A universal fracture criterion for high-strength materials SUBJECTAREAS: RuiTaoQu&ZheFengZhang GLASSES METALSANDALLOYS ShenyangNationalLaboratoryforMaterialsScience,InstituteofMetalResearch,ChineseAcademyofSciences,72WenhuaRoad, APPLIEDPHYSICS Shenyang,110016,P.R.China. MECHANICALPROPERTIES Recentlydevelopedadvancedhigh-strengthmaterialslikemetallicglasses,nanocrystallinemetallic Received materials,andadvancedceramicsusuallyfractureinacatastrophicbrittlemanner,whichmakesitquite 15November2012 essentialtofindareasonablefracturecriteriontopredicttheirbrittlefailurebehaviors.Basedontheanalysis ofsubstantialexperimentalobservationsoffracturebehaviorsofmetallicglassesandotherhigh-strength Accepted materials,herewedevelopedanewfracturecriterionandprovediteffectiveinpredictingthecriticalfracture 19December2012 conditionsundercomplexstressstates.Thenewcriterionisnotonlyaunifiedonewhichunifiesthethree classicalfailurecriteria,i.e.,themaximumnormalstresscriterion,theTrescacriterionandthe Published Mohr-Coulombcriterion,butalsoauniversalcriterionwhichhastheabilitytodescribethefracture 23January2013 mechanismsofavarietyofdifferenthigh-strengthmaterialsundervariousexternalloadingconditions. Correspondenceand Inthe17thcentury,GalileoGalileiproposedthatthefractureofmaterialsoftenhappensattheconditionoflocal normal stress equals to a critical value1,2. Now we know that this critical stress condition describes the requestsformaterials maximumnormalstresscriterion,afamousfracturecriterionforpredictingthebrittlefractureofmaterials3. shouldbeaddressedto Sincethen,theeffortstoseekforareasonableanduniversalfracturecriterionhaveneverbeenstoppedbecause Z.F.Z.(zhfzhang@imr. brittlefracturesofengineeringcomponentsareusuallydisasterscausinggreatlosstohumanlifeandproperty1–3. ac.cn) Drivingbytheurgentrequirementofmodernindustryforhigh-strengthmaterials,manyadvancedmaterialslike metallicglasses(MGs),nanocrystalline(NC)metallicmaterialsandadvancedceramics,etc.havebeensuccess- fullydevelopedandextensivelyinvestigatedinthepastthreedecades4–7.However,onecommonshortageofthese new materials is their brittle fracture behavior or low tensile ductility, which limits their structural applica- tions5,6,8,9.Thefracturecriteriaforthesehigh-strengthbutbrittlematerialsthusbecomequiteessential.Dueto theamorphousstructure,MGsexhibitnotonlyhighstrengthbutalsosuperiorformabilityinthesupercooled liquidregion,showingpromisingpotentialforengineeringstructuralapplication8,10.Thehighstrength,nearly zerotensileductility,andhomogeneousisotropicstructurealsoendowMGsnaturalmodelmaterialstorevealthe fracturecriterionforthosehigh-strengthmaterials. ThefractureofMGmaterialsusuallyhappensinashearmodealongaverynarrowshearbandinwhichsevere plasticdeformationlocalizes11,12.Besidestheshearstresswhichisthedrivingforceofshearplasticdeformation, thenormalstressontheshearbandplanealsoinfluencesthefracturebehaviors11–16.Thisnormalstresseffectcan befoundmainlyinthreeexperimentalfacts11,12,14,17:(1)thefracturestrengthunderuniaxialcompressionsF is C moreorlesshigherthanthatundertensionsF,showingatension-compression(T-C)strengthasymmetry;(2) T thetensileshearbandanglesh areoftenmuchlargerthan45u,whichistheangleofthemaximumresolvedshear T stressplane;whilethecompressiveshearbandangleshCareslightlysmallerthan45u;(3)thefracturemorphol- ogiesarealsostronglyinfluencedbythenormalstress.Therefore,thefracturecriterionofMGsshouldbecapable ofdescribingthisnormalstresseffect.Forexample,theMohr-Coulomb(M-C)criterion14,15,whichassumesa linearnormalstressdependentshearfracturecondition,hasbeenusedtoexplaintheshearfracturebehaviorsof MGs.However,thereareseveralinevitablecontradictionsbetweenthepredictionsbytheM-Ccriterionandthe experimental results, as elaborated in detail in supplementary materials online (Fig. S1, Table S1). Another fracture criterion, the Ellipse criterion18, has been also proposed to interpret the tensile fracture behaviors of MGmaterials19–21.TheEllipsecriterioncanbeexpressedas, t2 s2 z ~1, ð1Þ t2 s2 0 0 wheret isthecriticalshearfailurestress,ands isthecriticalnormalfracturestress,andtheratioa~t =s is 0 0 0 0 definedastheintrinsicfracturemodefactor18,20. SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 1 www.nature.com/scientificreports In order to quantitatively examine the validation of the Ellipse a~t =s 18,20, but also influenced by the extrinsic conditions like 0 0 criterion,werecentlydesignedsometensiletestsontheMGspeci- temperature, strain rate, etc3,11. Hence, in order to describe such mens with a series of inclined notches20. A wide range of normal fracturebehaviorsdependentonbothintrinsicparametersofmate- stresses acting on the fracture plane was successfully obtained, as rialsandextrinsicconditions,hereweproposeamoregeneralfrac- shown in Fig. 1. The results show that the critical fracture locus turecriterionwhichcanbewrittenasbelow, predictedbytheEllipse criteriongives aprecise description ofthe t2za2bs2~t2: ð2Þ critical stress states of tensile fracture of the studied MG. 0 Furthermore, we found that the Ellipse criterion is capable to a~t =s istheintrinsicparameter,whilebisanextrinsicparameter 0 0 describe all the different contributions of normal stress effect on describing the effect of external conditions. At room temperature the tensile fracture behavior of a large number of compositionally and quasi-static strain rate, b should be different between tensile differentMGs20.ThissuggeststhattheEllipsecriterionmaybesuit- and compressivestress states because ofthefollowingreasons. (1) ableasaunifiedtensilefracturecriterionforallMGs. The directions of normal stresses on the shear fracture plane for However,theEllipsecriteriononlyconcernsthecasesoftensile tension and compression are always opposite; (2) the compressive stressstates,i.e.,s1zs3w0,wheres1ands3arethemaximumand normalstressonthefracturebehaviorsalwaysplaysaweakerrolein minimumprincipalstresses,respectively.Toexplainallthefracture thefailurebehaviorsofmaterialsthanthetensilenormalstress;one behaviorsofMGsundervariousstressconditions,itisnecessaryto of direct evidences can be found in the experimental fact of the findmoregeneralfracturecriterion.Accordingtotheexperimental smallerdeviationfrom45uofthecompressiveshearfractureangle facts of most MGs as described above, a more general fracture thanthetensileone14;(3)thetensilenormalstresshasmuchmore criterion should have the ability to predict: (I) the T-C strength pronounced effect onthe evolution offree volume orshear trans- asymmetry, i.e., sF(cid:2)sF§1; (II) the shear fracture angles: formation zone (STZ) and structural defects of MG than the C T 0ƒhCƒ450ƒhTƒ900; and (III) the critical fracture under pure compressive stress13,15,22,23. Therefore, for tensile stress states shear occurring along the plane with the maximum shear stress, (s zs §0), we suggest that b~b ~1 so that the new criterion dt 1 3 T i.e., dsjs~0~0.IfusingtheTrescacriteriontopredictthecompress- hFoasrthceosmampreefsosirvmewsitthretshseosrtaigtiensal(Esllizpsescvrite0r)i,onbo~febquvati0ona(n1)d. ivefracturebehaviorswhileusingtheEllipsecriteriontodescribethe jb jvb ~1, which means the comp1ressiv3e normal strCess plays a tensilesituations21,theconditions(I)and(III)aresatisfiedbutthe C T less important role than the tensile one in influencing the critical predictedcompressiveshearfractureangleh willbealwaysequalto C shear fracture stress. By applying the new criterion to predict the 45u. If the fracture behaviors under compressive stress states are fracture properties under uniaxial tension like tensile fracture describedbytheM-Ccriterion19,thenthepureshearfracturecannot strengthsF andtensilefractureangleh ,theintrinsicfactoraand bewellpredictedalthoughtheconditions(I)and(II)canbefulfilled. T T thecriticalshearfracturestrengtht canbederivedasbelow: Therefore,thisgivesrisetoasignificantscientificquestion:whether 0 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi themoregeneralfracturecriterionexistsornotanditcansoundly 1 a~ ð1{cot2h Þ, ð3Þ describeallthefracturebehaviors(I)–(III)above? 2 T Results t ~ psFT : ð4Þ SincetheEllipsecriterionwasexperimentallyfoundtobethereas- 0 2 ffi1ffiffi{ffiffiffiffiffiaffiffi2ffiffi onable expression of the normal stress dependent tensile fracture behaviors,thefracturecriteriontodescribethefracturebehaviorof By applying the new criterion to predict the compressive fracture MGs under compressive stress states should possess a similar sec- anglehC,theextrinsicparameterundercompressivetypeloadingcan ond-orderdependenceofshearfracturestressonthenormalstress befurtherderivedas: (equation(1)).Notethatthefracturebehaviorsofmaterialsnotonly 1{cot2h b ~ C: ð5Þ dependontheintrinsicfactorssuchascompositionandmicrostruc- C 1{cot2h T ture which can be identified by the intrinsic parameter of According to equations (3)–(5), the three parameters of the new criterioncanbeachievedthroughuniaxialtensionandcompression. InTable1,welistedtheexperimentalresultsofthepresentstudyand otherinvestigators20,24–28forseveralZr-,Ti-,Pd-andNi-basedMGs andalsothecalculatedthreeparametersofthenewcriterion.Inthe present study, the shear fracture angle, which is important for the calculation of a and b , were carefully measured and accurately C adjusted by considering both the spatial shear plane and elastic recovery20 (More details and discussions about the experimental resultsareshowninsupplementarymaterials).Itcanbeseenfrom Table1thattheextrinsicparameterb forthelistedMGsatroom C temperature seemsto bealwaysaround 20.5, independent onthe compositionormicrostructureofmaterials.Thisconclusionismore affirmativeforthepresentandpreviousresults20inwhichboththe tensile and compressive shear fracture angles were carefully mea- sured.Inamicroscopicview,thesimilarvalueofb forMGsmay C reflectthesimilaratomicmechanismofcooperativeshearingofSTZs forshearingplasticflow13,29.Thenormalstressactingontheshearing plane of STZ influences the behavior of individual STZ and even- tually affects the yield and fracture behavior of MGs. The normal Figure1|QuantitativelyexperimentalverificationoftheEllipse stresseffectcanbespecificallydescribedbythenewcriterionwiththe criterion. TheexperimentaldataindicatestheEllipsecriterioncanwell intrinsicfactoraandtheextrinsicparameterb .Accordingtothe C predictthetensilefracturebehaviorsoftheZr Cu Ni Al Ti MG20. presentcriterion,areflectsthedegreesofnormalstresseffect,while 52.5 17.9 14.6 10 5 Insetisthesketchofthedesignedsample. b describes the differences between the effects by tensile normal C SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 2 www.nature.com/scientificreports Table1|Experimentallymeasuredfracturestrengths(sF andsF),shearfractureangles(h andh )ofdifferentMGmaterialsatroom C T C T temperature,andthecalculatedparameters(a,t andb )ofthenewcriterion 0 C Investigators Alloys sFC (GPa) sFT (GPa) hC (deg.) hT (deg.) t0(GPa) a bC Presentstudy Zr Fe Al Cu 1.66 1.62 42.1 53.3 0.92 0.47 20.51 65 5 10 20 Presentstudy Zr Cu Ni Al 1.58 1.48 42.3 53.0 0.84 0.47 20.48 50.7 28 9 12.3 Presentstudy Ti Zr Ni Cu Be 1.84 1.68 42.6 51.8 0.93 0.44 20.47 40 25 3 12 20 Presentstudy Ti Zr Ni Cu Be annealed 1.87 1.72 41.4 56.8 1.02 0.54 20.50 40 25 3 12 20, Quetal.20 Zr Ni Al Cu Ti 1.84 1.66 43 50.7 0.91 0.41 20.46 52.5 14.6 10 17.9 5 Zengetal.24 Ni Pd P 1.80 1.40 41.5 55.5 0.82 0.51 20.53 50 30 20 Carisand Zr Ti Ni Cu Be 2.05 1.95 42 53 1.10 0.46 20.55 41.25 13.75 10 12.5 22.5 Lewandowski25 Mukaietal.26,27 Pd Ni P 1.74 1.6 42 56 0.94 0.52 20.43 40 40 20 Zhangetal.28 Zr Ni Al Cu Ti 1.76 1.66 42 56 0.97 0.52 20.43 52.5 14.6 10 17.9 5 stressandbycompressivenormalstress.Withvaryingthecomposi- fracturestrengths (sF,sF) and shearfractureangles (h ,h )under T C T C tion or microstructure, the local properties of STZ (like volume, tensionandcompressioncanbepredictedintermsofthefollowing activationenergyetc.)arechangedandfinallytheMGshowdifferent equations,respectively, p tensileyieldorfracturebehavior29,30,whichcanbewelldescribedby sF~2t ffi1ffiffi{ffiffiffiffiffiaffiffi2ffiffi, ð6Þ theEllipsecriterionwiththedominantfactora,indicatingthatais T 0 composition-andmicrostructure-dependent. However,thesimilar sF~2t pffi1ffiffizffiffiffiffiffiaffiffi2ffiffi=ffiffi2ffiffiffi, ð7Þ b forcompositionallyorstructurallydifferentMGsindicatesthatit C 0 C shouldbemainlydominatedbyextrinsicconditionsratherthanthe h ~arccotpffi1ffiffi{ffiffiffiffiffi2ffiffiaffiffi2ffiffi, ð8Þ intrinsicnatureofthematerials. T Figure 2 illustrates the graphical representation of the new cri- h ~arccotpffi1ffiffizffiffiffiffiffiaffiffi2ffiffi: ð9Þ terionwhenapplyingtoatypicalMG.Acontinuouscriticalfracture C locus covers the whole range of normal stress, which allows the ThiswillleadtoaT-Cstrengthasymmetrywitharatioasbelow, pstrreedssictsitoanteso.fOthbeviocruistliyca,lthsetrenseswcocnridteitriioonnscfaonr wfrealcltuexrepluainndearllatnhye sFC~r1ffiffiffizffiffiffiffiffiaffiffi2ffiffi=ffiffi2ffiffiffiƒpffi1ffiffi0ffiffi: ð10Þ three characteristic fracture behaviors of MGs, i.e. (I) the T-C sF 1{a2 2 T strengthasymmetry,(II)theshearfractureanglesand(III)thepure Whenthematerialsfailinthenormalfracturemodeundertensionas stehreiaornfsraatcitsufireestbheehathvrioeer.nTehceisssianrdyiccoatnedsittihoantstfhoerparforapcotsuerdecnreiwterciorin- awpffi2ffiffi.2,thetensilefracturestrengthsF thenbecomesthecritical T ofMGs. cleavagestrengths ofthematerials,i.e., 0 Inordertofurtherexaminetherationalityofthenewcriterionand sF~s ~t =a: ð11Þ toachieveanoverallunderstandingofthenormalstresseffectonthe T 0 0 fracture behaviors of various MG materials, experimentally mea- Andthecompression-tensionstrengthratiobecomes, suredstrengthsofmorethan30differentcompositionsofMGswere collected from literatures and listed in Table S3 in supplementary sFC~2apffi1ffiffizffiffiffiffiffiaffiffi2ffiffi=ffiffi2ffiffiffi: ð12Þ sF materials.Sincetherarenessofaccuratelymeasuredshearfracture T angle,thefurtherquantitativelyexaminationofthenewcriterionwill Ifthetensileandcompressivefracturestrengthsortheirratiosare be accomplished by comparing the measured and predicted T-C available,theparametera~t =s canbeeasilycalculatedintermsof strength asymmetry. If assuming b 5 20.5 as obtained in 0 0 C equation (10) or (12). Accordingly, the compression-tension Tocacbulers1i,nacacosrhdeianrgmtoodthee(0nƒewaƒcripteffi2rffiffii.on2,)wlihkeeninthme otesntsMileGfsr1a4c,tuthree strengthratiosFC(cid:2)sFT vs.theintrinsicparametera~t0=s0 ofmore than30differentcompositionaldifferentMGmaterialswerecom- paredinTableS3andplottedinFig.S2insupplementarymaterials. ItisfoundthatmostMGshavetheT-Cstrengthasymmetrywitha strengthratiosF(cid:2)sF rangingfrom1.01to1.30;andtheparameter C T a~t =s isthusintherangeof0:1ƒaƒ0:6.Accordingtoequations 0 0 (8)and(9),thetensileandcompressiveshearfractureanglesh and T h should be in the ranges of 450vh ƒ620, and 400ƒh v450, C T C respectively.Thesepredictionsoftheshearfractureanglesagreewell withthereportedvaluesintheliteratures(e.g.,seeTable1inRef.14), furtherindicatingthatitisreasonabletoquantitativelydescribethe fracture behaviors of the MG materials with the new fracture cri- terion. Figure2|Graphicalrepresentationofthenewfracturecriterion. The greenlinerepresentsthecriticalfracturelocusofthenewcriterionof Discussion equation(2)whiletheMohr’sstresscirclesareunderuniaxialtension, Accordingtothenewcriterion,thepredictionsstronglydependon uniaxialcompressionandpureshear,respectively.Allthethreeconditions theintrinsicparametera~t0=s0.AsillustratedinFig.3,withvary- forthefracturecriteriondescribingthefracturebehaviorsofMGsare ing a~t0=s0, three different cases can be classified. When obviouslyfulfilledforthenewcriterion.Thecriticalfracturelocusofthe a~t0=s0?0 or s0??, the differences in strengths and shear newcriterionclarifiesthatonlythosestressstatesenvelopedbythefracture fracture angles under tension and compression can be neglected locusaresafe. and both the tensile and compressive shear angles are quite close SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 3 www.nature.com/scientificreports Ttore4s5cua(cFriitge.ri3oan),1,3w.Whichhenar0evraat~hetr s=ismivlarptffi2offiffi.th2e,apsrsehdoicwtnioinnsFbigy.t3hbe, ionrtoMsGubmmaictreorimalestewriothrnamanoormphetoeursscsatrleusctluikree,UtFhGe forracNtuCremsatrteernigatlsh, 0 0 thecompressivefracturestrengthbecomesgraduallylargerthanthe increasesandtheT-Cstrengthasymmetrybecomesgraduallyobvi- tensileonewithincreasinga;meanwhilethecompressiveshearfrac- ous(regionBinFig.4).Thehighstrengthlevelandtheshearfracture tureanglehCissmallerthan45uandthetensileshearfractureangle nature of these materials make the normal stress effect hard to be h islargerthan45u;theseapproximatelyagreewiththeM-Ccri- neglected12,13,31,32. In addition, different from the metallic materials teTrion. When a~t =s §pffi2ffiffi.2, the T-C strength asymmetry withmetallicbonding,ceramicswitheitherionicbondingorcova- becomesmuchlarger0and0thetensilefracturewillalwaysoccuralong lent bonding often display very high strength ratio sFC(cid:2)sFT even the plane perpendicular to the loading axis, showing the fracture greater than 10 (see supplementary Table S4 online). The strong behavior controlled by the maximum normal stress criterion1,18. ionic or covalent bonding greatly increases the resistance to shear Therefore, the new criterion inherits the unified characteristic of deformationand thecriticalshearfailurestresst0,whiletheinev- theEllipsecriterionandcanberegardedasacriterionunifyingthe itableinternaldefectslikeporesdecreasethecriticalnormalfracture aboveclassicalfailurecriteria. stresss0,leadingtotheintrinsicfactora~t0=s0verylargeforcera- Theaboveresultsindicatethattheproposednewcriterioncannot mics.Inthiscase,besidesthehighT-Cstrengthasymmetry,normal onlywellpredictthefractureconditionsofMGmaterials,butalso fracture with hT~900 under tension and shear fracture within havetheunifiedcharacteristictounifytheclassicalfailurecriteria. 0vhCv450 orevensplittingfailure14undercompressionareoften BsterseindgetshthmeaMteGriamlsatienrcilaulsd,itnhgeufrlatrcatufirneeb-gerhaaivnieodrs(oUfFmGa)n,yNoCthmerehtaigllhic- pobresseernvetdc3r3i;tetrhioesnewfritahctau§repbffi2effiffi.ha2v,ioasrsillcuasntrabteedwienllFciga.p3tuc.red by the materialsandadvancedceramicsetc.areinfluencedmoreorlessby From the analysis above, it is known that the definition of the normal stress acting on the fracture or yield plane14,31,32. For a~t =s endows a the materials constant reflecting the intrinsic 0 0 isotropicmaterials,theT-Cstrengthasymmetryisoneofkeyindi- competition between shear failure and cleavage fracture. Usually cators showing the normal stress effect. A summary of the T-C low a materials are easy to fail by plastic deformation but hard to strengthasymmetryforvariousmaterialsarelistedinsupplementary cleavage fracture. This is why cleavage fracture is difficult to be TablesS3,S4andS5online.Asaunifiedfracturecriterion,thenew observedinductileFCCcrystalslikeCuorAl3.Highamaterialslike criterionmayhavetheabilitytodescribethefracturebehaviorsofa ceramics, however, are very easy to cleavage fracture but hard to varietyofdifferentmaterials.Althoughthephysicalmechanismof deformplastically.FormaterialssuchasUFG,NCorMGmaterials, theextrinsicparameterb isnotveryclearformaterialsotherthan theyhavemoderatea(Fig.4)andthusoftendeformandfractureina C MGmaterials,thefracturebehaviorsincludingT-Cstrengthasym- shearmode,exhibitinghighstrengthbutmoderateductility.Besides metry and fracture mode of various materials can be generally thecompositionandmicrostructurewhichidentifiedbytheintrinsic describedbythenewcriterionifassumingb atroomtemperature factora,theexternalloadingconditions,whichcanbecharacterized C andquasi-static strain rateis aconstantof20.5. Accordingly, the bytheextrinsicparameterb,alsoinfluencethefracturebehaviorsof relationship of the material constant a~t =s versus the T-C materials3. For instance, as increasing the testing temperature of 0 0 strengthasymmetryofvariousdifferentmaterialscanbeplottedin nanocrystallineAl Fe Cr Ti alloy,theT-Cstrengthasymmetryis 93 3 2 2 Fig.4,andthreeregionsareclassified.Fortheconventionalductile foundtodecrease34.Moreevidencesofthefracturebehaviorsinflu- metallicmaterialslikeAl-alloys,Ti-alloysorsteels,nearlynodiffer- encedbytheexternalfactorsandtheinterpretationsbythepresent encebetweentensileandcompressivestrengthscanbeobserved.The criterion were discussed in supplementary materials. The new cri- normal stress should only have little influence and the Tresca cri- terionsuggeststhatthefracturebehaviorsarewellcontrolledbyboth terioncanbeused.Thefactora~t =s isnearlyzeroandthenew theintrinsicfactoraandextrinsicfactorb,whichmeansthateven 0 0 criterioninthiscaseisconsistentwiththeTrescacriterion(Fig.3a). ductilematerialswithverysmallacouldpossiblyfractureinabrittle When aR0, the normalized strength sF(cid:2)t or sF(cid:2)t is approxi- modeundercertainexternalconditionswithlargebandviceversa. T 0 C 0 mately equal to 2, which is also the same as the prediction by the These unique characteristics enable the new criterion becoming a Trescacriterion1,3.Asthegrainsizeofmetallicmaterialsdecreases fracturecriterionnotonlyunifyingtheclassicalfailurecriteriabut Figure3|Representativecriticalfracturelocipredictedbythenewfracturecriterionindifferentcasesasvaryingtheintrinsicfactora~t =s . (a)aR0,h <450<h andsF(cid:2)sF<1;(b)0vavpffi2ffiffi.2,0vh v450vh v900andsF(cid:2)sFw1;(c)a§pffi2ffiffi.2,0vh v450,h ~900andsF0(cid:2)sF0?1. C T C T C T C T C T C T SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 4 www.nature.com/scientificreports Figure4|NormalizedtensilestrengthsF(cid:2)t andnormalizedcompressivestrengthsF(cid:2)t ofvariousdifferentmaterials(withdifferenta). Thesolid T 0 C 0 linesweredrawnaccordingtothenewcriterion(equation(2))withb5b 51fortension(blue)andb5b 520.5forcompression(red). T C Experimentalandsimulationdataofconventionalmetallicmaterials,ultrafine-grained(UFG)andnanocrystalline(NC)materials,MGs,MGcomposites (MGCs)andceramicswerefilledbasedonthedatalistedinsupplementaryTablesS3,S4andS5online. alsoauniversalcriteriontopredictthefracturebehaviorsofavariety withdimensionsof23234mm3werecutbyelectricsparkcuttingandsubsequently ofcompositionaldifferentmaterialsundervariousexternalloading grindedandpolishedby2.5mmabrasivepaste.Uniaxialtensionandcompression wereconductedbyusinganInstron5982testingmachineatanominalstrainrateof conditions. 531024s21atroomtemperatureinair.Thedeformationandfracturefeatureswere In summary, the experimental results of inclined notch tension observedwithaLeoSupra35scanningelectronmicroscope. indicatethattheEllipsecriterioncanquantitativelypredictthetens- ilefracturebehaviorsofMGs.Inordertocoverthewholerangeof 1. Paul,B.inFracture,AnAdvancedTreatiseVol.II(edLeibowitz,H.)313–496 stressstates,weextendtheEllipsecriterionandproposeanewfrac- (AcademicPress,1968). turecriterion,whichnotonlysatisfiesthethreenecessaryconditions 2. Yu,M.H.Advancesinstrengththeoriesformaterialsundercomplexstressstate forfracturecriterionofMGsqualitativelybutalsoisabletopredict inthe20thCentury.Appl.Mech.Rev.55,169–218(2002). theexperimentalresultsquantitatively.Moreover,thenewcriterion 3. Meyers,M.A.&Chawla,K.K.MechanicalBehaviorofMaterials(PrenticeHall, 1999). inheritstheabilitytounifytheclassical criteriasuchastheTresca 4. Gleiter,H.Nanocrystallinematerials.Prog.Mater.Sci.33,223–315(1989). criterion, the M-C criterion and the maximum normal stress cri- 5. Meyers,M.A.,Mishra,A.&Benson,D.J.Mechanicalpropertiesof terionintermsofthevariationoftheintrinsicfactora~t =s .As nanocrystallinematerials.Prog.Mater.Sci.51,427–556(2006). 0 0 aresult,thenewcriterionhastheabilitytowelldescribethefracture 6. Greer,A.L.Metallicglasses.Science267,1947(1995). 7. Barsoum,M.W.&ElRaghy,T.Synthesisandcharacterizationofaremarkable behaviorsofvariousdifferentmaterials(indentifiedbytheintrinsic ceramic:Ti3SiC2.J.Am.Ceram.Soc.79,1953–1956(1996). factora),especiallyforhigh-strengthmaterialslikeUFG,NC,MG 8. Ashby,M.F.&Greer,A.L.Metallicglassesasstructuralmaterials.ScriptaMater. materialsoradvancedceramics,becomingauniversalfracturecri- 54,321–326(2006). terion.Asaguidetotheengineeringdesignofstructuralcomponent, 9. Lu,K.TheFutureofMetals.Science328,319–320(2010). theuniversalcriteriongivesacontinuouscriticalfracturelocusout- 10.Greer,A.L.Metallicglasses...onthethreshold.Mater.Today12,14–22(2009). 11.Schuh,C.A.,Hufnagel,T.C.&Ramamurty,U.Mechanicalbehaviorof liningthestressconditionsonthemostdangerousplanes.Withthe amorphousalloys.ActaMater.55,4067–4109(2007). aidofthenewfracturecriteriononpredictingthecriticalconditions 12.Zhang,Z.F.,Eckert,J.&Schultz,L.Differenceincompressiveandtensilefracture ofcatastrophicbrittlefracture,thestructuralapplicationofrecently mechanismsofZr Cu Al NiTi bulkmetallicglass.ActaMater.51, 59 20 10 8 3 developedadvancedhigh-strengthmaterialswillbecomepracticable. 1167–1179(2003). 13.Schuh,C.A.&Lund,A.C.Atomisticbasisfortheplasticyieldcriterionofmetallic Asauniversalfracturecriterion,thepresentcriterionalsoprovidesa glass.NatureMater.2,449–452(2003). new vision for understanding the fracture mechanisms of various 14.Zhang,Z.F.,He,G.,Eckert,J.&Schultz,L.Fracturemechanismsinbulkmetallic materialsintheworld. glassymaterials.Phys.Rev.Lett.91,045505(2003). 15.Donovan,P.E.AyieldcriterionforPd Ni P metallicglass.ActaMetall.37, 40 40 20 445–456(1989). Methods 16.Murali,P.etal.AtomicScaleFluctuationsGovernBrittleFractureandCavitation MetallicglasseswithnominalcompositionsofZr FeAl Cu ,Zr Cu NiAl BehaviorinMetallicGlasses.Phys.Rev.Lett.107(2011). 65 5 10 20 50.7 28 9 12.3 andTi Zr NiCu Be werepreparedbycoppermoldcastinginahigh-purity 17.Qu,R.T.,Stoica,M.,Eckert,J.&Zhang,Z.F.Tensilefracturemorphologiesof 40 25 3 12 20 argonatmosphere.Theamorphousstructureofthespecimenswascheckedby bulkmetallicglass.J.Appl.Phys.108,063509(2010). standardX-raydiffraction.Inordertoadjustthemicrostructureintrinsically,some 18.Zhang,Z.F.&Eckert,J.Unifiedtensilefracturecriterion.Phys.Rev.Lett.94, Ti40Zr25Ni3Cu12Be20materialswereisochronallyannealedat250uC(,0.87Tg)for30 094301(2005). minutes.TheabovefourkindsofMGmaterials,Zr65Fe5Al10Cu20, 19.Wu,F.F.,Zhang,Z.F.,Mao,S.X.,Peker,A.&Eckert,J.Effectofannealing Zr50.7Cu28Ni9Al12.3,Ti40Zr25Ni3Cu12Be20andannealedTi40Zr25Ni3Cu12Be20,were onthemechanicalpropertiesandfracturemechanismsofa thenusedforthesubsequentmechanicalstudy.Dog-boneshapedtensilespecimens Z Ti Nb Cu Ni Be bulk-metallic-glasscomposite.Phys.Rev.B75, r56.2 13.8 5.0 6.9 5.6 12.5 withgaugedimensionsof331.530.5mm3andrectangularcompressivespecimens 134201(2007). SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 5 www.nature.com/scientificreports 20.Qu,R.T.,Eckert,J.&Zhang,Z.F.Tensilefracturecriterionofmetallicglass. 33.Ramsey,J.M.&Chester,F.M.Hybridfractureandthetransitionfromextension J.Appl.Phys.109,083544(2011). fracturetoshearfracture.Nature428,63–66(2004). 21.Wu,F.F.etal.StrengthasymmetryofductiledendritesreinforcedZr-andTi- 34.Luo,H.,Shaw,L.,Zhang,L.C.&Miracle,D.Ontension/compressionasymmetry basedcomposites.J.Mater.Res.21,2331–2336(2006). ofanextrudednanocrystallineAl-Fe-Cr-Tialloy.Mater.Sci.Eng.A409,249–256 22.Flores,K.M.&Dauskardt,R.H.Meanstresseffectsonflowlocalizationand (2005). failureinabullkmetallicgalss.ActaMater.49,2527–2537(2001). 23.Jiang,W.H.&Atzmon,M.Theeffectofcompressionandtensiononshear-band structureandnanocrystallizationinamorphousAl FeGd:ahigh-resolution 90 5 5 transmissionelectronmicroscopystudy.ActaMater.51,4095–4105(2003). Acknowledgments 24.Zeng,Y.,Nishiyama,N.,Yamamoto,T.&Inoue,A.Ni-RichBulkMetallicGlasses TheauthorsthankProf.D.Embury,Prof.M.A.Meyers,Prof.C.A.SchuhandProf.J.Eckert withHighGlass-FormingAbilityandGoodMetallicProperties.Mater.Trans.50, forhelpfulandfruitfuldiscussion.ThisworkwasfinanciallysupportedbytheNational 2441–2445(2009). NaturalScienceFoundationofChina(NSFC)underGrantNos.50871117and50890173, 25.Caris,J.&Lewandowski,J.J.Pressureeffectsonmetallicglasses.ActaMater.58, andbytheNationalBasicResearchProgramofChinaunderGrantNo.2010CB631006. 1026–1036(2009). 26.Mukai,T.,Nieh,T.G.,Kawamura,Y.,Inoue,A.&Higashi,K.Dynamicresponse ofaPd40Ni40P20bulkmetallicglassintension.ScriptaMater.46,43–47(2002). Authorcontributions 27.Mukai,T.,Nieh,T.G.,Kawamura,Y.,Inoue,A.&Higashi,K.Effectofstrainrate Z.F.Z.proposedtheideaanddesignedtheresearchplan.R.T.Q.carriedouttheexperiments oncompressivebehaviorofaPd40Ni40P20bulkmetallicglass.Intermetallics10, andcollectedthedata.Z.F.Z.andR.T.Q.gavethetheoreticalanalysisandwrotethepaper. 1071–1077(2002). 28.Zhang,Z.F.,Eckert,J.&Schultz,L.Fatigueandfracturebehaviorofbulkmetallic glass.Metall.Mater.Trans.A35,3489–3498(2004). Additionalinformation 29.Johnson,W.L.&Samwer,K.AUniversalCriterionforPlasticYieldingofMetallic Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ Glasseswitha(T/Tg)2/3TemperatureDependence.Phys.Rev.Lett.95,195501 scientificreports (2005). Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. 30.Pan,D.,Inoue,A.,Sakurai,T.&Chen,M.W.Experimentalcharacterizationof sheartransformationzonesforplasticflowofbulkmetallicglasses.Proc.Natl. License:ThisworkislicensedunderaCreativeCommons Acad.Sci.USA.105,14769–14772(2008). Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis 31.Lund,A.C.&Schuh,C.A.Strengthasymmetryinnanocrystallinemetalsunder license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ multiaxialloading.ActaMater.53,3193–3205(2005). Howtocitethisarticle:Qu,R.T.&Zhang,Z.F.Auniversalfracturecriterionfor 32.Cheng,S.,Spencer,J.A.&Milligan,W.W.Strengthandtension/compression high-strengthmaterials.Sci.Rep.3,1117;DOI:10.1038/srep01117(2013). asymmetryinnanostructuredandultrafine-grainmetals.ActaMater.51, 4505–4518(2003). SCIENTIFICREPORTS |3:1117|DOI:10.1038/srep01117 6