ebook img

A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies PDF

5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies

MNRAS000,000–000(0000) Preprint8January2016 CompiledusingMNRASLATEXstylefilev3.0 A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies J. S. Sanders1, A. C. Fabian2, G. B. Taylor3, H. R. Russell2, K. M. Blundell4, R. E. A. Canning5,6, J. Hlavacek-Larrondo7,5,6, S. A. Walker2 and C. K. Grimes3 1Max-Planck-Institutfu¨rextraterrestrischePhysik,Giessenbachstrasse1,85748Garching,Germany 2InstituteofAstronomy,MadingleyRoad,CambridgeCB30FT 3DepartmentofPhysicsandAstronomy,UniversityofNewMexico,Albuquerque,NM87131,USA 6 4UniversityofOxford,Astrophysics,KebleRoad,OxfordOX13RH 1 5KavliInstituteforParticleAstrophysicsandCosmology,StanfordUniversity,452LomitaMall,Stanford,CA94305,USA 0 6DepartmentofPhysics,StanfordUniversity,382ViaPuebloMall,Stanford,CA94305,USA 2 7De´partementdePhysique,Universite´deMontre´al,C.P.6128,Succ.Centre-Ville,Montreal,QuebecH3C3J7,Canada n a J 8January2016 7 ] A ABSTRACT We examine deep Chandra X-ray observations of the Centaurus cluster of galaxies, Abell G 3526. Applying a gradient magnitude filter reveals a wealth of structure, from filamentary h. softemissionon100pc(0.5arcsec)scalesclosetothenucleustofeatures10sofkpcinsizeat p largerradii.Theclustercontainsmultiplehigh-metallicityregionswithsharpedges.Relative - to an azimuthal average, the deviations of metallicity and surface brightness are correlated, o and the temperature is inversely correlated, as expected if the larger scale asymmetries in r t theclusteraredominatedbysloshingmotions.Aroundthewesterncoldfrontareaseriesof s ∼7kpc‘notches’,suggestiveofKelvin-Helmholtzinstabilities.Thecoldfrontwidthvaries a [ from4kpcdowntoclosetotheelectronmeanfreepath.Insidethefrontaremultiplemetal- licity blobs on scales of 5–10 kpc, which could have been uplifted by AGN activity, also 1 explainingthecentralmetallicitydropandflatinnermetallicityprofile.Closetothenucleus v aremultipleshocks,includinga1.9-kpc-radiusinnershell-likestructureandaweak1.1–1.4 9 Machnumbershockaroundthecentralcavities.Withina10kpcradiusare9depressionsin 8 surfacebrightness,severalofwhichappeartobeassociatedwithradioemission.Theshocks 4 1 andcavitiesimplythatthenucleushasbeenrepeatedlyactiveon5−10Myrtimescales,in- 0 dicatingatightbalancebetweenheatingandcooling.Weconfirmthepresenceofaseriesof . linearquasi-periodicstructures.Iftheyaresoundwaves,the∼5kpcspacingimpliesaperiod 1 of6Myr,similartotheagesoftheshocksandcavities.Alternatively,thesestructuresmaybe 0 Kelvin-Helmholtzinstabilities,theirassociatedturbulenceoramplifiedmagneticfieldlayers. 6 1 Keywords: galaxies:clusters:individual:Abell3526—X-rays:galaxies:clusters : v i X r a 1 INTRODUCTION that thecentral region contains multiple innercavities, where the radio plasma displaces the X-ray emitting material (Taylor et al. The Centaurus cluster, Abell 3526, is one of the X-ray bright- 2002).Theplumewasresolvedintowispyfilamentsofsoft,cool, est and nearest galaxy clusters in the sky, with a flux of 2.7× X-rayemittinggas.Thedataalsoshowedtwosemicircularedges 10−10ergcm−2s−1 inthe0.1to2.4keVband,correspondingtoa insurfacebrightness(SB)totheeastandwest,wherethetempera- bolometricluminosityof1.1×1044ergs−1 (Reiprich&Bo¨hringer turealsochanges,likelytobecoldfronts(Markevitch&Vikhlinin 2002).Theclusterhastwosub-components,amainclusterCen30, 2007), discontinuities where the temperature and density change with a redshift of 0.0104 and a subcluster, Cen 45, 15 arcmin butthegasisinpressureequilibrium.Comparisonwithsimulations (∼200kpc)totheeastwithavelocity1500kms−1 higher(Lucey indicatesthatthegasissloshingaboutinthepotentialwell. etal.1986). XMM-NewtonReflectionGratingSpectrometer(RGS)obser- The first Chandra observations (Sanders & Fabian 2002) of vations(Sandersetal.2008)oftheclustercorerevealedaspectrum the cluster revealed a plume-like soft X-ray structure extending withemissionfromFeXVIItoXXIV,butnotOVII,showingthereis from the nucleus and multiphase X-ray material on small spatial X-rayemittingmaterialdowntotemperaturesbetween0.3to0.45 scales.DeeperChandraobservations(Fabianetal.2005)showed keV.Above2keVthespectraareconsistentwith40M(cid:12)yr−1 of (cid:13)c 0000TheAuthors 2 J.S.Sandersetal. radiativecooling,butat1keVthisreducesto4M(cid:12)yr−1 andless cluster,PKS1246–410,appearstobeinteractingwithanddisplac- than0.8M(cid:12)yr−1 appearstobecoolingbelow0.4keV.Fromthe ingtheICM(Tayloretal.2002;Rudnick&Blundell2003),most outskirtstothecentre,thetemperatureoftheintraclustermedium obviouslyseenbythepresenceoftwocentralcavitiesintheICM. (ICM)decreasesbyafactorof∼10.Themeanradiativecooling The most extended radio emission appears to go beyond to re- timeoftheICMdropsto∼107yrinthecentre. gionsoflowthermalpressure,indicatingtheremaybefurtherX- ThesoftX-rayemissioninthecoreoftheclusteriscorrelated ray cavities there (Crawford et al. 2005). The optical nucleus is with atomic and molecular material at much lower temperatures. double (Laine et al. 2003). The radio nucleus is associated with The central galaxy, NGC 4696, contains a dust lane (Shobbrook compactlow-luminosityX-rayemission,butisoffsetfromtheX- 1963)andhasbrightfilamentarycentralHαemission(Fabianetal. ray-brightest region of the cluster (Taylor et al. 2006). If the nu- 1982), both of which have similar morphologies (Sparks et al. cleuswereaccretingattheBondirate,itwouldoverproduceby3.5 1989).Thesecomponentsarethemselvescorrelatedwiththecool ordersofmagnitudeitsobservedX-rayradiativeluminosity.Very X-rayemittingfilaments(Crawfordetal.2005),andappeartobe long baseline interferometry (VLBI) observations show a broad drawn up by buoyant bubbles rising in the ICM (Crawford et al. one-sidedjet(Tayloretal.2006).TheclustershowsFaradayrota- 2005).Thismodelissupportedbydeepintegral-fieldspectroscopy tionmeasures,indicatingmagneticfieldsof25µGon1kpcscales. (Canning et al. 2011b), who find no evidence for fast shock ex- Thethermalpressureappearsdominantoverthemagneticpressure. citation and whose spectra support the particle heating excitation Theline-emittinggas,softX-raymaterial,regionswithanexcess modelofFerlandetal.(2009). ofrotation-measureanddepolarisedregionsappeartobespatially UsingSpitzer,Johnstoneetal.(2007)foundevidenceforpure- correlated(Rudnick&Blundell2003;Tayloretal.2007). rotationallinesfrommolecularhydrogen,indicatinganexcitation Sanders & Fabian (2008) found X-ray SB ripples in several temperature of 300−400 K. The flux in the 0-0 S(1) molecular directionswithintheinner40kpc,postulatingthattheyaresound hydrogenlinecorrelateswellwiththestrengthoftheopticallines. wavesintheICMgeneratedbytheactivityofthecentralnucleus, Molecular material cooler than 400 K dominates the mass of the similar to those found in Perseus (Fabian et al. 2006) and Abell outer filaments. With Herschel, Mittal et al. (2011) found two of 2052(Blantonetal.2011).Suchsoundwavescouldtransporten- the strongest cooling lines in the interstellar medium, [CII] and ergyfromthenucleustoprovidethedistributedheatingrequiredto [OI]. The [CII] emission has a similar morphology and velocity preventtheexceptedhighcoolingrates. structurecomparedtotheHαemission,suggestingthatthesoftX- In this paper we present new results from 760 ks of Chan- rays,opticallinesandfar-infraredhavethesameenergysource.In dra observations, including 480 ks of new data. We assume the additionHerschelfound1.6×106M(cid:12)ofdustat19K,althoughthe galaxyclusterliesataredshiftof0.0104(Luceyetal.1986).Using FIRluminositysuggestsalow0.13M(cid:12)yr−1 starformationrate. H0=70kms−1Mpc−1,1arcsecontheskycorrespondsto0.213 Canningetal.(2011a)detectedopticalcoronalemissionfrom kpc.Imagesarealignedwithnorthtothetopandeasttotheleft. 106Kgasinthecoreofthecluster.Thelowesttemperatureprobe Fordetailsofthedatareduction,seeAppendixA.Wediscussthe [FeX]λ6374istwiceasbrightasexpected.Chatzikosetal.(2015) largerscalestructureinSection2,includingindetailsloshinggas suggestthatthecoronalspectrumisnotindicativeofcoolingma- inthepotentialwell(§2.3),thewesterncoldfront(§2.4),thelin- terial,butinsteadcomesfromaconductiveormixinginterfacebe- earstructuresinsidethecoldfront(§2.5)andthehighmetallicity tweentheX-rayplumeandopticalfilaments. blobs(§2.6).InSection3weexaminetheinnerregionaroundthe The Chandra observations confirmed that the cluster has a nucleusindetail,includingtheinnershock(§3.2),theinteraction high (1.5−2Z(cid:12)) metallicity flat core with a sharp edge, previ- oftheradiosourceandX-rayplasma(§3.3),thecavities(§3.4),the ously seen using ROSAT and ASCA data (Allen & Fabian 1994; shocksurroundingthecavities(§3.5),theassociationbetweensoft Fukazawa et al. 1994; Ikebe et al. 1999; Allen et al. 2001). The X-raysanddust(§3.6),theoriginoftheplume(§3.7)andthero- boxymetallicityprofilerequiresalargeeffectivediffusioncoeffi- tation measures and magnetic fields (§3.8). We discuss the inner cient which drops very rapidly with radius (Graham et al. 2006). multiphase structure in Section 4 (also Appendix B), the central Themetallicityratiosinthecoreoftheclusterareroughlyconsis- abundancedropinSection5andconcludeinSection6. tentwithsolarvalues(Sanders&Fabian2006b),indicatingenrich- mentbybothTypeIaandIIsupernovae,althoughOandMgare ∼40percentlessabundant(Sakumaetal.2011).Themetallicity profileandratiosshowthatthecentreoftheclusterappearstohave 2 LARGERSCALESTRUCTURE notsufferedmajordisruptionoverthepast8Gyrorlonger. 2.1 X-rayimages In the centre of the cluster there is a drop in the observed metallicity (Sanders & Fabian 2002), which appears not to be Fig.1(toppanel)isanX-rayimageofthecentral130×100kpcof caused by resonance scattering (Sanders & Fabian 2006a) or in- thecluster.Thereare8.1×106 countsinthedatasetinsidea5ar- adequate spectral modelling (Fabian et al. 2005). The decrement cminradius.Prominentintheimageisthecentralfeedbackregion is consistent with the deposition of metals onto grains which are associatedwithNGC4696,whichweexamineindepthinSection incorporatedintodustyfilaments(Panagouliaetal.2015). 3.ThereareSBedges,previouslyidentifiedascoldfronts(Sanders TheCen45subclusterhasatemperatureexcesssurrounding &Fabian2002;Fabianetal.2005),1.5arcmintotheeastand3.3 it,interpretedashavingbeenheatedbyitsinteractionwithCen30 arcmintothewest.Weexaminethewesterncoldfrontindetailin (Churazovetal.1999).ThisexcesswasconfirmedusingXMMand Section2.4.Thedepression3.3arcmintothesouth-eastisduetoan can be explained by a simple shock heating model (Walker et al. edge-ondiscgalaxy,ESO322-93,inthemainCen30clusterwhich 2013).Apressurejumpisalsoseeninthedirectionofthemerger absorbssomesoftclusterX-rayemission(Fabianetal.2005). andthemergingsubclusterappearstohaveretaineditsmetals.No Tobetterexaminethefeaturesintheimageweappliedagra- bulkvelocitiesgreaterthan1400kms−1 intheICMweredetected dient filter to highlight sharp and flat regions. Gradient filtering inthecluster(Otaetal.2007). has previously been used to examine cluster simulations (Roedi- The extended component of the central radio source in the geretal.2013).TheGaussiangradientmagnitude(GGM)filteris MNRAS000,000–000(0000) AverydeepviewoftheCentauruscluster 3 1 arcmin 0 13 kpc 6 2 1. 4 - 0 8 2 1. 4 - 0 0 3 1. 4 - 0 2 3 1. 4 - 0 4 3 1. 4 - 0 6 3 1. 4 - 192.300 192.250 192.200 192.150 192.100 1.0 1.4 2.1 3.6 6.5 12.3 23.9 47.1 93.7 185.9 369.6 Figure1.(Toppanel)X-rayimageofthecentral130×100kpcofthecluster.The0.5to7keVimageisbackground-subtractedandexposure-corrected.To thesouth-eastcanbeseentheX-rayshadowofadiscgalaxy.ThecolourbarshowstheSB,scaledtoshowthecentralnumberofcountsper0.492arcsecpixel. (Bottompanel)ThesameregionafterapplyingGGMgradientfilterswithdifferentscalesandsummingwithradialscaling.Notethatthescaleisnotconsistent acrosstheimageanddoesnotaccuratelyreflectthemagnitudeofjumps.ItemphasisestheregionswithlargestSBgradientsafterpointsourceremoval. MNRAS000,000–000(0000) 4 J.S.Sandersetal. 1 2 4 Inner edge Nucleus Bay Plume Soft filaments Hook Depressions F,E,H and I 8 Linear structures 16 X1 northern extension 32 Eastern cold front E3 edge E4 edge ESO 322-93 Western cold front Figure2.GGMgradient-filteredimagesusingscalesfrom1to32pixels(1pixelis0.492arcsec).Thewhitebarhasalengthof20kpc(∼94arcsec).Labelled featuresarereferredtointhetext. similartotheSobelfilter,calculatingthemagnitudeoftheimage central radio nucleus) and reduce the contribution of large scales gradientassumingGaussianderivatives.ByvaryingtheGaussian there. We experimented with scaling factors, finding linear sum- width,σ,thefilterissensitivetogradientsondifferentscales.GGM mations of the different filtered images do not introduce features filteringhastheadvantageofbeingasimpleconvolutionappliedto which are not present in the individual filtered images. We note thedataandisunlikelytointroduceartifacts. thattheimagedoesnotaccuratelyshowtherelativemagnitudeof We applied the GGM filter from SCIPY (http://www. featuresbutinsteadhighlightsthosefeatureswhicharethere.The scipy.org/) to the exposure-corrected background-subtracted imageshowsanumberofedgesandflatstructuresaroundthenu- image using σ =1, 2, 4, 8, 16 and 32 detector pixels, yielding cleus and inside the western cold front (see Section 2.5). Further theimagesshowninFig.2.Regionswithlargegradients,suchas discussion of gradient filtering and its application to other X-ray edges,arelighter,whileflatterSBareasaredarker.Pointsources clusterdatasetswillbemadeinaforthcomingpaper. were first removed from the input image to avoid their contam- ination of larger structures. They were initially identified using WAVDETECTbutmanuallyeditedtoexcludefalsedetectionswhen itbecameconfusedbythebrightcentralX-raystructures.Theval- uesofpixelsintheremovedsourceregionswerereplacedbyran- 2.2 Temperatureandmetallicitymaps domselectionsofthoseinthe1-pixel-wideareasimmediatelysur- Fig.3showsmapsofthetemperatureandmetallicity,obtainedby roundingeachpointsource. spectralfitting(AppendixA2).Thecoolcentralplumeandcooler Theabilityofthefiltertodetectfeaturesisafunctionofthe regions inside the western and eastern SB edges can be clearly SBintheregionofinterestandthemagnitudeofthegradient.In seen.Fromthecoreisanotherplume-likecoolerstructureextend- the cluster outskirts where the number of counts per pixel is low ingnorth-westwardstowardsthewesternedge.Outsidetheedges the small length scale filters cannot detect gradients unless they the temperature is relatively flat, although there may be a cooler areverylarge.ThisisthecasewithnormalX-rayimages,where regiontowardsthenorth-east. the detectability of structures depends on their size, SB and con- Themetallicitymapcontainsagreatdealofstructure.There trastwiththeirsurroundings.Thenoiseintheimages,however,is is a previously reported high metallicity region inside the west- seenasazimuthalstructures.AsthelargestSBgradientinaclus- ern cold front edge, where the ICM is cooler (Sanders & Fabian terisradial,PoissonfluctuationsintheX-rayimagewillamplify 2002; Fabian et al. 2005). The abundance distribution, however, orweakenthisradialsignal.Thereforenoiseinthegradientimage isnotsteadilyrising,butisratherflatwithfluctuations.Thereare liesperpendiculartothegradientintheoriginalimage. strongvariationsinmetallicity(seeSection2.6)withacharacteris- To show the gradients on different scales in a single image ticlengthscaleofaround20arcsec(∼5kpc;seeSectionA4).On (Fig.1bottompanel),weaddedtheGGM-filteredimageswithra- theeasternsideofthecluster,outsidetheeasternSBedge(Fig.1), dialscalingfactors.Theseradialscalingswereappliedtoincrease isanotherregionofhighermetallicitygaswithatail-likeappear- the contribution of small scales to the centre (measured from the ance. MNRAS000,000–000(0000) AverydeepviewoftheCentauruscluster 5 2 arcmin 26 kpc Temperature (keV) 0.87 1.2 1.6 1.9 2.3 2.6 3 3.4 3.7 4.1 4.4 Metallicity (Solar) 0 0.17 0.34 0.51 0.68 0.85 1 1.2 1.4 1.5 1.7 Figure3.TemperatureandmetallicitymapsoftheclusterusingregionswithS/N=100.Thetemperaturemapshowsthesingle-componenttemperature. Themetallicitymapshowstheresultsfromsingle-ortwo-componentfits,dependingonwhichispreferred.Greyregionsindicateexcludedpointsources. Uncertaintiesinthetemperaturesvaryfrom0.6percentinthecentreto2percenttotheeastofthewesternedgeand3.5percentatlargeradius.Metallicity uncertaintiesaretypicallyfrom0.05−0.10Z(cid:12),excludingtheverycentre. MNRAS000,000–000(0000) 6 J.S.Sandersetal. 2.3 Sloshing X-ray image WecomparetheSBdeviationsintheclustertothemetallicityand 3 arcmin temperatureinFig.4.Thereisalow-density,high-temperaturema- 38 kpc terial on the opposite side of the core to the high-density, low- temperaturematerialbehindthewesterncoldfront.Thismaterial appearstosweepfromthesouththroughtheeastandtowardsthe north.TheplotshowsstrikingcorrelationsbetweenSB,tempera- tureanddensitydeviations.ThewesterncoldfrontislabelledE2. TherearealsotwoedgesinmetallicityandSBintheoppositedi- rectiontowardstheeasternsideofthecluster(markedE1andE3), closertotheCen45subcluster.Inadditionthereisafurtheredge To Cen 45 outsidethewesterncoldfront,goingfromthewesternmostpoint ofthecoldfrontandextendingtowardsthenorth,withmoremetal richgasinsideit(E4).Furthertothenorthisthehighmetallicity regionalreadynotedbyWalkeretal.(2013).Therearehintsthat thereisaSBedgetothenorthofthisfeature,withlowermetallic- ityoutsideit(E5).TheSBenhancementtowardsthenorth-westof Fig. 4 may be the structure found by Churazov et al. (1999) (see -0.6 -0.4 -0.2 0 0.2 0.4 0.6 theirfigure3),suggestedtobestrippedgasfromNGC4696B. Temperature InFig.5areshownthreerectangularprofilesacrosstheclus- terinaneast-westdirection.Onepassesthroughthenucleus,while oneisnorthofitandtheothersouth.Insomeregionsthereisex- cellentcorrelation(betweenSBandmetallicity)oranti-correlation (ofSBormetallicitywithtemperature)betweenthevariables,but thisisnotalwaysthecase.Forexample,inthecentralregion,the bright,cool,plumeisrelativelylowinmetallicity.Thereisalsoa fairlystrongeast-westSBgradient,whichmakesthefluctuations difficulttosee. Fig.6showsradialprofilesinmetallicityinfourquadrantsto the north, south, east and west. Despite small-scale variation, the overallmetallicityprofileinsidethewesternedge(roughly40kpc radius)isremarkablyflat.Inadditionthereremainsacentraldrop inmetallicity,whichwediscussfurtherinSection5.Intheeastern sector,thereisamuchsmallerregionofflatmetallicitytowardsthe cluster core. However, the tail-like structure has a flat metallicity profilewhichdropsoutwardof60–70kpc. -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 ThespatialcorrelationbetweenSBandmetallicityenhance- E5 ment, and anti-correlation with temperature is a typical signature Metallicity ofsloshingandhasbeenfoundinsimulationsaswellasotherob- servations(e.g.Virgo,Roedigeretal.2011;A496,Roedigeretal. 2012; Perseus, Simionescu et al. 2012; A2029 Paterno-Mahler etal.2013).Similarly,sloshingintheclustercandistortandinduce asymmetriesinthedistributionofmetalsaboutthecentralgalaxy. The gravitational perturbation by the merger of the Cen45 E4 subcluster may have started these sloshing motions. This is sug- gestedbythealignmentofthelargerscaleSBdeviationsalongthe E3 axis of the merger (Fig. 4). After the interaction by the perturb- E1 E2 ingsystem,coldfrontsmoveoutwardswithtime(e.g.Ascasibar& Markevitch2006).TheA496system,whichhasasimilartemper- aturetoCentaurus,wassimulatedbyRoedigeretal.(2012),who found that the radial evolution of the cold front mainly depends ontheclusterpotential.Theradiioftheeasternandwesterninner Centauruscoldfronts(19and42kpc,respectively)aresimilarto the fronts in their ‘distant’ run after 1 Gyr (see their fig. 7). The circularsymmetryofthefeaturessuggestthatthesloshinggasmo- -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 tionsareclosetobeingperpendiculartothelineofsight,aspointed Figure4.FractionaldifferencefromtheaverageateachradiusforX-ray0.5 outbyAscasibar&Markevitch(2006).Inthiscase,theperturbing to7keVSB,temperatureandmetallicity.TheX-rayimagewassmoothed systemisnotmovingintheplaneofthesky.Itisnotpossibleto bya2arcsecGaussian.Thetemperatureandmetallicitymapsusedthesame tellwhetherCen45istheperturberbasedonitsposition,velocity dataaspresentedinFig.3.Arrowsmarkedges(discussedintext).Also andthetimesincetheinteraction.Indeed,Cen45maynotbeonits shownisthedirectionofthemergingCen45subcluster. firstpassthroughthesystemandcouldbegravitationallybound. MNRAS000,000–000(0000) AverydeepviewoftheCentauruscluster 7 0.6 West North +10.5 kpc e 0.4 1.5 onal differenc 0.20 allicity (solar) 1 Fracti−−00..42 Met0.5 1 component 2 components −0.6 0 0.6 East South 0 kpc e 0.4 1.5 c actional differen−00..202 Metallicity (solar) 1 Fr−0.4 0.5 −0.6 0 0.6 1 10 100 1 10 100 −10.5 kpc Radius (kpc) Radius (kpc) e 0.4 c n e al differ 0.20 Ftoirgsu.rTeh6e.nRuamdibaelrmoeftaclolimciptyonpernotfisleusoefdthinemthaepfiitnsFisigi.n3discpaltietdinbtoy9o0p◦enseoc-r on closedsymbols.Horizontalerrorbarsshowtheradialrangeofeachbin. cti−0.2 a Fr−0.4 X-ray image Temperature × 2 Metallicity at RA 192.18325 and Dec −41.31048 (marked by the sectors in −0.6 Fig.7),11kpctothewestofthenucleus. −128 −72 −32 −8 0 8 32 72 128 To quantify the variation and width of the edge around the Offset (kpc) frontwefitmodelstoSBprofilesextractedin27independent10◦ sectorsspanning270◦,coveringthe180◦ towardsthewestwhere the front is visible and 45◦ beyond this in either direction. This Figure5.SB,temperatureandmetallicityfractionalresidualprofilesinan analysisissimilartothatpresentedinWerneretal.(2015).Wefita east-westdirection(westispositive)acrossthecentreoftheclusterwith threenortherlyoffsets(−10.5,0and10.5kpc),computedfromFig.4.The brokenpowerlawwithabroadenededgemodeltotheprofiles(see widthofeachstripis8.4kpc.Thehorizontalaxishasasquare-rootscaling. AppendixA3).Fig.9showsforeachsectortheradiusofthefront, Notethatthetemperatureprofileshavebeenscaledbyafactorof2. thejumpmagnitude,thewidthandthepowerlawindicestoeither sideoftheedge. Betweenthenorthandsouth,wheretheedgeiswelldefined, the jump radius is fairly constant at 31 kpc, with sector-to-sector variationsofabout1kpc,likelyduetothenotchesaroundtheedge. 2.4 Westerncoldfront Immediatelywest,thefrontisatitsbroadestat4kpc,butitismuch ThewesterncoldfrontinCentaurusisoneoftheclearestandnear- narrowertothenorth-westandsouth-west.Insomelocationsthe estexamplesknowninacluster,spanningnearly180◦.Thepres- edgeappearsnarrowerthan1kpc.Wherethefrontisnarrowestto- sure across the edge is continuous, confirming it is a cold front wardsthesouth-west,forexampleinthesectorsbetween60−80◦, (AppendixA3).Fig.7(toppanel)showsanunsharp-maskedimage the1σupperlimitsontheedgewidthare∼0.3kpc(accountingfor of the centre and cold front region, highlighting the SB fluctua- thePSFattheedgeinthesesectors).Iftherearenomagneticfields, tions around the front and within the central region. The edge is inthenorth-westdirectionthedensityandtemperatureimplyval- notperfectlysmooth;thesouth-westernsideappearstobewhere uesforthecollisionalelectronmeanfreepathof0.18and0.36kpc itissharpestanddirectlywestitappearsbroader.Tothenorthand (0.8and1.7arcsec),interiorandexteriortothefront,respectively. southofthecoldfrontthereisarapidtransitionfromasharpedge Inthesouth-westtheseincreaseto0.30and0.48kpc(1.4and2.3 toaweakornon-existentedge.However,somecircularstructure arcsec),respectively.Wherethefrontisnarrowesttothesouth-east, maycontinueoninthenorth-eastandsouth-eastdirections.There ourupperlimitsaresimilartotheelectronmeanfreepath. appeartobeanumberof‘notches’intotheedgeonlengthscales The emissivity of the ICM decreases outwards over most of of∼7kpc.Thenotchesalongtheedgecanalsobeseeninagradi- thefronttoaround60percentoftheinteriorvalue,implyingthat entfilteredX-rayimage(Fig.7bottompanel).WediscusstheSB thedensitydecreasesbyaround20percent,whichisinagreement featuresinsidethefrontinSection2.5. withspectralmeasurements(AppendixA3).However,immediately Thedeviationsfromacircularcoldfrontcanbeclearlyseenif tothewestthefitspreferan80percentSBdecrease.Inthesame theimageoftheclusterisremappedtoradialandazimuthalcoordi- region the powerlaw index of the model outside the jump is flat- nates(Fig.8).Thenotchesappearaswave-likeirregularitiesonthe terandtheedgeiswider.Itisclearfromtheunsharp-maskedand straightedge.Theedgeisbestrepresentedbyacirclewithacentre filteredimagesinFig.7thattheedgeismuchlessdistinctimme- MNRAS000,000–000(0000) 8 J.S.Sandersetal. -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 Figure8.Unsharp-maskedimageoftheclusterremappedtohaveradius andangleaxes,withacentrechosentomakethewesterncoldfrontlieat constantradius.Horizontallyitspans360◦fromeast(left),throughnorth, thenwest(centre),thenbacktoeast(right).Radiusrunsverticallyfrom 2 (bottom) to 68 kpc (top). The 0.5 to 7 keV input image was rebinned into0.1kpcby0.25◦pixels.Unsharpmaskingwasthenapplied,usingthe 1 arcmin fractionaldifferencebetweenmapssmoothedby4and32pixels. 12.8 kpc -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 ever,andareunlikelytocorrespondtothesamephysicalfeatures intheprofiles. X1 Thenotchesalongtheedgeofthewesterncoldfront(Figs.7 and8)areconsistentwithKelvin-Helmholtzinstabilities(KHIs)of L1 lengthscalesof∼7kpcalongtheedge.KHIsinclusterswerefirst L2 seeninsimulations(Roedigeretal.2011;ZuHoneetal.2011).A kink,whichmaybealargeKHI,hasbeenobservedinAbell496 L3 (Roedigeretal.2012).Similarnotchesoflengthofafewkpchave alsobeenseeninthecoldfrontintheVirgocluster(Werneretal. 2015).Thesenotcheslikelymaketheradiusofthecoldfrontap- peartovaryby∼1kpc(Fig.9)betweenthenorthandsouth.Com- L4 parisonwithsimulationsofcoldfrontsincludingvaryinglevelsof viscosityormagneticfieldssuggestslevelsofviscosityofaround F1 10percentoftheSpitzervalueareconsistentwiththedata(Roedi- geretal.2013;ZuHoneetal.2015).Largeramountsofviscosity Bay (F2-F3) smoothoutallinstabilities,whileinstabilitiesgrowverylargewith noviscosityormagneticfields. Notches 2.5 Linearstructuresinsidethefront ESO 322-93 L5 F4-F6 Using shorter observations we previously detected ripple-like SB fluctuations using Fourier high pass filtering (Sanders & Fabian 2008).Thesequasi-periodicfluctuationswerealsoseeninSBpro- Figure 7. (Top panel) Unsharp-masked 0.5 to 7 keV image. This is the files in three sectors (along the north-east, south-west and north- fractionaldifferencebetweenGaussian-smoothedimageswithσ=2.0and westdirections)Weinterpretedthesefeaturesassoundwavesgen- 15.7arcsec,aftermaskingoutpointsources.‘×’marksthecentralnucleus eratedbyAGNactivity. (seeSection3).(Bottompanel)GGM-filteredimageofthesameregion, Examiningtheunsharp-maskedimage(Fig.7toppanel)there usingσ=7.9arcsec,takenfromFig.2.Thelabelledfeaturesaredescribed areanumberofSBfluctuationswithasimilar∼5−10kpclength inSection2.5. scale to the previously found fluctuations. They are also similar insizetothenotchesalongthecoldfront(Section2.4).However, theydonotappeartohaveaperiodicstructure.CreatingSBpro- diatelytothewestatthemostextremepartofthefront.Theremay filesusingthesamesectorsasinSanders&Fabian(2008),obtains alsobeaSBedgewhichextendsfromthewesternmostpointofthe consistentSBprofilesandresidualstoβ modelfits,showingthat fronttothenorth-west.ThiscanbeseenwhereSBedgeE4appar- thefluctuationsarerobust. entlyconnectstothecoldfrontE2(Fig.4).Thisfeaturecanalso Using a GGM filter on the data instead of unsharp-masking beseenastheenhancementintheremappedclusterimage(Fig.8) (Fig. 7 bottom panel) finds a number of quasi-linear features (la- from the centre of the front extending upwards (to larger radius) belled L1–L5). These straight edges have corresponding features andleftwards(north-west). intheunsharp-maskedimage,buttheGGMfilterappearstobea Outsidethe180◦sectorwheretheedgeisobvious,theSBfits muchmorepowerfultoolfordetectingandconnectingtheseedges implythatthereissomesortofjumporbreakinSBintheradial in SB. All of the labelled structures in Fig. 7 (bottom panel) can rangeexamined.Theallowedjumpradiivaryconsiderably,how- beseenasSBedgesintherawdatawhenexaminedclosely.The MNRAS000,000–000(0000) AverydeepviewoftheCentauruscluster 9 6 kpc) 3346 N W S X Y us ( 32 5 di Jump ra 223680 2574 sseeccttoorrss e (Solar)4 30 arcsec Cbalucsktgerround nc3 1.5 da n u b A atio 1 2 p r m Ju0.5 1 abcd 0 0 O Ne Mg Si S Ar Ca Fe Ni 10 Element 8 c) 6 Figure10.Comparisonofthemetallicityinadjacenthigh(X)andlow(Y) p k metallicityregions,fitting(a)1and(b)2component(s),blank-skyback- σ ( 4 ground, and (c) 1 and (d) 2 component(s), cluster background (see Ap- pendixA4).TheinsetmetallicitymapwascreatedfromS/N=40regions. 2 0 1 aresoundwaves,thentheylieabovethiscriticalangle,andsoitis 0 possiblethatthebendsatthecold-frontedgearecausedbytotalin- ternalreflectionofsoundwaves.Alternatively,variationsinsound x −1 e speedcouldcausethefrontstobendifthewavepassesthrougha d In −2 sharptemperaturegradientatanangle. The5kpcspacingcorrespondsto6Myrtimescaleatthesound −3 Inside speedat2.5keVtemperature.Thistimescaleissimilartotheage Outside −4 of the inner shock and cavities. It is therefore plausible that the −100 −50 0 50 100 structurescouldbegeneratedbyAGNactivity.Thequasi-periodic Angle (°) natureofthefeaturesarguesagainstthefeaturesbeingturbulence generatedbytheAGN.Weanalysethesefluctuationsquantitatively inWalkeretal.(2015)andexaminewhethertheycouldcontribute Figure9.Fitparametersfortheprofilesofthe27sectorsaroundthewest- erncoldfrontfromthenorth-east(−130◦)tosouth-east(130◦).Theseare significantlytoAGNfeedbackheating. themedianand1σ percentilesobtainedfromtheanalysis(AppendixA3). Alternatively,thestructuresmaybeunrelatedtotheAGNbut Shownaretheradiusofthejump,theratioinemissivityoutsidetoinside insteadcausedbysloshing.ThesloshingsimulationsofRoediger (thejumpratio),itswidth(σ)andthepowerlawindicesoftheemissivity etal.(2013),inparticulartheirfig.8,showsfeaturessimilarinap- insideandoutside.Fortheradiuswealsoshowtheresultsusingtwicethe pearance.KHIsonthecurved3Dsurfaceofthecoldfrontcanbe numberofsectors. seenasprojectedfeaturesinsidethecoldfrontedge.Theinterac- tion of KHIs at the cold front, combined with the slow outwards structuresarealsoapparentinthemultiple-scaleGGM-filteredim- motionofthecoldfrontcanalsogiverisetoturbulenceinsideor age(Fig.1bottompanel). underneath the cold front, which also adds fine structure. Linear We tested that these features are significant by similarly fil- featureswerealsofoundbyWerneretal.(2015)insidetheM87 tering a Poisson realisation of a heavily-smoothed cluster image, coldfront.Theysuggestedthatthesecouldinsteadbegeneratedby finding that the noise was at lower levels. In addition, all the la- theamplificationofmagneticfieldlayersbysloshing,asfoundin belledfeaturescanbeseenbycloselyinspectingtherawimages. thesimulationsofZuHoneetal.(2011)andZuHoneetal.(2015). L1–L4 are approximately parallel to each other. L1 and L4 (and perhapsL2andL3)alsoappeartobendwithasharpangleclose 2.6 Metallicityblobs totheedgeofthecoldfront.Theimagealsohighlightssomeflat SBregions(F1–F6).Thebay(discussedinSection3)appearsas There are fluctuations in metallicity interior to the western cold twoflatregionssurroundedbysteepgradients.Therearealsoflat front on ∼5−10 kpc scales (Fig. 3). These features are robust regionsclosertotheedgeofthefront(F1andF4–F6).Tothenorth against changes to the binning scheme. We compared two neigh- isanextensionoftheclusteremissionextendsnorthwards(X1). bouringregionsoffsetfromthenucleuswithhigh(X)andlow(Y) SeveraloftheidentifiedlinearfeaturesL1-L6appeartohave metallicity (Fig. 10) to confirm that these structures are signifi- an approximately regular separation of ∼5 kpc. L1–L3 seem to cant. Fitting the spectra separately, we obtained the metallicities haveasharpbendnearthecoldfront,suggestiveofwavesreflect- usingoneandtwotemperaturecomponentfits,andfortwodiffer- ingoffaboundary.Thetemperatureontheoutsideofthecoldfront entbackgroundspectra. isafactorof∼1.4greaterthaninside.Thereforethecriticalangle The Si and Fe abundances are greater in region 1 for every fortotalinternalreflectionatthecoldfrontis58◦.Ifthefeatures model.TheFemetallicityis30percentgreaterinregion1usinga MNRAS000,000–000(0000) 10 J.S.Sandersetal. Plume edge Inner edge Depression Central cavities Plume Nucleus Bright ridge Bay Hook 30 arcsec 6.4 kpc Figure11.(Toppanel)RGBimageoftheclustercentre.Thebands0.5–1,1–1.5and1.5–7keVareshownasred,greenandblue,respectively.Imageswere extractedusingbinsof0.5detectorpixels(0.246arcsec)andsmoothedbyaGaussianofwidth0.492arcsec.Theimagemeasures2.8by2.3arcmin(35by 29kpc).(Bottompanel)Partiallyunsharp-masked0.5-7keVgreyscaleimageshowinglabelledfeatures,constructedbytakingtheX-raydatain0.246arcsec pixelsandsmoothingbyaGaussianofwidth1pixelandsubtractingthe0.5timestheimagesmoothedby64pixels. MNRAS000,000–000(0000)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.