ebook img

A Universal Self-Amplification Channel for Surface Plasma Waves PDF

0.43 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Universal Self-Amplification Channel for Surface Plasma Waves

A universal self-amplificationchannel forsurfaceplasma waves Hai-Yao Deng1,2, Katsunori Wakabayashi1,3, and Chi-Hang Lam4 ∗ † ‡ 1Department of Nanotechnology forSustainable Energy, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan 2DepartmentofPhysicsandAstronomy,UniversityofExeter,StokerRoadEX44QLExeter,UnitedKingdom 3National InstituteforMaterialsScience (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan and 4Department ofAppliedPhysics, TheHongKongPolytechnicUniversity, HungHum, Hong Kong Wepresent atheoryofsurfaceplasmawaves(SPWs)inmetalswitharbitraryelectroniccollisionrateτ 1. 7 − 1 Weshowthatthereexistsauniversalintrinsicamplificationchannelforthesewaves,subsequenttotheinterplay 0 betweenballisticmotionsandthemetalsurface. Weevaluate thecorresponding amplificationrateγ0, which 2 turnsouttobeasizablefractionoftheSPWfrequencyωs.Wealsofindthatthevalueofωsdependsonsurface scatteringproperties,incontrastwiththeconventionaltheory. n a J I. INTRODUCTION interplaybetweenballisticelectronicmotionsandboundaries 4 resultsinanelectricalcurrentthatallowsanetamountofen- ] Collective electronicoscillations on the surface of metals, ergytobedrawnfromtheelectronsbySPWs,whichwouldin- ll dubbed surface plasma waves (SPWs) [1–3], have emerged evitablyself-amplifyinthecollision-lesslimit,therebydesta- a asapivotalplayerinnanoscopicmanipulationoflight[4–8]. bilizing the system. The hereby predicted self-amplification h Thefunctionalityofmanyprototypicalnanophotonicdevices of collision-less SPWs is analogous to the Landau damping - s critically relies on the distance SPWs can travel before they in collisionless bulk plasma waves [28–31]. While the latter e aredampedoutduetoenergylossesviaseveralchannels[7– is caused by slowly moving electrons that strip energy from m 12]. SPWs canlose energydue to Joule heat, inter-bandab- the wave, the former is attributable to ballistically moving t. sorption,radiationemissionandindividualelectronicmotions electronsimpartingenergyto the wave when boundariesare a (Landaudamping). Most of the losses can be efficiently but present. m nottotallyreducedunderappropriatecircumstances. Ampli- Inthenextsection,wedescribethesystemunderconsider- - fiers have been contrived to compensate for the losses [13– ation,stateourmainresultsandconceivetheirpossibleexper- d 21],whichareallextrinsicandrequireexternalagentssuchas imentalsignature.InSec.III,theSPWtheoryispresented.In n o adipolargainmediumtosupplytheenergy. Sec.IV,wedetailthemethodsusedinthetheory.Wediscuss c ThestandardtheoryofSPWswasformulatedshortlyafter the results and conclude the paper in Sec. V. Some calcula- [ theirdiscoveryin1957[1]andhasbeencomprehensivelydis- tionsandargumentsnotcoveredinSec.IIIandIVaregiven 1 coursed in many textbooks [3, 5, 6, 22, 23]. In this theory, inappendicesAandB. v theelectricalpropertiesofmetalsareeffectedbyafrequency- 0 dependent dielectric function ǫ. To analytically treat ǫ, the 6 simple Drude model or the slightly more involved hydrody- II. RESULTS 0 namicmodel[22,24,25,27]isinvariablyinvoked.Foreither 1 model to be valid, electronic collisions must be sufficiently 0 frequentsothattheelectronicmeanfreepath,l =v τ,where System - We consider a prototypical system, namely, a . 0 F 1 v is the Fermi velocity and τ the relaxation time, is much semi-infinitemetal(SIM)occupyingthehalfspacez 0and F ≥ 0 shorter than the SPW wavelength or the typical length scale interfacing with the vacuum at a geometrical surface z = 0. 7 of the system. The general case with arbitrary τ, especially ASIMisnotsheerlyofacademicinterest: itcanberegarded 1 the collision-less limit, where τ , defies these models asonehalfofathickmetalfilm. Inthespiritoftheso-called : v andhasyettobeentertained.Othe→rm∞odelsbasedonabinitio jelliummodel,[32–34]themetalistreatedasafreeelectron Xi quantummechanicalcomputations[22,26]arehelpfulinun- gasembeddedinastaticbackgroundofuniformlydistributed derstandingthecomplexityofrealmaterialsbutfallsshortin positivecharges. Onthewholethesystemisneutral. Theki- ar providinganintuitiveandsystematicpictureofSPWsunder- netic energy of the electrons is written ε(v) = 1mv2, where 2 pinnedbyelectronsexperiencinglessfrequentcollisions. m and v denote the mass and velocity of the electrons, re- InthepresentworkweemployBoltzmann’stransportequa- spectively. Inter-bandtransitionsareaccordinglyignoredbut tiontoderiveatheoryofSPWsinmetalswitharbitraryτ. Our their effects will be discussed in Sec. V. The surface is of a analysisrevealsauniversalintrinsicamplificationchannelfor hard-walltypeandpreventselectronsfromleakingoutofthe SPWs. Theexistenceofthischanneldoesnotdependonτbut system. Throughoutwe reserver = (x,y) for planarcoordi- iswarrantedbyageneralprinciple. Weshowthattheunique nates while x = (r,z) denotes the complete position vector. Weneglectretardationeffectsintotal. Key results - We find that the SPW frequency ω and its s amplificationrateγcanbewritteninthefollowingform, [email protected] ∗ †[email protected] 1 ‡[email protected] ωs =ωs0β(p), γ=γ0− τ, γ0 >0. (1) 2 Here ω = ω /√2 is the SPW frequency in the hydro- own electric field E(x,t). Here t denotes the time. Thanks s0 p dynamic/Drude model, with ω being the characteristic fre- to the linearity and symmetries of the system, we can write p quencyofthemetal,p [0,1]isaparameterthataccountsfor ρ(x,t)=Re ρ(z)ei(kx ωt) andE(x,t)=Re E(z)ei(kx ωt) with- ∈ − − surfacescatteringeffects,β(p) 1weaklydependson pand out loss of ghenerality. Hiere Re/Im takeshthe real/imaiginary ∼ γ0 includesLandaudampingandisexactlyindependentofτ. partofaquantity,k 0denotesthe wavenumberwhile ωis Both ωs and γ0 are determined by the secular equation (18) the SPW eigen-frequ≥ency to be determined by the equation giveninSec.IV.Analyticalexpressionscanbefoundforβ(p) of motion. In general, ω can be complex. Instead of ρ(z), it and γ0 under certain approximations. Exact ωs and γ0 have provesmoreconvenienttoworkdirectlywith beencomputednumericallyandaredisplayedinFig.1,where weEoqbusaetrivoent(h1a)tfγu0rn/ωishs0es≈aαn(i1nt+rinps),icwaimthpαlifi≈ca0t.i1o.nchannelγ0 ρq =Z0∞dzρ(z) cos(qz). for SPWs. It also shows that, in contrast to the hydrody- In order for the jellium model to be valid, we must impose namic/Drude model, ω relies on surface properties via the s that ρ = 0, where q is a cut-off. q 1 roughly gives the parameter p. In particular, as seen in Fig. 1 (a), ωs is sig- q>qc c −c microscopiclatticeconstantofthemetal.Wemaychooseq nificantly – more than 10% – larger than ω , the value ex- c pectedfromthehydrodynamic/Drudemodel.s0Inotherwords, kF = mvF/~ ∼ n01/3 ∼ ks = ωs0/vF, where kF is the Ferm∼i β(p)isunityinthesemodelswhereasitcouldreachupto1.2 wavelengthandn0 themeanelectrondensity. Theresultsdo in our theory. Such a great contrast would be ideal for ex- notdependontheexactvalueofqcaslongasitissufficiently perimentallyverifyingthetheory. Unfortunately,incommon large.Bydefinition, materialssuchasnoblemetals,duetopronouncedinter-band 2 transitions,thereisnosimplerelationbetweenω andω . ρ(z)= ∞dqρ cos(qz). s p πZ q Experimentalsignature - We conceiveone possible reper- 0 cussion of the self-amplification channel, noting that the net Intermsofρ ,wecaneasilyfind,bysolvingLaplace’sequa- q amplification rate γ = γ0 1/τ and its temperature depen- tion,that − dence can be directlymeasured in variousways, e.g. by ex- 4kρ aminingtheSPWpropagationdistanceorthewidthoftheen- E (z)= i ∞dq q 2cos(qz) e kz , (2) ergyloss peaksin electronenergyloss spectroscopy(EELS) x − Z0 k2+q2 h − − i orthequalityofthereflectancedipsintheKretschmann-Otto 4kρ E (z)= ∞dq q 2(q/k)sin(qz) e kz . (3) configuration. In this paper, our calculation of γ0 is done at z Z k2+q2 − − 0 h i zero temperature. However, arguably γ could bear a dif- 0 AsnapshotofE(x,t)foratypicalSPWisdisplayedinFig.3 ferent – probably weak – temperature dependence than 1/τ. In sufficiently pure samples, in which the residual scattering (a)andthemagnitudeofE(z)isplottedin (b). Of course,in makingtheseplotsρ hasbeendeterminedbytheequationof is small enough, there might exist a critical temperature T , q ∗ motiontobesetupshortly. above which γ < 0 while below it γ > 0, i.e. T marks a ∗ Current densities - Under E(x,t), an electrical current, of transition of the system from the Fermi sea to another state, seeSec.Vforfurtherdiscussions.InFig.2,wesketchthesit- densityJ(x,t) = Re J(z)ei(kx−ωt) , willflow. Itcan becalcu- uationdescribedhere,assuming1/τisdominatedbyphonon latedusingBoltzmanhn’stransporitequation,seeSec.IV.Asa andimpurityscattering. crucialobservation,wefindthatJ(x,t)canalwaysbewritten To experimentally investigate the self-amplification chan- in two disparate contributions, J(z) = JD(z) + JB(z). What nelusingthemostexperimentedmaterialslikegoldandsilver, setsthemapartistheirdistinctrelationstoE(z),asillustrated wemustclarifytheeffectsofinter-bandtransitions,whichnot in Fig. 4. It turnsout that JD(z) follows E(z) almost locally, onlybringaboutadditionalenergylossesbutalsostronglyaf- asintheconventionalhydrodynamic/Drudemodel–whichis fectthevalueofω .WediscusstheseeffectsfurtherinSec.V. applicableonlywhenelectronsexecutediffusivemotions,i.e. s τisverysmall. Explicitly,J (z)canbewritten D i ω2 III. THEORY J (z)= pE(z)+J(z), (4) D ω¯ 4π ′ Inthissection, wegiveasystematicexpositionofthethe- where ω¯ = ω+i/τ, ω = 4πn e2/m is the characteristic p 0 orythatsupportsequation(1). Sometechnicalaspectsareleft plasmafrequencyofthemetapland to Sec. IV. The overallobjectiveis to set up the equationof motion for the charge density, analyze its internal structure J(z)= ∞dq8ρqF(k,q;ω¯)cos(qz), (5) andsolveit. We firstdiscusstherelationbetweenthecharge ′ Z k2+q2 0 density andthe electric field, andthen prescribesthe current densityandshowthatitpossessesaspectacularstructure.We signifies a non-local contribution that generates dispersive proceedthencetotheequationofmotion,extractingitssolu- plasmawaves,with tionsandunveilingthepropertiesofSPWs. Electrostatics-Weaimforestablishingtheequationofmo- F(k,q;ω¯)= m 3 d3v( e2f )v ∞ kvx+qvz l. tion for the charge density ρ(x,t) under the influence of its (cid:18)2π~(cid:19) Z − 0′ Xl=2 ω¯ ! 3 (a) (b) 0.95 0.2 Numerical (exact) 0.18 0.9 Fitting by 0.09+0.1 p 0.16 0.85 ωp ωp / / 0.14 ωs γ0 0.8 0.12 Numerical (exact) 0.75 0.1 Equation (1) 0.7 0.08 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 p p FIG.1. NumericallycalculatedSPWfrequencyω anditsintrinsicamplificationrateγ asafunctionoftheFuchsparameter p,byequation s 0 (18).k/k =0.1andq /k =1.5.Theapproximateanalyticalsolutionsarealsoshown. s c s whereJ (z)iscontributedbyelectronsdirectlyemerging B,emg 1/τ at the surface while J (z) by reflected electrons. Here p B,ref is the Fuchsparameter, whichgaugesthe probabilitythat an electron impinging on the surface gets reflected back. Both contributionsarisefromelectronsmovingawayfromthesur- face,v 0. Infact, z γ ≥ 0 m 3 JB,emg/ref(z)=(cid:18)2π~(cid:19) Z d3vΘ(vz)eveiωv˜zzgB,emg/ref(v). (6) whereω˜ =ω¯ kv and x − 4ρ L (v ,v ,k,q;ω¯) residual scattering rate g (v)= ef ∞dq q emg/ref x z ,(7) B,emg/ref − 0′Z k2+q2 0 T* with Temperature k(iv v ) 2(q2v2 ω˜kv ) L (v ,v ,k,q;ω¯)= x− z z ± x . emg/ref x z kv iω˜ − ω˜2 q2v2 z± − z FIG.2. Possibleinstabilitycausedbytheself-amplificationchannel uponcoolingdownthesystem. AtthecriticaltemperatureT∗,γ0 = For p ≈ 1 andsmallkvF/ω¯, it iseasy to show that JB,x(z) ≈ 1/τ. Herethesketchassumesthat1/τisdominatedbyphononand 0, implying that JB(z) points normal to the surface. This is impurityscattering. illustratedinFig.4(b). Positiveness of γ - Equation (6) strongly constrains the 0 value of ω¯. Actually, it requiresthat Im(ω¯) 0; otherwise, Here f0(ε) denotes the Fermi-Dirac distribution and f0′ its theintegralinthisequationwoulddivergefor≥anyz,because dpearpievra.tivOen,lywhteicrmhsiswtiothboedtdakleinnatthezesreoriteesmcpoenrtartiubruetei.nOthnies eiωv˜zz divergesexponentially for vz → 0. In Sec. IV and Ap- pendixA,thispointisfurtherelaborated.Since can show that J (0) 0. The factor headingE(z) in Eq. (4) z′ ≡ is recognized as the Drude conductivity. As this conductiv- 1 γ=Im(ω)=γ , γ =Im(ω¯), (8) ityisnearlyimaginary,JD(x,t)pointsalmostperpendicularto 0− τ 0 E(x,t),asseeninFig.4(a). In contrast, J (z) – the ’surface-ballistic’ current– has no the fact that Im(ω¯) 0 suggests an intrinsic amplification simple relationBwith E(z) and reflects genuine surface ef- channelγ0 competing≥withthelosschannelτ−1. Inwhatfol- fects: JB(z) would totally disappear if the surface were ab- lows, we show thatω¯ is independentof τ−1 by meansof the sent. While J (z) is essentially a bulk property, J (z) orig- equationofmotion. D B inates from the interplay between ballistic motions and the Equation of motion - The equation of motion can be ob- surface.Itconsistsoftwoparts, tainedbyrelatingρ(z)andJ(z)viatheequationofcontinuity, J (z)=J (z)+pJ (z), iω¯ρ(z)+ J(z)= J (0)δ(z), (9) B B,emg B,ref z − ∇· − 4 (a) x (in units of k-1) (b) s 20 30 40 50 60 70 40 14 0.8 12 Metal 30 0.4 -1k)s 10 10 of 8 0 s 20 nit 6 u -0.4 (in 4 5 z 10 -0.8 2 EEzx 0 0 0 0 0.3 0.6 0.9 -6 0 6 Vacuum ρ(z) FIG.3. SketchofSPWssupportedonthesurfaceofasemi-infinitemetal. k/k =0.1and p=1. (a)Chargedensitymap(color)andelectric s fieldmap(arrows). (b)Plotsofρ(z)andE (z),whereµ = x,z. ρ(z)iscalculatedbyEq.(16)whileE (z)by(2)and(3). Bothρ(z)andE (z) µ µ µ havebeennormalized. (a) (b) 14 Diffusive current density 14 Surface - ballistic current density -1k )s 12 -1k )s 12 of 10 of 10 s 8 s 8 nit 6 nit 6 n u 4 n u 4 z (i 02 z (i 02 20 30 40 50 60 70 20 30 40 50 60 70 x (in units of ks-1 ) x (in units of ks-1 ) FIG.4.Snapshotsof(a)diffusivecurrentdensityJ (x,t)and(b)surface-ballisticcurrentdensityJ (x,t)inSPWs.Thesetwocurrentdensities D B arenotdiscriminatedbythevalueofτ,butbytheirdependenceonthesurface.J signifiesgenuinesurfaceeffectsandwouldtotallydisappear B withoutthesurface,whileJ isabulkproperty.k/k =0.1andp=1.Im(ω¯)hasbeenneglectedtoemphasizethedifferences. D s which is derived and discussed in the next section. Here from J (z) with elements (q,q;ω¯) given in Sec. IV. B ′ = (ik,∂ ,∂ ). Substituting J(z) into this equation and In Ap∇pe·ndix B, we show thatM(ω¯) M Z, where M y z 0 0 F∇ouriertransformingit,wearriveat kv /ω isaconstantandZistheMunitym≈atrixwillallelement∼s F p being one. It makes only a minor correction to the diagonal ∞dq (q,q;ω¯) ω¯2δ(q q) ρ =S(ω¯), (10) matrixwithelementsΩ(k,q;ω¯)δ(q q′). ′ ′ ′ q − Z H − − ′ Theequationofmotion(10) cannowbere-castin a com- 0 h i pactmatrixform, whereS(ω¯)=iω¯J (0)countsasasourcetermand z (ω¯) ω¯2I ρ=S(ω¯)E, (12) (q,q;ω¯)=Ω2(k,q;ω¯)δ(q q)+ (q,q;ω¯) H − H ′ − ′ M ′ whereIistheidenhtitymatrix,ρi isacolumnvectorcollecting aretheelementsofamatrixdenotedby (ω¯),with all ρ and E is a column vectorwith all elements beingone. H q Forlateruse,thesourcetermcanberewritten 4πω¯ k F(k,q;ω¯) Ω2(k,q;ω¯)=ω2 + · , k=(k,q). (11) p k·k S(ω¯)=Gt(ω¯)ρ=Z ∞dqGqρq, Gq = 4Gk2(k+,qq;2ω¯), (13) See that Ω(k,q;ω¯) is an even function of ω¯ and depends on 0 thelengthbutnotthedirectionofk. Thematrix (ω¯)arises where (ω¯) is another column vector, t takes the transpose, M G 5 and which determinesω¯ and hence the SPW eigen-frequencyω. Uponomitting (ω¯)from (ω¯),thisequationbecomes M H G(k,q;ω¯)=G (k)+G (k,q;ω¯), D B 4G(k,q;ω¯) 1 1= ∞dq . (18) with Z k2+q2 Ω2(k,q;ω¯) ω¯2 0 − ω2 Let us write the solution as ω¯ = ω + iγ and hence ω = p s 0 GD(k)=k 4π ωs +iγ with γ = γ0 1/τ. See thatthe solutions ωs +iγ0 − ± occur together, in accord with the fact that ρ(x,t) is a real- arisingfromJ (0)and valuedfield. InEq.(18),Ω(k,q;ω¯)isgenerallycomplexand D,z γ automaticallyincludesLandaudamping. 0 GB(k,q;ω¯)=GB,emg(k,q;ω¯)+pGB,ref(k,q;ω¯) Hydrodynamic/Drudelimits - The hydrodynamicmodelis revisited if we replace in Eq. (18) G(k,q;ω¯) and Ω(k,q;ω¯) fromJB,z(0). Here withGD(k) and ωb(k) given by Eq. (15), respectively. If we furtherdisregardthedispersioninω (k),theDrudemodelis b m 3 GB,emg/ref(k,q;ω¯)=iω¯ (cid:18)2π~(cid:19) tIhnebnortehcmovoedreelds,,iω¯niwshriecahl.caseweimmediatelyfindωs = ωs0. d3vΘ(v )( e2f )v L (v ,v ,k,q;ω¯). (14) Approximate solutions - We can solve Eq. (18) approxi- ×Z z − 0′ z emg/ref x z mately. Tothelowestorderinγ /ω ,whichisassumedtobe 0 s small,wemaydetermineω byapproximatingtherealpartof s Equations(10)-(14)areexactanddonotexplicitlyinvolveτ, (18)asfollows therebyconcludingthatω¯ isindependentofτ. Bulkmodesandlocalizedmodes-Withoutthe surfacewe 4Re G(k,q;ω ) 1 have (q,q;ω¯) 0andS(ω¯)=0. Equation(10)reducesto 1 ∞dq s . (19) Ω2(k,Mq;ω¯) ′ω¯2 =≡ 0 forany ρ , 0, which all are extended ≈Z0 (cid:2)k2+q2 (cid:3) Ω2(k,q;ωs)−ω2s q − modes and therefore describe cosine bulk plasma waves. If Substitutingtheso-obtainedω intheimaginarypartof(18), s wediscretizeqinstepdq,intotalthereare Nc = qc/dqsuch wefind modes. Solvingthisequation,wefindthedispersionrelation iωimnbtae(kgg)rinafnaordrytihpneatsrhetedmuinoetdeteogsr.aaGlpieonnlveeo,rlalvolelcyda,tiΩend(Fka,(tqkω¯;,qω¯=;)ω¯ck)ov,uxgl+divpqinovgsz,sreoissfsethatnoe ωγ0s ≈−12 ∞dqR04∞Rdeq[G4(kI,mq;ω[kG2s)+](kq,2q;ωs)]1Ω2(k,q;1ωs)−ω2sω2s , (20) thecelebratedLandaudamping. Neglectingthis,oneobtains R0 k2+q2 Ω2(k,q;ωs)−ω2s Ω2(k,q;ωs)−ω2s forsmall k which can be brought into a rather simple form if we take | | Ω(k,q;ω ) ω2 andω ω . Namely, 3k kv2 s ≈ p s ≈ s0 ω2(k) ω2 1+ · F ω2, (15) whichwaswellbknow≈nfpromthe5hydωr2podyn≈amicp/Drudemodel. ωγ0s ≈−12R0∞∞ddqq RIme[[kGG2((+kkq,,qq2;;ωωss))]] = 12IRme(cid:2)JJzz((00))(cid:3). (21) 0 k2+q2 In the presence of the surface, equation (10) admits not R (cid:2) (cid:3) only extended modes, for which S(ω¯) = 0, but also local- In this approximation, Ω(k,q;ω ) could have an imaginary s izedmodes,forwhichS(ω¯) , 0. Thenumberoftotalmodes partonlyifq > ω /v . Landaudampingwouldbeexcluded c s F cannot change and is still Nc. The extended modes again fromγ0otherwise. represent bulk waves and for them equation (12) reduces to Toproceed,weneedtoevaluateG (k,q;ω¯). To thelinear B (ω¯) ω¯2I ρ = 0. As shown in Appendix B, because of orderink,wefind H − thheconstrainitthatS(ω¯) = 0,thereareintotalatmostN 1 c− m 3 solutionstothisequation. Thenumberoftotalbulkmodesis G (k,q;ω¯) iω¯e2 thenreducedbyonefromthatwithoutthesurface. Theirdis- B ≈ (cid:18)2π~(cid:19) bpyerTωshiboe(nkmr)e.islasitniognbiuslnkemgloigdiebhlyasaffbeecetnedcobnyveMrte(ωd¯)inatnodasltoilclagliivzeedn ×Z d3vΘ(vz)f0′vz2qω¯22v2z−(1q2+v2zp) + kvz(i1ω¯−p). (22) modesatisfyingS(ω¯) , 0andrepresentingSPWs,forwhich Carryingouttheintegralgives equation(12)yields ω2 k(p 1) 3(1+p)v G (k,q;ω¯) p − i Fq2 . (23) ρ=S(ω¯) (ω¯) ω¯2I −1E. (16) B ≈ 4π " 2 − 4 ω¯ # H − h i Thus,Re G(k,q;ω ) k(ω2/4π)(1+ p)/2. Insertingthisin PluggingthisinEq.(13),weobtain s ≈ p Eq. (19),(cid:2)we get ω(cid:3) ω 2 p+1. We see that ω gen- 1= t(ω¯) (ω¯) ω¯2I −1E, (17) erally depends on susrf≈ace ss0caqtter−ing2effects, in contrasst with G H − h i 6 whatis expectedof the hydrodynamic/Drudemodel. Analo- mann’sequationcanbe uniquelydeterminedupto some pa- gously, using Eq. (21) and q v ω , we find γ αω , rameters,whichsummarizetheeffectsof–whilewithoutac- c F s0 0 s0 ∼ ≈ withα = 3/2π. Landaudampinghasbeenexcludedhere,as tually knowing – φ (x). With translational symmetry along s theapproximationonlytakestherealpartofΩ(k,q;ω ). the surface, only one such parameter, namely, the so-called s Numerical solutions - Equation (18) can also be exactly Fuchs parameter p, is needed for the simple specular scat- solved numerically. A comparisonwith the approximateso- tering picture. Physically, p measures the probability that lutionis displayedin Fig. 1. Theagreementin the matterof an electronimpinginguponthe surfaceis bouncedback. As ω is satisfactory, while that for γ is not. The discrepancy usual,wewrite f(x,v,t)= f (ε(v))+g(x,v,t),whereg(x,v,t) s 0 0 mightbe because the approximatesolution excludesLandau isthenon-equilibriumpartofthedistributionfunctionin the damping. It should be emphasized that, our numericalsolu- presence of E(x,t). The current density can then be calcu- tionsdonotdependonthechoiceofq ,providedthelatteris lated by J(x,t) = (m/2π~)2 d3v ev g(x,v,t), where e de- c bigenough,i.e. qc ks. notes the electron charge. IRt is worth pointing out that, as ≥ g(x,v,t) is a distribution only for the bulk, the charge den- sity is not given by ρ˜(x,t) = (m/2π~)2 d3v e g(x,v,t), i.e. IV. METHODS ρ(x,t) , ρ˜(x,t). Actually,ItiseasytoseRethatρ˜(x,t)satisfies (∂ +1/τ)ρ˜(x,t)+∂ J(x,t) = 0ratherthanEq.(24). Obvi- t x · Thissectiondiscussesfurthersometechnicalaspectsofthe ously,whatismissingfromρ˜(x,t)isexactlythechargesjust theory. We set outwith a discussion of the equationof con- localizedonthesurface. tinuity in the presence of surfaces. Then we describe Boltz- Electronic distribution function - Let us write g(x,v,t) = mann’sequationandsolveittoobtaintheelectronicdistribu- Re g(v,z)ei(kx ωt) . Intheregimeoflinearresponses, Boltz- − tionfunctions.Thencewederivethedynamicequationforthe manhn’sequationreiads chargedensity. ∂g(v,z) v E(z) tinEuiqtuy,ati∂otn+o1f/cτonρti(nxu,itt)y+-W∂xesjt(axr,ttw)i=th0th,ewehqiucahtiroenlaotefscothne- ∂z +λ−1g(v,z)+ef0′(ε) ·vz =0, (25) · chargedensityρ(x,t)andthecurrentdensityj(x,t)inageneric (cid:0) (cid:1) where λ = iv /ω˜. In this equation, the velocityv is more of way. Herethedampingterm ρ(x,t)/τisincludedtoaccount z − a parameter than an argument and can be used to tag elec- for electronic collisions that would drive the system toward tronbeams. Itis straightforwardto solve the equationunder equilibrium. In the jellium model, ρ(x,t) appears when the appropriateboundaryconditions(AppendixA).Naturally,we electrondensityisdisturbedawayfromitsequilibriumvalue have n . Thesurfacepreventsanyelectronsfromleakingoutofthe 0 metal. Explicitly,wewritej(x,t) = Θ(z)J(x,t),whereΘ(z)is g(v,z)=g (v,z)+g (v,z), bulk surface theHeavisidestepfunction. Insodoing,wehavetreatedthe surfaceasahardwallandconsideredthefactthatJ(x,t)may where the bulk term would exist even in the absence of sur- notvanishevenintheimmediateneighborhoodofthesurface faceswhereasthesurfacetermwouldnot. Usingtheexpres- – which is obviouslythe case with the hydrodynamic/Drude sionsforE(z),weobtain model.Theequationofcontinuitybecomes 4ρ kv +qv g (v,z)= ef ∞dq q x z eiqz, (26) ∂t+ 1τ!ρ(x,t)+∂x·J(x,t)=−Jz(x0,t)δ(z), (24) bulk − 0′Z−∞ k2+q2ω¯ −(kvx+qvz) whichhasthesameformasonewouldexpectforabulksys- where x0 = (r,0) denotes a point on the surface and δ(z) is tem. Herewehavedefinedρq<0 :=ρ q. theDiracfunctionpeakedonthesurface.Physically,theright As for gsurface(v,z), we find it w−ith a subtle structure: it handsideofEq.(24)meansthat,chargesmustpileuponthe can be written as a sum of two contributions, one of which, surfaceiftheydonotcometoahaltbeforetheyreachit. gD,surface(v,z),hasasingleformforallelectronsirrespective Equation(24)reducestoequation(9)uponusingtheplane oftheirvelocitieswhiletheother,gB,surface(v,z),doesnot.Ex- waveformforρ(x,t)andJ(x,t). plicitly,wehave Boltzmann’sapproach-WeemployBoltzmann’sequation 4ρ k(v iv ) stococpailcculelvateel,Jw(xe,mt)aaysinatrroedspuocensaestuorfEac(xe,pt)o.tenOtinalthφes(xm)icinroto- gD,surface(v,z)=−ef0′Z0∞dq k2+qq2 kvzz−+iω˜x e−kz. (27) theequationtoaccountforsurfacescatteringeffects.Thecor- Wemaycombineg (v)andg (v,z)inasingleterm, bulk D,surface responding surface field E (x) = ∂ φ (x) is peaked on the s x s − surfaceand,complyingwiththehard-wallpicture,mayhave g (v,z)=g (v,z)+g (v,z), D bulk D,surface aninfinitesimalspreadd 0 . Unfortunately,asφ (x)can s + s hardlybeknownandvarie→sfromonesampletoanother,this inordertoseparatethemfrom microscopicmethodisimpracticalandfutile. g (v,z):=g (v,z). Alternatively, surface scattering effects can be dealt with B B,surface using boundaryconditions[32, 34–36]. This is possible be- Insodoing,wehavedecomposed cause E (x) acts only on the surface. In the bulk, the solu- s tions–theelectronicdistributionfunction f(x,v,t)–toBoltz- g(v,z)=g (v,z)+g (v,z) D B 7 ina diffusiveanda ballisticcomponent. Itisunderlinedthat electroniccollisionrate1/τ. Asakeyconsequenceofthethe- g (v,z) arises only when the surfaces are present. For bulk ory, we find thatthere exists a self-amplificationchannelfor B systems without surfaces, it does not exist even if the elec- SPWs,whichwouldcausethelattertospontaneouslyamplify tronicmotionsaretotallyballistic, i.e. τ . Assuch, we at a rate γ if not for electronic collisions. Surprisingly, the 0 → ∞ callit’surface-ballistic’. valueofγ turnsouttobeindependentofτ. Thepresenceof 0 g (v,z) exists only for electrons leaving the surface, i.e. thischannelisguaranteedbythecausalityprinciple. B vz 0. Those electronscoulddirectly emergefromthe sur- Whetherthesystemcouldactuallyamplifyornotdepends ≥ face or be those incident on but subsequently get reflected on the competition between γ and 1/τ. If γ > 1/τ, SPWs 0 0 bythesurface. WhatfundamentallysetsgB,surface apartfrom willamplifyandthesystemwillbecomeunstable.Inourthe- gD(v,z)restwithitssimplezdependence.Actually,wehave ory,thenon-equilibriumdeviationg(v,z)referstotheFermi- Dirac distribution f (ε); as such, the instability is one of the gB(v,z)=Θ(vz)eiωv˜zz gB,emg(v)+ pgB,ref(v) , Fermisea. Needless0 tosay,theinstabilitywillbeterminated h i once the system deviatesfar enoughfromthe Fermisea and wheretheFuchsparameter pgaugesthefractionofreflected settlesinastablestate. Clarifyingthenatureofthedestination electrons and g (v) has been given in Eq. (7). As al- B,emg/ref stateisasubjectofcrucialimportanceforfuturestudy. ready remarked, since gB(v,z) ∝ eiω˜z/vz ∝ e−γ0z/vz, we must Onecentralfeatureofourtheoryistheclassificationofcur- haveγ 0;otherwise,itwoulddivergeeitherwhenz 0 ≥ → ∞ rentdensitiesintoadiffusivecomponentJ (z)andasurface- or for small v . In Appendix A, we argue that this result is D z ballisticcomponentJ (z). Thisclassificationisnotbasedon aconsequenceofthecausalityprinciple,whichstatesthatthe B thevalueofτbutaccordingtowhetherthecomponentobeys numberofreflectedelectronsisdeterminedbythatofincident the (generalized) Ohm’s law or not. Apart from this, these electrons,ratherthanotherwise. componentsarealsodiscriminatedinotherways.Firstly,they Divergence of the current densities - The current density J(z)=(m/2π~)2 d3vevg(v,z)issplitintwoparts:J (z)and arecontrolledbydifferentlengthscales. Asitlargelyfollows D the local electric field E(z), the characteristic length associ- J (z), where J R(z) = (m/2π~)2 d3v ev g (v,z). Using B D/B D/B atedwithJ (z)isk 1. Ontheotherhand,thelengthforJ (z) D − B the expressions for gD/B(v,z), it isR straightforward to obtain isv /γ ,becauseofitssimplez-dependence. Secondly,they F 0 J (z) given by Eq. (4) and J (z) by Eq. (6). To obtain the D B are oriented disparately. J (z) is largely oriented normal to D equation of motion (10) from the equation of continuity (9), E(z)locallywhereasJ (z)normaltothesurfaces–especially B theFouriertransformof J (z)isneeded.Wefind ∇· D/B for pclosetounity. Thirdly,JD(z)isabulkpropertyandex- Z ∞dz cos(qz)∇·JD(z)= ω¯i Ω2(k,q;ω¯)ρq, (28) tirsutserseugrafardcleeessffeocftsthaendsuirtfwacoeu;ldOdnisthapepceoanrtwrairtyh,oJuBt(szu)rfraecfleesc.ts 0 If we replace the vacuum by a dielectric ǫ, γ may be re- 0 withΩ(k,q;ω¯)givenbyEq.(11). Additionally, duced by an order of 1/ǫ due to weakened E (z) and J (0). z z Roughlyspeaking,ρ(z)presentonthemetalsideinducesmir- i ∞dzcos(qz) J (z)= ∞dq (q,q)ρ , (29) ror charges amounting to ρ(z) = ρ( z)(ǫ 1)/(ǫ + 1) on Z0 ∇· B ω¯ Z0 ′M ′ q′ thedielectricside. Ifρ(z) is′highly−loc−alized−abouttheinter- where (q,q′)isamatrixgivenby face, as is with SPWs, ρ(z) and ρ′(z) will combine to give a M netchargeof2ρ(z)/(ǫ +1). Asa result, E and J (0)willbe z z 4ω¯2 m 3 reducedbyafactorof2/(ǫ+1). Thisleadstosmallerγ and (q,q)= 0 M ′ k2+q′2 (cid:18)2π~(cid:19) smallerωs0 = ωp/√ǫ+1. Studyingdielectriceffectsmaybe iω˜v importantinapplications. d3vΘ(v ) e2f z L(v ,v ,k,q;ω¯),(30) ×Z z − 0′ ω˜2 q2v2 x z ′ Anotherproblemthatneedstobeaddressedforexperimen- (cid:16) (cid:17) − z tal studies is concerned with the effects of inter-band tran- where sitions. In the most experimented materials, such as silver L(v ,v ,k,q;ω¯)= L (v ,v ,k,q;ω¯)+ pL (v ,v ,k,q;ω¯). and gold, these transitions are known to have dramatic ef- x z emg x z ref x z fects. They not only open a loss channel due to inter-band InAppendixB,weshowthat (q,q′)generallymakesami- absorption, but also significantly shift the SPW frequency. norcorrection,oftheorderofMkvF/ωs,toΩ2(k,q;ω¯)δ(q q′). Including them in our formalism consists of a simple gen- − Ultimately, the insignificance of this correction may be as- eralization: in addition to J (z) and J (z), the total cur- D B cribed to the factor eiω˜z/vz in gB(v,z), which is extremelyos- rentdensityJ(z)mustnowalso havea componentJint(z) ac- cillatoryoverzwithaperiodlessthan vF/ωs. counting for inter-band transitions. The equation of motion ∼ SubstitutingEqs.28and(29)intheequationofcontinuity, is obtained by substituting J(z) in Eq. (9). One may write weimmediatelyobtaintheequationofmotion(10). J (z)= dz σ (z,z;ω)E (z),whereµ,ν= x,y,zand int,µ ν ′ µν ′ ν ′ theinter-bPandRconductivityσµν caninprinciplebecalculated usingGreenwood-Kuboformula. Inpractice,calculatingσ µν V. DISCUSSIONSANDCONCLUSIONS could be a formidable task even for the imaginablysimplest surfaces. Nevertheless, one may argue that J (z) primarily int Thus, on the basis of Boltzmann’s equation, we have es- affectsthe propertiesofbulkwaves, namely,Ω(k,q;ω¯). The tablishedarigoroustheoryforSPWsinmetalswitharbitrary causalityprincipleshouldstillprotecttheamplificationchan- 8 nel. Asystematicanalysiswillbepresentedelsewhere. z for any v. For electrons movingaway from the sur- → ∞ We remarkthat, γ can also be calculatedby studyingthe face, i.e. v > 0, thisconditionis fulfilledfor anyC(v). For 0 z temporalevolutionoftheelectrostaticpotentialenergyofthe electrons moving toward the surface, i.e. v < 0, we may z system. In particular, equation (21) can be directly derived choose inthisway. Detailedcalculationsalongthislinewillbepub- e∂ f lishedinaseparatepaper. C(v)= v 0 ∞ dz′e−iω˜vzz′E(z′), vz <0, (A2) To conclude,we havepresenteda theoryforSPWs taking mvz ·Z0 intoaccounttheuniqueinterplaybetweenballisticelectronic whichleadsto motions and boundary effects, from which it emerges a uexnpiveecrtseadltshealtf-tahmepsltiufidcyatiwonillcbheaanrnefalrf-oreracthheinseg wpraavcetisc.alIatnids g(v,z)= em∂vvfz0 ·Zz∞dz′eiω˜(zv−zz′)E(z′), vz <0. (A3) fundamentalconsequences,tobeexploredinthefuture. TodetermineC(v)forv >0,theboundaryconditionatz=0 z Acknowledgement – HYD acknowledges the Interna- hasto be used, which dependson surface properties. In this tional Research Fellowship of the Japan Society for the paper, we assume that a fraction p (Fuchs parameter)of the Promotion of Science (JSPS). This work is supported by electrons impinging on the surface are bounced back in the JSPS KAKENHI Grant Nos. 15K13507and 15K21722and absenceofE (z),i.e. z MEXTKAKENHIGrantNo. 25107005. g (v ,v ,v >0),z=0 = pg (v ,v , v ),z=0 x y z x y z − (cid:16) (cid:17) (cid:16) (cid:17) AppendixA:Electronicdistributionfunctions evaluatedatEz(z)=0. Thenweget ThegeneralsolutiontoEq.(25)isgivenby C(v)= p e∂vf0 ∞dz′eiω˜(zv+zz′)E(z′), vz >0. (A4) − mvz ·Z0 e∂ f z g(v,z)=eiωv˜zz C(v) v 0 dz′e−iω˜vzz′E(z′) , (A1) Bydefinition, pvariesfromzerotounity.Thus,weobtain − mvz ·Z0 ! g(v,z)=Θ(v )g (v,z)+Θ( v )g (v,z), z > z < where C(v) is an arbitrary integration constant to be deter- − mined by boundary conditions. We require g(v,z) = 0 at where g>(v,z)= zeiω˜|z−vzz′|+p ∞eiω˜|z+vzz′| ev·E(z′)∂f0 dz′, g<(v,z)= ∞eiω˜|z−vzz′|ev·E(z′)∂f0 dz′. (A5) −"Z0 Z0 # |vz| ∂ε −Zz |vz| ∂ε Utilizingequations(2)and(3)forE(z)andcarryingouttheintegraloverz,wefind ′ ∂f ε(v) e 4kρ g (v,z)= 0 ∞dq q g (v,z;k,q), (A6) >/< − ∂(cid:0)ε (cid:1) vz Z0 k2+q2 >/< (cid:12) (cid:12) (cid:12) (cid:12) where (cid:12) (cid:12) g>(v,z;k,q)= kv+z−iω˜iv/vx e−kz+ 2((cid:18)ω˜q/vvzqk)2+ω˜qvv2xz(cid:19) cos(qz)+i 2(ω˜(cid:16)q/vvx)+2 ω˜qqk2(cid:17) sin(qz) z z z − − 2 ω˜ vx +qv q 2 ω˜ vx qv q and +kiv+xi−ω˜/vvzz − ((cid:18)ω˜/vvzz)2−qz2k(cid:19)+ pkiv−xi−ω˜/vvzz + ((cid:18)ω˜/vvzz)−2−qz2k(cid:19) eiωv˜zz, (A7) g<(v,z;k,q)= ki−vxiω−˜/vvzz e−kz+ 2(cid:18)(qω˜(cid:12)(cid:12)(cid:12)v/zv(cid:12)(cid:12)(cid:12)zqk)2+−ω˜q|2vvzx|(cid:19) cos(qz)−i 2(ω˜(cid:16)q/vvzx)+2−ω˜qqk2(cid:17) sin(qz). (A8) (cid:12) (cid:12) (cid:12) (cid:12) Now we can combine the terms with cos(q(cid:12)z)(cid:12)and those with sin(qz) into a single term called g (v,z), while the rest into bulk g (v,z).TheirexpressionshavebeengiveninSec.IV. surface Ifthesurfaceisnotuniform,weshouldhaveafunction p(r)insteadofaconstant p. Theboundaryconditionshouldthenbe writteng(x ,(v ,v ,v >0),t)= p(r)g(x ,(v ,v , v ),t). Insuchcase,thetranslationalsymmetryalongthesurfaceisgenerally 0 x y z 0 x y z − 9 lost and one cannotwork with a single k-componentany more, i.e. there is scattering effects and differentk-componentsare mixed.Wedonotconsiderthisinthispaper. Causalityprinciple-InapplyingtheboundaryconditionstoobtainC(v),wehaveimplicitlyassumedIm(ω˜) 0;otherwise, ≥ wewouldfindunphysicalsolutionsthatviolatetheprincipleofcausality,whichstatesthatthenumberofout-goingelectronsis determinedbythenumberofin-comingelectrons,nototherwise. Itiseasytoshowthat,hadweassumedIm(ω˜)<0,wewould havefoundtheopposite: thenumberofreflectedelectronswouldbefixedwhilethenumberofincidentelectronswouldgoto infinityas p 0,whichisunphysical. → AppendixB:Thematrix (ω¯) M Inthefirstplace,weshowthat (ω¯)/ω2 ikv /ω¯ +...,wheretheellipsisstandsforhigherordertermsinkv /ω¯. Forthis M p ∝ F F purpose,letusdiscretizeqinstepdq = 2π/d,i.e. q = l(2π/d),wherekd 1andl = 0,1,2,...takesintegervalues. Equation l ≫ (10)canthenbebroughtintothefollowingform Ω2(k,q;ω¯) ω¯2 ρ + (ω¯)ρ =S(ω¯), (B1) l l l,l l − M ′ ′ (cid:16) (cid:17) Xl ′ whereMl,l′(ω¯) = (2π/d)M(ql,ql′;ω¯)andρl = ρql. Writing d3vΘ(vz) = 02πdϕ 0π/2dθsinθ 0∞dv2(v/2)andintegratingover v,wefind R R R R (ω¯) 3 2π π/2 ω¯2cosθ ω¯kv sinθcosθcosϕ kω¯/v Ml,l′ =i dϕ dθsinθ − F F L(v sinθcosϕ,v cosθ,k,q ,ω¯).(B2) ω2 2πkd Z Z (ω¯ kv sinθcosϕ)2 q2v2 cos2θk2+q2 F F l′ p 0 0 − F − l F l′ Tothelowestorderinkv /ω¯,weonlyneedtoretainL(0) intheexpansionLsym = L(m)(kv /ω¯)m. Thus, F ∞m=0 F P 2q2v2 cos2θ L(v sinθcosϕ,v cosθ,k,q,ω¯) F 1+p . (B3) F F ≈ ω¯2 q2v2 cos2θ − F (cid:0) (cid:1) Substitutingthisbackin(B2)andapproximating ω¯2cosθ ω¯kv sinθcosθcosϕ ω¯2cosθ q2 − F , 1, (B4) (ω¯ kv sinθcosϕ)2 q2v2 cos2θ ≈ ω¯2 q2v2 cos2θ q2+k2 ≈ − F − F − F wearriveat (ω¯) 3(1+p) kv 2π π/2 cos3θ 1 Ml,l′ = i F dϕ dθsinθ . (B5) ω2p − πkd ω¯ !Z0 Z0 1−(qlvF/ω¯)2cos2θ1−(ql′vF/ω¯)2cos2θ Obviously,wehave (ω¯)/ω2 kv /ω¯,asstated. M p ∼ F WemayproceedfurtherIfwetake 3 2π π/2 cos3θ 1 3 2π π/2 dϕ dθsinθ dϕ dθsinθ cos3θ 1, (B6) πZ0 Z0 1−(qlvF/ω¯)2cos2θ1−(ql′vF/ω¯)2cos2θ ≈ πZ0 Z0 ∼ from which it follows that (ω¯) M = iω2(1/kd)(kv /ω¯), which is a constant. We then write (ω¯) M Z, where Z = 1 constitutesa unityMmatrixl,l.′ T≈o sim0 plif−ythpe followingF discussions, let us take Ω(k,q;ω¯) = ω . MEquatio≈n(B01) is now l,l p ′ written (ω2 ω¯2)I+M Z ρ=S(ω¯)E. (B7) p− 0 h i For bulk modes, S(ω¯) = 0. Note that Z has only one non-vanishingeigenvalueamounting to its dimension N = q d/2π c c (ω /v )(kd/2π). Thecorrespondingeigenvectorisρ E, whichobviouslydoesnotsatisfyS(ω¯) = 0andisnotabulkmode∼. s F WethereforeconcludethatthereareintotalatmostN∝ 1bulkmodes. Forthesemodes,theeigenvaluesofZareallzeroand c − therefore (ω¯)hasnoimpactonbulkmodes. WecanMalsoshowthat (ω¯)isnegligibleforthelocalizedmode,forwhichS(ω¯),0. Tothisend,wewrite M 1 1 ω2 ω¯2 I+M Z − =U 1 ω2 ω¯2 I+M Z˜ − U, (B8) (cid:20)(cid:16) p− (cid:17) 0 (cid:21) − (cid:20)(cid:16) p− (cid:17) 0 (cid:21) 10 whereU is a similarity transformationthatdiagnolizesZ. We have useda tilde to indicatethe transformedmatrices, e.g. we writeZ˜ = UZU 1. Assaid,Z˜ hasonlyonenon-vanishingelement. Letitbethel -thelement. ThenZ˜ = N δ δ . Seethat M 1/N and −˜ (ω¯) i(ω2/2π)δ δ . Introducing ˜t = tU 1 andE˜ = U0E,wecanrewritethel,ls′eculacrel,lq0ula′,tli0onforthe 0 ∼ Ml,l′ ∼ − p l,l0 l′,l0 G G − localizedmodeas 1 1= ˜t ω2 ω¯2 I+M Z˜ − E˜. (B9) G (cid:20)(cid:16) p− (cid:17) 0 (cid:21) Explicitly, 1 1 1 1 1 1= ˜t E˜ = t E + ˜t E˜ t E t E. Glω2 ω¯2+M Z˜ l Glω2 ω¯2 l Gl0ω2(1+i/2π) ω¯2 l0 −Gl0ω2 ω¯2 l0≈ Glω2 ω¯2 l Xl p− 0 l,l Xl p−  p − p−  Xl p− Theterminthesquarebracketmakesonlyacontributionoftheorderof 1/N andcanbeneglectedforlargeN . c c ∼ [1] R.H.Ritchie,Phys.Rev.106,874(1957). [20] S. Ke´na-Cohen, P. N. Stavrinou, D. D. C. Bradley and S. A. [2] R.A.Ferrell,Phys.Rev.111,1214(1958). Maier,NanoLetters13,1323(2013). [3] H. Raether, Surface plasmons on smooth and rough surfaces [21] C. M. Aryal, B. Y.-K.Huand A.-P.Jauho, arXiv:1508.01271 andongratings(SpringerBerlinHeidelberg,1988). (2015). [4] B.Rothenha¨uslerandK.Wolfgang,Nature332,615(1988). [22] J.M.Pitarke,V.M.Silkin,E.V.ChulkovandP.M.Echenique, [5] A.V.Zayats,I.S.IgorandA.A.Maradudin, Phys.Rep.408, Rep.Prog.Phys.70,1(2007). 131(2005). [23] D. Sarid and W. Cgallener, Modern introduction to surface [6] S. A. Maier Plasmonics: fundamentals and applications plasmons: theory, mathematic modeling and applications (SpringerScience&BusinessMedia,2007). (CambridgeUniversityPress,Cambridge,UK,2010). [7] E.Ozbay,Science311:189(2006). [24] J.Harris,Phys.Rev.B4,1022(1971). [8] M.L.BrongersmaandP.G.Kik,Surfaceplasmonnanophoton- [25] A. L. Fetter, Ann. Physics 81, 367 (1973); Phys. Rev. B 33, ics(Springer,2007). 3717(1986). [9] W.L.Barnes,A.Dereux,andT.W.Ebbesen,Nature424,824 [26] P.J.Feibelman,Prog.Surf.Science.12,287(1982). (2003). [27] O.Schnitzer,V.Giannini,S.A.MaierandR.V.Craster,Proc. [10] W.L.Barnes,J.ofOpticsA8,S87(2006). R.Soc.A472,20160258(2016). [11] T.W.Ebbesen,C.GenetandS.I.Bozhevolnyi,PhysicsToday [28] L.Landau,J.Phys.USSRX,25(1946). 61,44(2008). [29] A. Y. Wong, R. W. Motley and N. D’angelo, Phys. Rev. 133, [12] D. M. Giuliana, Y. Sonnefraud, S. Ke´na-Cohen, M. Tame, S. A436(1964). K.O¨zdmir,M.S.KimandS.A.Maier,NanoLetters12,2504 [30] R.BinghamandJ.T.MendoncaandJ.M.Dawson,Phys.Rev. (2012). Lett.78,247(1997). [13] D.J.BergmanandM.I.Stockman,Phys.Rev.Lett.90,027402 [31] S.S.NatuandR.M.Wilson,Phys.Rev.A88,063638(2013). (2003). [32] J. M. Ziman, Electronsand Phonons: the theory of transport [14] J.Seidel,S.FrafstronandL.Eng, Phys.Rev.Lett.94,177401 phenomenainsolids(OxfordUniversityPress,2001). (2005). [33] D. Pines, Elementary excitations in solids (W. A. Benjamin, [15] I.DeLeonandP.Berini,Phys.Rev.B78,161401(R)(2008). NewYork,1963) [16] I.DeLeonandP.Berini,Nat.Photonics4,382(2010). [34] A.A.Abrikosov,Fundamentalsofthetheoryofmetals(Elsiver [17] D. Y. Fedyanin and A. Y. Arsenin, Opt. Express 19, 12524 SciencePublishersB.V.,North-Holland,1988) (2011). [35] G.E.H.ReuterandE.H.Sondheimer, Proc.R.Soc.Lond.A [18] P.BeriniandI.DeLeon,Nat.Photonics6,16(2012). 195,338(1948). [19] D.Y.Fedyanin, A.V.ArseninandA.V.Zayats,NanoLetters [36] M.I.Kaganov,G.Y.LyubarskiyandA.G.Mitina,Phys.Rep. 12,2459(2012). 288,291(1997).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.