(η )2/Λ (56) anunimportantphaseintheresultingamplitude,onlytheimag- η,η s 0 inarypartisgiven. Thisfunctionintheexponentdominates Otherparametersareωη =arcsin(cid:2)−p /E /ω(cid:3),κ≈ (cid:112)2I (1− 0 E 0 p themomentumdistributionanddeterminesthemaximumof I /4c2), Λ ≈ 1 − I /3c2, r (η) ≈ 0, E(η ) ≈ E(η ). To themomentumdistributionwhichislocatedataparabolawith p p B s 0 have compact expressions, expansions on the small param- p = I /3c+p2/2c(1+I /3c2), p =0. Inthefollowing,we, k p E p B eterI /c2 havebeenusedabove[I /c2 ≈ 0.25forhydrogen- therefore, evaluate the less important pre-exponential factor p p like uranium]. The starting coordinate of the trajectory onlyatthisparabolaandneglectdeviationsfromit. Inevalu- r is found from the saddle-point condition of the integral atingS0(1) atthesaddlepointη=ηs,notethattheintegration (cid:82) d3rexp[−ip(ηs)·r−κr], that is rs/rs = p(ηs)/(iκ). With inS0(1) startsatthesaddlepointηs,whentheelectronenters theseparameterstheintegralinEq.(51)canbecalculated: thebarrierduetotheeffectivepotential,andgoestoinfinity (cid:104) (cid:105) when the electron is far away from the core. However, the Qr ≡ exp −iS(1)(r,ηs) upperintegrationlimitcouldbesetatthemomentη0,when (cid:34)2I (cid:35)1− Ip the electron leaves the barrier since further integration over = exp p 6c2 thecontinuumleadseventuallyonlytoanunimportantphase c2 λ1−cIp2 othfethbeararmieprliistusdheo.rTthceomtimpaerewdhwicihththteheelleacsterronpesrpieonddasnudndtheer = exp(cid:34)2cI2p(cid:35)(cid:32)1− 6Icp2(cid:33)Q1nr−cIp2 (57) integrandcanbeexpandedaroundthesaddlepointη : s withthesmallparameterλ=−r·E(η )/4I . Intheexpression s p above only the leading order term in 1/λ are retained. For −iS(1)(r,η )=(cid:90) η0dη(cid:48) iκ (50) justificationofourapproximations,wecompareinFig.1our s ηs Λc2 analytically derived Coulomb-correction factor Qr with the ε(η )+∂ ε(η )(η(cid:48)−η )+ ∂2η,ηε(ηs)(η(cid:48)−η )2 exactresultofanumericalcalculationofEq.(50),andwith ×(cid:12) s η s s 2 s (cid:12), theCoulomb-correctionfactoroftherelativisticPPT[31]. De- (cid:12)(cid:12)r+ p(ηs)(η(cid:48)−η )+ FL(ηs)(η(cid:48)−η )2+ kˆE(ηs)2(η−η )3(cid:12)(cid:12) viation of our approximate Coulomb-correction factor from (cid:12) Λ s 2Λ s 6cΛ2 s (cid:12) the exact one occurs mostly due to a linearization of the λ- dependenceintheanalyticalexpressionswhich,however,is whereF (η)=−E(η)−kˆ(p(η)·E(η))/cΛistheLorentz-force neededforthefurtheranalyticalintegration. L due to the laser field. As the correction factor is evaluated Using the Coulomb-correction factor Qr of Eq. (57), the at the parabola with p = I /3c + p2/2c(1 + I /3c2) and spatialintegrationinEq.(46)canbecarriedout.TheCoulomb- k p E p p = 0, we derive the trajectories at these special values of correctedpre-exponentialmatrixelementreads B momentum.Duringthemotionunderthebarrierthemagnitude m˜ (η )=(cid:104)p(η ) , f|r·E(η )(1−kˆ ·α)Q |0 ,i(cid:105). (58) of the coordinate variation in the kˆ-direction (imaginary) is fi s s r s r r significantly smaller than in eˆ-direction [r (η)/r (η) ∼ κ/c] ItisremarkablethattheCoulomb-correctionfactorinEq. (58) k E andtheintegrandcanbeexpandedbyr (η). Itistakeninto cancels the dependence of the matrix element on the elec- k account also that the ionization event happens close to the tric dipole operator r · E and, approximately, also the pre- laser polarization axis: rk (cid:28) rE. The integral is, therefore, exponentialtermr−Ip/c2 oftheinitialstatewavefunction[when 6 (cid:112) withβ= 2Ip/candm−+ =m+− =0. Eqs. (61)and(62)are 200 exactin p /c,the p /ctermcanbeimportantatξ (cid:29)1. Asin E E 100 thenon-relativisticcase,seepaperI,thematrixelementhasa singularityatthesaddlepointη andthemodifiedSPMhasto 50 s beappliedwhichinducesanadditionalpre-exponentialfactor Qr 20 1 1 = . (63) 10 [p(ηs)2+κ2]2 4(p(ηs)·p˙(ηs))2(η−ηs)2 5 The total pre-exponential factor after the η-integration in 0.05 0.10 0.15 Eq.(46)becomes: FγI=G.01.0:1TahnedCIpo/ucl2o=mb0-.c2o5r(reeqctuiiovnalfeancΛttotorZQr=v9s1t)h:e(bplaarcakm,estoelridλ)tfhoer mˆfi(ηs)= √2π32−(cid:113)2cI2Γp((cid:16)23Ip−)322c−I2p23cI(cid:17)p2|Ee(xηps(cid:104))|2c32I2−p(cid:105)cIp2 mˆfi, (64) numericalcalculationviaEq. (50)withoutapproximations, (blue, short-dashed)theanalyticalresultofEq.(57),(red,long-dashed)the with Coulomb-correctionfactoroftherelativisticPPT[31]. √ (cid:16) (cid:17) 2c(2c+ip ) 1+ β mˆ++ = (cid:113) E 2 (65) 8c4+6c2p2 +p4 E E theapproximationr≈rE,i.e.,ionizationhappensatthelaser β2c(cid:16)20c4+2ic3p +13c2p2 +icp3 +2p4(cid:17) pploileadriGzao¨tpiopnerat-xMisa,yiserugsaeudg].eTwhhiischissiagncoifincsaenqtulyenscimepolfifitheestahpe- + 3√2(2c−ip )(cid:16)E2c2+p2(cid:17)E3/2 (cid:113)4cE2+p2E , calculationoftheionizationmatrixelement. E E E √ (cid:16) (cid:17) In this paper we are concerned with spin-unresolved ion- 2c(2c−ip ) 1− β ization probabilities. Therefore, we are free to choose the mˆ−− = (cid:113) E 2 (66) orientation of the quantization axis. In the following we as- 8c4+6c2p2 +p4 E E sumethattheinitialspinoroftheboundstateisalignedalong (cid:16) (cid:17) tehleemlaesnetrimnaEgqn.e(t5ic8)fiienldthdisirceacstieoyni.eTldhse:spin-dependentmatrix +β23c√220(c24c−+2ipic3)p(cid:16)E2c+21+3cp22p(cid:17)2E3/2−(cid:113)ic4pc3E2++2pp24E , m˜fi(ηs) = (cid:90) d3r2πc2κ√3/22Iεp (cid:118)(cid:117)(cid:116)Γ(23−−cI2p2Ip)(cid:32)|E8(κηIsp)|(cid:33)−cIp2 aisnudsmeˆd−+ =mˆ+− =0. InthelEaststeptheEfollowingexpEansion c2 ×exp(cid:34)2cI2p(cid:35)exp(cid:2)−ip(ηs)·r−κr(cid:3) (59) −(cid:113)2πiS¨˜0(ηs) ≈ √2π (cid:32)1+ 41Ip(cid:33). (67) ×(cid:32)1− Ip (cid:33)u+(cid:16)1−kˆ ·α(cid:17)v 4(p(ηs)·p˙(ηs))2 4(2Ip)3/4|E(ηs)|3/2 24c2 6c2 f i Wenotethatanarbitraryconfigurationofthequantization = 23−π2cI(cid:113)2p(Γ2I(cid:16)p3)−49−223cIIp2p|(cid:17)E(cid:2)(pη(sη)|)cIp22e+xκp2(cid:104)(cid:3)22cI2p(cid:105)mfi, (60) ”athuxepis”incaaintnidabl”edaonawcdcntoh”m,eip.fielni.s,ahmlesdjt=avtie±ah1aa/rv2oetfaottwrioojn=.inE1dx/ep2pl,eictnhidteleyrn,otstasinoteclduetsbitooantthes c2 s isgivenby wherethefactorm fordifferentspintransitionsis (cid:88) fi |1/2,m(cid:105)(cid:48) = |1/2,m(cid:48)(cid:105)D (R) (68) √ (cid:16) (cid:17) m(cid:48),m m++ = (cid:113)2c(2c+ipE) 1+ β2 (61) where D (R)isthe j =m1(cid:48)/2representationoftherotation 8c4+6c2p2 +p4 m(cid:48),m E E matrix. Since the initial quantization axis is along the laser (cid:16) (cid:17) β2c 168c4−16ic3p +142c2p2 −8icp3 +25p4 magneticfield,anyquantizationaxiscanbealignedwithtwo − 24√2(2c−ip )E(cid:16)2c2+p2(cid:17)E3/2 (cid:113)4c2E+p2 E , angles,seeFig. 2,withtherotationmatrix m−− = √(cid:113)2c(2c−ipE)(cid:16)1−E β2(cid:17) E E (62) Dm(cid:48)m =ee−iiζζ11//22scions((ζζ22//22)) −eei−ζ1i/ζ21/c2ossin(ζ(2ζ/22/2)). (69) 8c4+6c2p2 +p4 (cid:16) E E (cid:17) Therefore the transition matrix element mˆ(cid:48) for arbitrarily β2c 168c4+16ic3p +142c2p2 +8icp3 +25p4 fi − 24√2(2c+ipE)E(cid:16)2c2+p2E(cid:17)E3/2 (cid:113)4c2E+p2E E , rotatedspinorsisgivenmˆb(cid:48)fyi = D∗fjmˆjkDki (70) 7 FIG.2:Anyquantizationaxiscanbealignedwithtwoangles. in terms of the initial one mˆ . For instance, in the case the fi quantizationaxisisalongthelaserelectricfieldthematrixis 1−i −1−i Dm(cid:48)m =12+i 1+2i , (71) 2 2 while in the case the quantization axis lays along the laser propagationdirection,ityields Dfi =√√112 −√1√12, (72) 2 2 andthecalculationofthecorrespondingtransitionamplitudes isstraightforward. Thedifferentialionizationrateaveragedbytheinitialspin polarization and summed up over the final polarizations is definedas FIG.3:ThedifferentialionizationratefortheparametersI /c2=0.25, p andE /E =1/25:(a)relativisticcalculationviaEq.(74);(b)non- dw ω(cid:16) 0 a √ d3p = 2π |mˆ++(ηs)|2+|mˆ+−(ηs)|2+|mˆ−+(ηs)|2 relativistic calculation via Eq. (I.31), ∆(cid:107) ≡ Ea/E0(E0/ω) is the longitudinalmomentumwidth. (cid:17) +|mˆ (η )|2 exp{−2Im[S0(η )]}, (73) −− s s whichwiththehelpofEq. (64)willread dw 23−4cI2p (cid:18)1+ 2pc2E2 − 45cIp2 − 1924pc2E4Ip(cid:19)(2Ip)3(cid:16)1−cIp2(cid:17)ωexp(cid:16)4cI2p(cid:17) = d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 ×(cid:32)1+ 41Ip(cid:33)exp−2(cid:104)2Λ(ε−c2+Ip)−p2E(cid:105)3/2. 12c2 3|E(ηs)|Λ respecttothenonrelativisticone. Whilethenonrelativisticdis- tributionpeakisat p =0, p =0,intherelativisticcaseitis E k (74) shiftedto p =0, p = I /3c. Aswehaveshownin[64],this E k p momentumshiftisduetotheunder-thebarrierdynamicsand Notethatthereisanadditionalfactoroftwo,thatarisesdue arisesalreadyattheionizationtunnelexitbut,notwithstanding tosummingupoverthetwosaddlepointsperlasercycle. The of the large momentum transfer from the laser field during momentumdistributionationizationintherelativisticregime theelectronexcursionaftertheionization,thecharacteristic isplottedinFig.3. Asitisalreadymentioned,thedistribution momentumshiftofthepeakofthedistributionisdetectable islocatedaroundaparabola,seealso[59–63]. farawayfromtheinteractionzoneatthedetector. Characteristicfeaturesofthemomentumdistributioninthe relativisticregimearethelargeparabolicwingscorresponding tothelargelongitudinalmomentum(alongthelaserpropaga- tiondirection)whichariseduringthefreeelectronmotionin thelaserfield. However,amoreinterestingfeatureofthisdis- Whentheexponentinthedifferentialionizationrateisex- tributionisthesmallshiftofthepeakofthedistributionwith pandedquadraticallyaroundtheparabola p = p , p =δp , E E B B 8 p = I /3c+p2/2c(1+I /3c2)+δp ,therateexpressionreads 10 k p E p k dw 23−4cI2p (cid:18)1+ 2pc2E2 − 45cIp2 − 1924pc2E4Ip(cid:19)exp(cid:16)4cI2p(cid:17)(2Ip)3(cid:16)1−cIp2(cid:17)ω u. 8 (cid:68) = d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 a. 6 (cid:64) 0 4 ×(cid:32)1+ 41Ip(cid:33)exp(cid:40)− 2Ea (cid:32)1− Ip (cid:33) (75) w1 (cid:144) 12c2 3|E(η )| 12c2 2 s −|E(cid:112)(2ηIsp)|(cid:16)1−δp7722BIcp2(cid:17)2 + (cid:18)1+ 8Icp2 + 2δpc2Ep22k(cid:16)1+ 2141cIp2(cid:17)(cid:19)2. 00.00 0.05 0I.p10c² 0.15 0.20 InEq. (74)anexpansionontheIp/c2parameterhasbeenused FIG.4:ThetotalionizationratevsionizationpotentialforE0/Ea= toclearlyindicatetheIp/c2-scaling. WithoutIp/c2-expansion 1/32:(blue,short-dashed)intherelativisticCoulomb-correctedSFA theexponentialfactorofthedifferentialionizationratereads viaEq.(78),(red,long-dashed)inthe(cid:144)relativisticCoulomb-corrected dd3wp ∝ exp−(1+2√Ξ32Ξ)|E3c(3ηs)| − E(cid:112)(ηIsp) (cid:113)√13+Ξ(√δΞp2−2B1) mReofd.i[fi3e2d].SFAviaEq.(98),and(black,solid)relativisticPPTfrom 1+Ξ2 − E(cid:112)(2ηIsp)(cid:114)83Ξ(cid:16)Ξ2+3(cid:17)δDp22k, (76) afrnedetehveowlvaivnegfautnocmtiiocnsyosfttehme,infuitlifialllisntagtethφe(ice)q(ru,att)iodnescribesthe (cid:113) √ (i∂t−H0)φ(ic)(r,t)=0, (80) whereΞ= 1−Υ/2( Υ2+8−Υ),Υ=1−I /c2,and p withH = H−H = H = cα·pˆ +βc2+V(c)(r). However, 0 int 0 (cid:115) (cid:16) (cid:17) √ 2 in general, as it is pointed out in [55, 56], the SFA can be D ≡ Ξ2+2 4 Ξ2+1− √ +1 (77) developed employing different partitions of the total Hamil- Ξ2+1 tonianwhichwillresultindifferentphysicalapproximations. + p2E(cid:113)4 (cid:0)Ξ2+1(cid:1)3(cid:16)(cid:16)√Ξ2+1+1(cid:17)Ξ2− √Ξ2+1+1(cid:17). TthheesmtaanidnadrdefipcairetintcioynoifntdhiecaCteodulaobmovbe-c,oisrrtehcattedthSeFiAnflbuaesnecdeoonf c2 the laser field on the atomic bound dynamics is completely UsingtheexpressionEq. (76),theintegrationovermomentum neglected. In this section we propose a modified version of spacecanbedoneanalytically. Ityieldsforthetotalionization theSFAemployinganotherpartitionoftheHamiltonianinthe rate: SFAformalism. Themainmotivationistousesuchaparti- w = (cid:16)23−4cI2p (cid:17)(cid:114)3(cid:32)1+ 161Ip(cid:33)exp(cid:32)4Ip(cid:33) teivoonluwtihoenr.eItnhepalartsiecrufilaerl,dwheasusaectohnetrfioblulotiwoinngtoptahretibtioounn:dstate Γ 3− 2Ip π 72c2 c2 c2 H = H˜ +H˜ , (81) 0 int ×(2Ip)47−3cI2p exp(cid:34)−2Ea (cid:32)1− Ip (cid:33)(cid:35). (78) H˜0 = cα·(cid:104)pˆ −kˆ(r·E(η))/c(cid:105)+βc2+V(c)(r) (82) E12−2cI2p 3E0 12c2 H˜int = r·E(η). (83) 0 InFig. 4thetotalionizationrateofEq. (78)iscomparedwith Inthispartitionthetransitionmatrixelementreads theITMresultofRef.[32]. TheCoulomb-correctedrelativistic (cid:90) SFAandtherelativisticPPTyieldsresultsforthetotalioniza- M˜(c) =−i dtd3rψ+(r,t)H˜ φ˜(c)(r,t), (84) fi f int i tionratewhichareclose,thoughtheyarenotidentical. Inthe nextsectionwemodifytheCoulomb-correctedSFAwiththe wheretheboundstatedynamicsisdeterminedbythefollowing aimtoobtainionizationprobabilitiesclosertotherelativistic time-dependentDiracequation: PPTresult. (cid:110) (cid:104) (cid:105) (cid:111) i∂φ˜(c) = cα· pˆ −kˆ(r·E(η))/c +βc2+V(c)(r) φ˜(c). (85) t i i III. MODIFIEDCOULOMB-CORRECTEDRELATIVISTIC Inthisspecificpartitiontheinitialboundstatewavefunction STRONG-FIELDAPPROXIMATION φ˜(c)istheeigenstateoftheinstantaneousenergyoperator i InthestandardSFAintheGo¨ppert-Mayergauge,thetransi- Eˆ =cα(p+A(η))+βc2 (86) tionmatrixelementisgivenbyEq. (2)where [65, 66], with A(η) = −kˆ(r·E(η))/c in the Go¨ppert-Mayer H =r·E(1−kˆ ·α) (79) gauge, seeEq. (9). Notethatinthenonrelativisticlimitthe int 9 standardSFAinthelengthgaugecorrespondstothepartition andthetransitionstoexcitedstatesaresuppressedbyafactor inwhichtheinitialboundstateistheeigenstateoftheenergy ofE /E . 0 a operator[55]. Thispointprovidesanotherargumentinfavor With the wave functions of the bound state Eq. (90), the oftheappliedpartitionintherelativisticcase. differentialandthetotalionizationratescanbecalculatedin ThetermincorporatingthelaserelectricfieldinEq. (85) thesamewayasintheprevioussectionbefore. Thestructure describesthespindynamicsoftheboundelectronbeforeion- oftheionizationmatrixelementremainsthesame izationandhastobeconsideredinthefurthercalculation. We athreedcyonnacmerinceadlZbeyetmheanspsipnlidttyinngamoficthseinbothuendbostuantedesntaetregiaensddbuye M(c) =−im˜ (η )exp−(cid:104)2Λ(ε−c2+Ip)−p2E(cid:105)3/2 (92) tothespininteractionwiththelasermagneticfield. Therefore, fi fi s 3|E(η0)|Λ in solving Eq. (85) we will restrict the bound-bound transi- tions only to the transitions between different spin-states at wherem˜ (η )isgivenbyEq.(59),inwhichthefollowingre- fi s fixedquantumnumbers{n, j,mj}. Thedipoleapproximation placementshouldbedoneinordertoaccountforthedifference for the laser field will be adopted for the description of the in the spinor operator of the interaction Hamiltonian in the boundstateevolution: E(η) ≈ E(t), sincethetypicallength- modifiedSFA: scaleforthebounddynamicsismuchsmallerthanthelaser wave length: rb/λ ∼ ω/κc ∼ γ(E0/Ea)(κ/c) (cid:28) 1. When (cid:16) (cid:17) (cid:34) A(η )·α(1+kˆ ·α)(cid:35) theinitialspin-polarizationisalongthelasermagneticfield u+f 1−kˆ ·α vi →u+f 1+ s 2cΛ v˜i, (93) |φ(c)(cid:105)=|φ(c) (cid:105),thennospintransitionsoccurbecausetheinter- B,± actiontermVˆint(t)≡−(α·kˆ)(r·E(t))doesnotcausespin-flip wherev˜ =v exp[±iA˜(η)(1−2I /3c2)]isthespinorpartofthe (cid:104)φ(c) |Vˆ (t)|φ(c) (cid:105)=0.Accordingly,inthiscasewearelooking i i p B,∓ int B,± statesgiveninEq.(90). ThespinoroperatorinbracketsinEq. forthesolutionofEq.(85)intheform: (93)comesfromthespinorpartoftheVolkovwavefunction. φ˜(c) (r,t)=φ(c) (r,t)eiS(t), (87) NotethatthephaseintheexponentialinEq.(90)variesslowly B,± B,± compared with the contracted action S˜. Therefore, it does where φ(c) (r,t) = φ(c) (r)e−iε±t is the ground state before not modify the saddle point integration, but alters the pre- B,± B,± exponentialterm. switchingonthelaserfield, i.e., aneigenstateoftheatomic unperturbedHamiltonian √ (cid:104)cα·pˆ +βc2+V(c)(r)(cid:105)φ(Bc,)±(r)=ε±φ(Bc,)±(r). (88) m˜++ = (cid:113)28cce4−+i2pcE6(c22cp2++ippE4) (94) E E Thespinquantizationaxisforφ(c) (r,t)statesisalongthelaser (cid:16) (cid:17) magneticfielddirection. TakingB,±intoaccountthat β2e−i2pcE(2c+ipE) 8c5−40ic4pE +14c3p2E (cid:90) η A˜(η)(cid:32) 2I (cid:33) − 12√2(cid:16)8c4+6c2p2 +p4(cid:17)3/2 , dt(cid:48)(cid:104)φ(c) |Vˆ (t(cid:48))|φ(c) (cid:105)= 1− p , (89) E E whereA˜(−η∞)≡−(cid:82)B−η,∞± Ei(nηt(cid:48))dη(cid:48)B,,t±hewav2ecfunctio3nc2ofthebound −β2e−i2pcE(122c√+2ip(cid:16)8Ec)4(cid:16)−+268cic22pp23E++p34c(cid:17)p3/4E2−4ip5E(cid:17), statewillread E E (cid:34) (cid:32) (cid:33)(cid:35) A˜(η) 2I φ˜(c) (t) = φ(c) (t)exp i 1− p φ˜(BBc,,)+−(t) = φ(BBc,,)+−(t)exp(cid:34)−i2A˜c2(cη)(cid:32)1−3c322cIp2(cid:33)(cid:35) (90) m˜−− = (cid:113)√82cc4e+i2pcE6(c22cp−2Ei+pEp)4E (95) (cid:16) (cid:17) TishoefZoeredmeranofspA˜l/itctin∼gEte0rτmc/icn∼theκ/pcha(cid:28)seo1f.tIhteiswasmveafllunwchtiiocnh −β2ei2pcE 8√c5+40ic4pE(cid:16)+14c3p2E(cid:17)+(cid:113)28ic2p3E +3cp4E +4ip5E arisesfromthefactthattheperturbationtermVˆint(t)couples 12 2(2c+ipE) 2c2+p2E 8c4+6c2p2E +p4E thelarge/smallspinorpartoftheinitialstatebispinorwiththe small/largespinorpartsofthefinalstatebispinor. andm˜+− =m˜−+ =0. Withthisthedifferentialionizationrate Theexplicitconditionjustifyingtheneglectoftransitionsto inthemodifiedSFAyields: excited states can be given as follows. The transition prob- aωbninl(cid:48)ity∼bIeptw(neeanndthne(cid:48)satraetetshenp→rincnip(cid:48)awl qituhanetnuemrgynudmiffbeerresn)cies dw = 23−4cI2p (cid:18)1+ 2pc2E2 − 1327cIp2 − 4124pc2E4Ip(cid:19)(2Ip)3(cid:16)1−cIp2(cid:17)ωexp(cid:16)4cI2p(cid:17) tPrannn(cid:48)si∼tioEn0irnb/tωhenns(cid:48)ta∼teEn0irsb/PIsps,(cid:48)w∼hEil0erbthτeKp(rsoabnadbisl(cid:48)itayreofthaessppiinn- d3p π2Γ(cid:16)3− 2cI2p(cid:17)|E(ηs)|3−2cI2p (cid:18)1+ 2pc2E2(cid:19)2 quantumnumbers).PPTnhne(cid:48)r∼efoIre1τ, ∼ EE0, (91) × (cid:32)1+ 1421cIp2(cid:33)exp−2(cid:16)2Λ(ε3−|Ec(2η+s)|IΛp)−p2E(cid:17)3/2. (96) ss(cid:48) p K a 10 andthetotalionizationrateis intotherelativisticregime. TheappliedCoulomb-corrected strong-field approximation incorporates the eikonal-Volkov w = Γ(cid:16)233−−4cI22pIp(cid:17)(cid:114)π3(cid:32)1− 772Icp2(cid:33)exp(cid:32)4cI2p(cid:33) (97) wdyanvaemfuicnsc.tiTonhefolarttthereidsedsecrriivpetidoninotfhteheWeKleBctraopnprcooxnitminautuiomn c2 takingintoaccounttheCoulombfieldoftheatomiccoreper- ×(2Ip)47−3cI2p exp(cid:34)−2Ea (cid:32)1− Ip (cid:33)(cid:35). ttuerrmbast,ivtehleydinisttuhrebpahnacseeoofftthheeeWleKctBrownaevneefrugnycbtiyonth.eInCpohuylsoimcabl E12−2cI2p 3E0 12c2 fieldisassumedtobesmallerwithrespecttotheelectronen- 0 ergyinthelaserfield. Theeikonal-Volkovwavefunctionis InFig.4,thetotalionizationprobabilitycalculatedviathe applicablewhenthelaserfieldissmallerthantheatomicfield modifiedCoulomb-correctedrelativisticSFAiscomparedwith E (cid:28) E andI (cid:46)c2. 0 a p theresultofthestandardSFA,aswellaswiththatoftherela- Wehavederivedananalyticalexpressionfortheionization tivisticPPT.Theconclusioncanbedrawnthatbothrelativistic amplitudeinalinearlypolarizedlaserfieldwithintheCoulomb- Coulomb-corrected SFA give slightly different results com- correctedrelativisticSFAwhenadditionallysmallnessofthe pared to the PPT for large Ip. The modified SFA is closer parametersofIp/c2 (cid:28)andγ(cid:28)1isused.Asimpleexpression tothePPTresultthanthestandardSFA.Thetotalionization fortheamplitudeisobtainedwhenusingtheGo¨ppert-Mayer probabilities in the relativistic Coulomb-corrected standard gauge. Moreover,inthisgaugeaCoulombcorrectionfactor SFAislargerthantherelativisticPPTbyafactorsmallerthan (ratiooftheCoulombcorrectedamplitudetothestandardSFA 1+3Ip/c2. one)coincideswiththatderivedwithinthePPTtheory. The ThestandardSFAyieldslargerionizationprobabilitiesthan differentialandtotalionizationratesarecalculatedanalytically. themodifiedSFAwhichcanbeexplainedbyasimpletunneling Thecalculatedtotalionizationrateisslightlylargerthanthe picture. Inthefirstcasethemagneticfieldactsontheelectron PPT rate at large ionization potentials. To improve the pre- onlywhenitentersthebarrier.Inthiscaseduringthetunneling dictionsoftheCoulomb-correctedrelativisticSFA,wehave theelectronkineticenergywillchangeontheamountofthe proposedamodifiedSFAapproachwhichisbasedonanother interactionenergywiththemagneticfieldµB0 =−sE0/2c(s= partitionofthetotalHamiltonian. InthisapproachtheSFA ±1forspinalongthemagneticfieldoropposite),givingriseto matrixelementcontainstheeigenstateoftheenergyoperator akineticenergysplittingfordifferentspinorientationsofthe inthelaserfieldasthewavefunctionoftheinitialboundstate. electronand,consequently,todifferenttunnelingprobabilities. ThemodifiedSFAtakesintoaccountthedynamicalZeeman Whereas,inthesecondcasethemagneticfieldisalsoacting splittingoftheboundstateenergyduetothespininteraction beforetunnelingandnokineticenergysplittingoccurs. The withthelasermagneticfield(whentheelectroninitialpolar- ratiosoftheKeldysh-exponentforthesetwoscenarioscanthen izationisalongthelasermagneticfield)andtheprecessionof beexpandedinthespinenergy: theelectronspinintheboundstate(whentheelectroninitial (cid:20) (cid:21) (cid:20) (cid:21) polarizationisalongthelaserpropagationdirection). ΓΓmstaonddifiaerdd = exp −2(2(Ip+3EE020/2ecx))p3/2(cid:20)−+2(2e(xIpp))3−/2(cid:21)2(2(Ip−3EE00/2c))3/2 iicoanOlizcuaartlircoeunsluarltatistoensshoionfwqthutehaanrtetilttahatetiivvSiesFltAyicctreoecrghrienmcitqeudweiffhaeilcrlehonwttaiskatlehsaeniandntotaolatyactl-- 3E0 counttheimpactoftheCoulombfieldoftheatomiccoreas ∼ 1+I /c2 (98) p well as the electron spin dynamics in the bound state. This methodcanbeviewedasanalternativetothePPT.Inthefol- To decide which SFA partition is best suited to model the lowingpaperofthesequeltheCoulomb-correctedrelativistic ionizationprocess,acomparisonwithnumericalsimulations SFAwillbeusedtoinvestigatespin-resolvedionizationprob- orexperimentaldataisnecessary. (cid:82) abilities. Whileforthetotalionizationratethepredictionof Further,wenotethattheCoulomb-correctionterm dηα· thestandardSFAisclosetothatofthemodifiedSFA,forspin ∇V(c)/cthatisneglectedinbothstrongfiel√dapproximations effectstheirpredictionsarequitedifferent. Thenextpaperof givesacorrectionfactorofonly1+(I /c2) E /E ,whichis p 0 a thesequelwillbedevotedtothisissue. oftheorderofafewpercentsforthemostextremeparameters (E /E =1/16,Z =90). 0 a IV. CONCLUSION Acknowledgments We have generalized the Coulomb-corrected SFA for the WeappreciatevaluablediscussionswithC.H.KeitelandC. ionization of hydrogen-like systems in a strong laser field Mu¨ller. [1] C.I.Moore,A.Ting,S.J.McNaught,J.Qiu,H.R.Burris,and [2] E.A.Chowdhury,C.P.J.Barty,andB.C.Walker,Phys.Rev.A P.Sprangle,Phys.Rev.Lett.82,1688(1999).