CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´ S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 195 AUniversalConstructionforGroupsActingFreelyonRealTrees CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS B. BOLLOBA´S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 166. TheLe´vyLaplacian. ByM.N.Feller 167. Poincare´DualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations. ByD.Meyer andL.Smith 168. TheCube-AWindowtoConvexandDiscreteGeometry. ByC.Zong 169. QuantumStochasticProcessesandNoncommutativeGeometry. ByK.B.Sinhaand D.Goswami 170. PolynomialsandVanishingCycles. ByM.Tiba˘r 171. OrbifoldsandStringyTopology. ByA.Adem,J.Leida,andY.Ruan 172. RigidCohomology. ByB.LeStum 173. EnumerationofFiniteGroups. ByS.R.Blackburn,P.M.Neumann,andG.Venkataraman 174. ForcingIdealized. ByJ.Zapletal 175. TheLargeSieveanditsApplications. ByE.Kowalski 176. TheMonsterGroupandMajoranaInvolutions. ByA.A.Ivanov 177. AHigher-DimensionalSieveMethod. ByH.G.Diamond,H.Halberstam,andW.F.Galway 178. AnalysisinPositiveCharacteristic. ByA.N.Kochubei 179. DynamicsofLinearOperators. ByF.BayartandE´.Matheron 180. SyntheticGeometryofManifolds. ByA.Kock 181. TotallyPositiveMatrices. ByA.Pinkus 182. NonlinearMarkovProcessesandKineticEquations. ByV.N.Kolokoltsov 183. PeriodDomainsoverFiniteandp-adicFields. ByJ.-F.Dat,S.Orlik,andM.Rapoport 184. AlgebraicTheories. ByJ.Ada´mek,J.Rosicky´,andE.M.Vitale 185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem. ByA.KatokandV.Nit¸ica˘ 186. Dimensions,Embeddings,andAttractors. ByJ.C.Robinson 187. Convexity:AnAnalyticViewpoint. ByB.Simon 188. ModernApproachestotheInvariantSubspaceProblem. ByI.Chalendarand J.R.Partington 189. NonlinearPerron–FrobeniusTheory. ByB.LemmensandR.Nussbaum 190. JordanStructuresinGeometryandAnalysis. ByC.-H.Chu 191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.Osswald 192. NormalApproximationswithMalliavinCalculus. ByI.NourdinandG.Peccati 193. DistributionModuloOneandDiophantineApproximation. ByY.Bugeaud 194. MathematicsofTwo-DimensionalTurbulence. ByS.KuksinandA.Shirikyan 195. AUniversalConstructionforR-freeGroups. ByI.ChiswellandT.Mu¨ller 196. TheTheoryofHardy’sZ-Function. ByA.Ivic´ 197. InducedRepresentationsofLocallyCompactGroups. ByE.KaniuthandK.F.Taylor 198. TopicsinCriticalPointTheory. ByK.PereraandM.Schechter 199. CombinatoricsofMinusculeRepresentations. ByR.M.Green 200. SingularitiesoftheMinimalModelProgram. ByJ.Kolla´r A Universal Construction for Groups Acting Freely on Real Trees IAN CHISWELL QueenMary,UniversityofLondon THOMAS MU¨ LLER QueenMary,UniversityofLondon cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107024816 (cid:2)C IanChiswellandThomasMu¨ller2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-02481-6Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Dedicated tothememoryof KARLW.GRUENBERG 1928–2007 Contents Preface pagexii 1 Introduction 1 1.1 Finitewordsandfreegroups 1 1.2 WordsoveradiscretelyorderedabeliangroupΛ 2 1.3 ThecasewhereΛisdenselyordered 4 1.4 ThecasewhereΛ=R 5 1.5 Contentsofthebook 7 2 ThegroupRF(G) 13 2.1 Themonoid(F(G),∗) 13 2.2 Reducedfunctionsandreducedmultiplication 17 2.3 CancellationtheoryforRF(G) 22 2.4 ProofofTheorem2.13 28 2.5 ThesubgroupG 31 0 2.6 AppendixtoChapter2 33 2.7 Exercises 34 viii Contents 3 TheR-treeX associatedwithRF(G) 35 G 3.1 Introduction 35 3.2 ConstructionofX 36 G 3.3 Completenessandtransitivity 38 3.4 Cyclicreduction 40 3.5 Classificationofelements 44 3.6 Boundedsubgroups 47 3.7 PresentingE(G) 51 3.8 Aremarkconcerninguniversality 55 3.9 ThedegreeofverticesofX 58 G 3.10 Exercises 59 4 FreeR-treeactionsanduniversality 61 4.1 Introduction 61 4.2 Anembeddingtheorem 62 4.3 UniversalityofRF-groupsandtheirassociatedR-trees 71 4.4 Exercises 76 5 Exponentsums 78 5.1 Introduction 78 5.2 Somemeasuretheory 79 5.3 Themapsμ 82 g 5.4 Themapse 84 g 5.5 Themape 86 G 6 Functoriality 90 6.1 Introduction 90 Contents ix 6.2 ThefunctorR(cid:2)F(−) 92 6.3 ThefunctorR(cid:3)F(−) 98 6.4 ThefunctorR(cid:2)F (−) 101 0 6.5 A remark concerning the automorphism group of RF(G)/E(G) 108 6.6 Exercises 112 7 Conjugacyofhyperbolicelements 113 7.1 Introduction 113 7.2 Theequivalencerelationτ andtheconjugacytheorem 116 G 7.3 Normalisersofinfinitecyclichyperbolicsubgroups 118 7.4 Themainlemma 121 7.5 ProofofTheorem7.5 124 7.6 Exercises 124 8 Thecentralisersofhyperbolicelements 125 8.1 Introduction 125 8.2 Apreliminarylemma 126 8.3 Theperiodsofahyperbolicfunction 127 8.4 ThesubsetC−ofC 131 f f 8.5 ThesubsetC+ofC 135 f f 8.6 ThesubsetC ofC 139 f f 8.7 Themainresult 143 8.8 ThecasewhenC iscyclic 150 f 8.9 An application: the non-existence of soluble normal subgroups 151