ebook img

A Trudinger-Moser inequality on compact Riemannian surface involving Gaussian curvature PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Trudinger-Moser inequality on compact Riemannian surface involving Gaussian curvature

A Trudinger-Moser inequality on compact Riemannian surface involving Gaussian curvature YunyanYang DepartmentofMathematics,RenminUniversityofChina,Beijing100872,P.R.China 5 1 0 2 n Abstract a MotivatedbyarecentworkofX.ChenandM.Zhu(Commun. Math. Stat.,1(2013)369-385), J we establish a Trudinger-Moserinequality on compact Riemannian surface without boundary. 9 2 Theproofisbasedonblow-upanalysistogetherwithCarleson-Chang’sresult(Bull. Sci. Math. 110 (1986) 113-127). This inequality is different from the classical one, which is due to L. ] Fontana(Comment. Math. Helv.,68(1993)415-454),sincetheGaussiancurvatureisinvolved. G As an application, we improve Chen-Zhu’s result as follows: A modified Liouville energy of D conformalRiemannianmetrichasauniformlowerbound,providedthattheEulercharacteristic . isnonzeroandthevolumeoftheconformalsurfacehasauniformpositivelowerbound. h t a Keywords: Trudinger-Moserinequality,blow-upanalysis,Liouvilleenergy m 2010MSC: 46E35;58J05 [ 1 v 1. Introduction 0 7 Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K beitsGaussiancurvature 4 g andχ(Σ)beitsEulercharacteristic.LetW1,2(Σ)bethecompletionofC (Σ)underthenorm 7 ∞ 0 1/2 . u = ( u2+u2)dv , (1) 01 k kW1,2(Σ) ZΣ |∇g | g! 5 where is the gradientoperatorand dv is the Riemannian volume element. As a limit case g g ∇ 1 of the Sobolev embeddingtheorem, the Trudinger-Moserinequality [29, 20, 19, 23, 18] plays : v an important role in analysis and geometry. In an elegant paper [13], L. Fontana proved that i D. Adams’ results [1], Trudinger-Moser inequalities for higher order derivatives, still hold on X compactRiemannianmanifoldswithoutboundary.Amongthose,thereisthefollowing r a sup eγu2dv <+ , γ 4π. (2) g u∈W1,2(Σ), Σudvg=0, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ ≤ R R Motivated by works of Adimurthi-Druet[2], the author [24, 25, 26] and C. Tintarev [22], we obtainedin[27]thatforanyα<λ (Σ),thereholds ∗g sup eγu2dv <+ , γ 4π, (3) g u∈W1,2(Σ), Σudvg=0, Σ|∇gu|2dvg−α Σu2dvg≤1ZΣ ∞ ∀ ≤ R R R Emailaddress:[email protected](YunyanYang) Preprintsubmittedto*** January30,2015 andextremalfunctionforthisinequalityexists. Hereλ (Σ)isthefirsteigenvalueoftheLaplace- ∗g Beltramioperatorwithrespecttothemeanvaluezerocondition,namely λ (Σ)= inf u2dv . (4) ∗g u∈W1,2(Σ),Σudvg=0,Σu2dvg=1ZΣ|∇g | g R R Clearlyλ (Σ) > 0 and(3) improves(2). Asaconsequenceof(3), wehaveaweakformofthe ∗g Trudinger-Moserinequality.Namely,foranyα<λ (Σ),thereexistssomeconstantCdepending ∗g onlyon(Σ,g)andαsuchthatforallu W1,2(Σ),thereholds ∈ u2dv α (u u)2dv 16πln eudv +16πu C, (5) g g g g ZΣ|∇ | − ZΣ − − ZΣ ≥− whereu= 1 udv . Whenα=0,theinequalitywasobtainedbyDing-Jost-Li-Wang[9]. volg(Σ) Σ g ForanyconfoRrmalmetricg˜ =eug,whereu C2(Σ),theLiouvilleenergyofg˜ reads ∈ g˜ L (g˜)= ln (R dv +R dv ), g g˜ g˜ g g ZΣ g whereR andR aretwicetheGaussiancurvatureK andK respectively.Since g g˜ g g˜ R =e u(∆ u+R ), g˜ − g g wehave L (g˜)= u2+4K u dv . (6) g g g g ZΣ(cid:16)|∇ | (cid:17) IfΣisatopologicaltwosphereandvol (Σ) = vol (Σ) = 4π,thenitwasprovedbyX.Chenand g˜ g M.Zhu[8]thatthereexistssomeconstantCdependingonlyon(Σ,g)suchthat L (g˜) C. (7) g ≥− This is a veryimportantissue in the Calabi flow [6, 8]. Note that (5) can be derivedfrom(3). One would expect an inequality, which is an analog of (3) and stronger than (7). To state our results,wefixseveralnotations.Letusfirstdefineafunctionspace K = u W1,2(Σ): K udv =0 (8) g g g ( ∈ ZΣ ) andanassociateeigenvalueoftheLaplace-Beltramioperator λ (Σ)= inf u2dv . (9) g g g u∈Kg, Σu2dvg=1ZΣ|∇ | R Clearly, K is a closed subspace of W1,2(Σ). While unlike λ (Σ) given as in (4), λ (Σ) is not g ∗g g necessarilynonzero. Forexample,λ (Σ) = 0ifK 0. InLemma6below,weshalldescribea g g necessaryandsufficientconditionunderwhichλ (Σ≡)>0. Ifα<λ (Σ)andu K ,wewrite g g g ∈ 1/2 u = u2dv α u2dv . (10) 1,α g g g k k ZΣ|∇ | − ZΣ ! Clearly is an equivalent norm to defined as in (1) on the function space K , 1,α W1,2(Σ) g k·k k·k providedthatα < λ (Σ). The first and the mostimportantresultin thispaper can be stated as g follows: 2 Theorem1. Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K beitsGaussian g curvature,andK ,λ (Σ)bedefinedasin(8),(9)respectively. SupposethattheEulercharacter- g g isticχ(Σ),0. Thenforanyα<λ (Σ),thereholds g sup e4πu2dv <+ , (11) g u∈Kg,kuk1,α≤1ZΣ ∞ where isanormdefinedasin(10). Moreover,4πisthebestconstant,inotherwords,if 1,α k·k e4πu2 isreplacedbyeγu2 in(11)foranyγ>4π,thentheabovesupremumisinfinity. An extremely interesting case of Theorem 1 is α = 0. If λ (Σ) > 0, the norm is g 1,0 well defined on the function space K , and thus (11) is an analog of Fontana’s inequkal·itky (2). g Furthermore,thefollowingtheoremrevealstherelationbetweentheTrudinger-Moserinequality andthetopologyofΣ. Theorem2. Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K bedefinedasin g (8). ThentheTrudinger-Moserinequality sup e4πu2dv <+ (12) g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ R holdsifandonlyiftheEulercharacteristicχ(Σ),0. Letusexplaintherelationbetween(12)and(2)undertheassumptionthatχ(Σ),0.First,we canseethatbothbestconstantsofthetwoinequalitiesare4π.Second,thesubcriticalinequalities inbothcasesareequivalent.Precisely,theinequalities sup eγu2dv <+ , γ<4π, g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ R holdsifandonlyif(2)holdsforallγ<4π.Third,inthecriticalcase,(12)isindependentof(2). AnotherinterestingproblemfortheTrudinger-Moserinequalityistheexistenceofextremal functions. Pioneerworksin thisdirectionwere dueto Carleson-Chang[5], M. Struwe [21], F. Flucher [12], K. Lin [15], Ding-Jost-Li-Wang [9, 10], and Adimurthi-Struwe[3]. Concerning theextremalfunctionsfor(11),wehavethefollowing: Theorem 3. If the Euler characteristic χ(Σ) , 0, then for any γ 4π and α < λ (Σ), where g λ (Σ)isdefinedasin(9),thesupremumin(11)canbeattainedby≤somefunctionu K with g ∗ g ∈ u 1. ∗ 1,α k k ≤ Onewouldaskwhatwillhappenwhenχ(Σ) = 0. Wetalkaboutthissituationbriefly. From Lemma6below,weknowthatλ (Σ) = 0. BytheYounginequality2ab ǫa2+ǫ 1b2, ǫ > 0, g − ≤ ∀ andFontana’sinequality(2),wecanprovethat sup e4πu2dv <+ , α<0. (13) g u∈W1,2(Σ),kuk1,α≤1ZΣ ∞ ∀ For details of the proof of (13), we refer the reader to [11, 28]. Thus (13) is weaker than (2). Therealsoholds sup e4πu2dv sup e4πu2dv . g g u∈Kg,kuk1,α≤1ZΣ ≤u∈W31,2(Σ),kuk1,α≤1ZΣ Hence,inthecaseχ(Σ) = 0,(11)isstilltrueandslightlyweakerthan(2). ItwasprovedbyY. Li [16] that the extremalfunction for (13) exists, while it is open whether or not the extremal functionfor(11)existsundertheassumptionχ(Σ)=0. Thisissuewillnotbediscussedhere. FinallyweapplyTheorem1toChen-Zhu’sproblem[8]. Letg˜ = eugbeametricconformal tog,whereu C2(Σ). Ifχ(Σ),0,wedefineamodifiedLiouvilleenergyofg˜,by ∈ 8 L (g˜)= u2+ K u dv . (14) g ZΣ |∇g | χ(Σ) g ! g In particular, if Σ is a topological two sphere, then L (g˜) coincides with the Liouville energy g L (g˜)definedasin(6). Wedenote g C (Σ)= sup e4πu2dv . (15) g g u∈Kg, Σ|∇gu|2dvg≤1ZΣ R ThefollowingtheoremgeneralizesChen-Zhu’sresult(7). Theorem 4. Let (Σ,g) be a compactRiemanniansurface without boundary. Supposethat the Eulercharacteristicχ(Σ) , 0. Foranyconformalmetric g˜ = eugwith u C2(Σ), ifvol (Σ) g˜ ∈ ≥ µvol (Σ)forsomeconstantµ>0,thenthereholds g µvol (Σ) g L (g˜) 16πln , g ≥ C (Σ) g whereL (g˜)andC (Σ)aredefinedasin(14)and(15)respectively. g g TheproofofTheorem1andTheorem3isbasedonblow-upanalysis.Wefollowthelinesof [25,27],andtherebyfollowcloselyY.Li[16]andAdimurthi-Druet[2]. Earlierworkshadbeen donebyDing-Jost-Li-Wang[9,10]andAdimuthi-Struwe[3]. BothTheorem2andTheorem4 areconsequencesofTheorem1. ThefollowinglemmaduetoCarleson-Chang[5]willbeused inouranalysis. Lemma 5. Let B be the unitdisc in R2. Assume v is a sequenceof functionsin W1,2(B) { ǫ}ǫ>0 0 with v 2dx=1. If v 2dx⇀δ asǫ 0weaklyinsenseofmeasure.Then B|∇ ǫ| |∇ ǫ| 0 → R limsup (e4πv2ǫ 1)dx πe. ǫ 0 ZB − ≤ → Anotherkeyingredientinouranalysisisthewell-knownGauss-Bonnetformula(seeforexample [14],Section3.J.1,p. 176),namely K dv =2πχ(Σ). (16) g g ZΣ Throughout this paper, we often denote various constants by the same C, also we do not distinguishsequenceandsubsequence.Theremainingpartofthispaperisorganizedasfollows: Theorem 1 and Theorem 3 are proved in Section 2; Theorem 2 and Theorem 4 are proved in Section3andSection4respectively. 4 2. ATrudinger-MoserinequalityinvolvingGaussiancurvature In this section, we prove Theorem 1 and Theorem 3 by using blow-up analysis. We need severalpreliminaryresultsbeforebeginningtheblow-upprocedure. Lemma6. λ (Σ)>0ifandonlyifχ(Σ),0. g Proof. Letusfirstprovethatλ (Σ) canbeattained. Bydefinitionofλ (Σ) (see(9)before),we g g take u K such that u2dv = 1 and u 2dv λ (Σ) as j + . Clearly u is j ∈ g Σ j g Σ|∇g j| g → g → ∞ j boundedinW1,2(Σ). ThusR,uptoasubsequenRce,wecanassume u ⇀u weakly in W1,2(Σ), j 0 u u strongly in L2(Σ). j 0 → Itthenfollowsthat u2dv =1, u 2dv λ (Σ). (17) ZΣ 0 g ZΣ|∇g 0| g ≤ g Sinceu K ,wehave j g ∈ K u dv = lim K u dv =0. (18) g 0 g g j g ZΣ j→+∞ZΣ By(17)and(18),wehavethatu K attainsλ (Σ). 0 g g ∈ If χ(Σ) , 0, we claim that λ (Σ) > 0. Suppose not. We have λ (Σ) = 0 and thus u C g g 0 ≡ for some constant C. In view of (18), we have by using the Gauss-Bonnet formula (16) that 2πCχ(Σ)=0. HenceC =0. Thiscontradicts u2dv =1. Onthecontrary,ifχ(Σ)=0,thenthe Σ 0 g Gauss-Bonnetformulaimpliesthatu c KR foranyc R. Henceλ (Σ)=0. (cid:3) g g ≡ ∈ ∈ AnimmediateconsequenceofLemma6isthefollowing: Lemma7. Supposethatχ(Σ),0. Then u K ,wehave u2dv 1 u2dv . ∀ ∈ g Σ g ≤ λg(Σ) Σ|∇g | g R R Proposition8. Supposethatχ(Σ),0. Thereholds sup eγu2dv <+ , γ<4π. (19) g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ R Proof. Takeanyu K with u2dv 1. Denoteu= 1 udv . Foranyfixedγ< 4π, ∈ g Σ|∇g | g ≤ volg(Σ) Σ g wecanfindsomeγ ,sayγ =R(γ+4π)/2,andaconstantCdepenRdingonlyonγsuchthat 0 0 γu2 γ (u u)2+Cu2. 0 ≤ − ByLemma7,thereexistssomeconstantCdependingonlyon(Σ,g)suchthat 1 u2 u2dv C. ≤ volg(Σ)ZΣ g ≤ ThenitfollowsfromFontana’sinequality(2)that eγu2dvg C eγ0(u−u)2dvg C ZΣ ≤ ZΣ ≤ 5 forsomeconstantCdependingonlyon(Σ,g)andγ. Therefore(19)follows. (cid:3) Weremarkthatifχ(Σ) , 0,thenProposition8indicatesthatFontana’ssubcriticalinequali- tiesimply(19). Conversely,assuming(19),thenusingthesameargumentasintheaboveproof wecanget(2)foranyγ<4π.Therefore,(19)isequivalentto(2)withγ<4π. Intheremainingpartofthissection,wealwaysassumeχ(Σ),0andα<λ (Σ). g Lemma9. Forany0<ǫ <4π,thereexistssomeu C1(Σ) K with u =1suchthat ǫ g ǫ 1,α ∈ ∩ k k e(4π−ǫ)u2ǫdvg = sup e(4π−ǫ)u2dvg. (20) ZΣ u∈Kg,kuk1,α≤1ZΣ Proof. Foranyfixed0<ǫ <4π,wechooseu K with u 1suchthatas j + , j g j 1,α ∈ k k ≤ → ∞ e(4π−ǫ)u2jdvg sup e(4π−ǫ)u2dvg. (21) ZΣ →u∈Kg,kuk1,α≤1ZΣ By Lemma 7, u is bounded in W1,2(Σ). Then we can assume, up to a subsequence, u ⇀ u j j ǫ weaklyinW1,2(Σ),u u stronglyinL2(Σ),andu u a.e.inΣ. Assuch,wehave j ǫ j ǫ → → u 2dv limsup u 2dv . g ǫ g g j g ZΣ|∇ | ≤ j + ZΣ|∇ | → ∞ Thisimmediatelyleadsto u 1and ǫ 1,α k k ≤ u u 2dv 1 u 2 +o (1). ZΣ|∇g j−∇g ǫ| g ≤ −k ǫk1,α j Observe (4π ǫ)u2 (4π ǫ/2)(u u )2+32π2ǫ 1u2. − j ≤ − j− ǫ − ǫ ItfollowsfromtheHo¨lderinequalityandProposition8thate(4π−ǫ)u2j isboundedinLq(Σ)forsome q> 1. Hencee(4π−ǫ)u2j e(4π−ǫ)u2ǫ stronglyinL1(Σ). Thistogetherwith(21)leadsto(20). Since u K ,wehaveu →K . Itiseasytoseethat u =1. j g ǫ g ǫ 1,α ∈ ∈ k k Byastraightforwardcalculation,weknowthatu satisfiestheEuler-Lagrangeequation ǫ ∆guǫ −αuǫ = λ1ǫuǫe(4π−ǫ)u2ǫ −µǫKg   µλǫǫ ==R2Σπχ1u(Σ2ǫ)e((cid:16)4λπ1ǫ−ǫR)Σu2ǫudǫveg(4π−ǫ)u2ǫdvg+αRΣuǫdvg(cid:17), (22) where∆ istheLaplace-Beltramioperator.Ellipticestimateimpliesthatu C1(Σ). (cid:3) g ǫ ∈ Lemma10. Wehave lim e(4π−ǫ)u2ǫdvg = sup e(4π−ǫ)u2dvg. (23) ǫ→0ZΣ u∈Kg,kuk1,α≤1ZΣ 6 Proof. By Lemma9, Σe(4π−ǫ)u2ǫdvg isincreasingwith respectto ǫ > 0. Hence thelimitonthe left hand side of (23)Rdoesexist, possibly it is infinity. Noting that for any fixed u K with g ∈ u 1,wehave 1,α k k ≤ e4πu2dvg =lim e(4π−ǫ)u2dvg lim e(4π−ǫ)u2ǫdvg, ZΣ ǫ 0ZΣ ≤ǫ 0ZΣ → → andwhence sup e4πu2dvg lim e(4π−ǫ)u2ǫdvg. (24) u∈Kg,kuk1,α≤1ZΣ ≤ǫ→0ZΣ Ontheotherhand,itisobviousthat lim e(4π−ǫ)u2ǫdvg sup e4πu2dvg. (25) ǫ→0ZΣ ≤u∈Kg,kuk1,α≤1ZΣ Combining(24)and(25),weget(23). (cid:3) We now follow the linesof [25, 27], and therebyfollowclosely Y. Li [16] and Adimurthi- Druet[2]. Similarblow-upschemehadbeenusedbyDing-Jost-Li-Wang[9,10]andAdimurthi- Struwe [3]. Denote c = u (x ) = max u . If c is bounded, applying elliptic estimates to ǫ ǫ ǫ Σ ǫ ǫ | | | | (22),wealreadyconcludetheexistenceofextremalfunction.Withoutlossofgenerality,wemay assumec =u (x ) + andx p Σasǫ 0. ǫ ǫ ǫ ǫ → ∞ → ∈ → Lemma11. u ⇀0weaklyinW1,2(Σ),u 0stronglyinLq(Σ)forallq 1,and u 2dv ⇀ ǫ ǫ g ǫ g → ≥ |∇ | δ weaklyinsenseofmeasureasǫ 0,whereδ istheusualDiracmeasurecenteredat p. p p → Proof. Since u = 1andu K , itfollowsfromLemma7thatu isboundedinW1,2(Σ). ǫ 1,α ǫ g ǫ k k ∈ Precisely,wehave λ (Σ)+1 u 2dv + u2dv g . (26) ZΣ|∇g ǫ| g ZΣ ǫ g ≤ λg(Σ) α − In view of (26), without loss of generality, we can assume u ⇀ u weakly in W1,2(Σ), and ǫ 0 u u stronglyinLq(Σ)forallq 1. Itfollowsthat ǫ 0 → ≥ u 2dv =1+α u2dv +o (1) (27) ZΣ|∇g ǫ| g ZΣ 0 g ǫ and (u u )2dv =1 u 2dv +α u2dv +o (1). (28) ZΣ|∇g ǫ − 0 | g −ZΣ|∇g 0| g ZΣ 0 g ǫ Supposeu . 0. Inviewof(28),Proposition8togetherwiththeHo¨lderinequalityimpliesthat 0 e4πu2ǫ isboundedinLq(Σ)foranyfixedqwith1≤q<1/(1−ku0k21,α).Applyingellipticestimates to (22), we have that u is uniformly bounded in Σ, which contradicts c + . Therefore ǫ ǫ → ∞ u 0and(27)becomes 0 ≡ u 2dv =1+o (1). (29) g ǫ g ǫ ZΣ|∇ | Suppose u 2dv ⇀µinsenseofmeasure. Ifµ,δ ,theninviewof(29)andu 0,wecan g ǫ g p 0 |∇ | ≡ choosesufficientlysmallr >0andacut-offfunctionφ C1(B (p))suchthat0 φ 1,φ 1 onB (p), φ 4/r 0and ∈ 0 r0 ≤ ≤ ≡ r0/2 |∇g 0|≤ 0 limsup (φu )2dv <1. g ǫ g ǫ→0 ZBr0(p)|∇7 | Let φu = 1 φu dv . Since u 0 stronglyin Lq(Σ) for allq 1, φu 0 as ǫ 0. ǫ volg(Σ) Σ ǫ g ǫ → ≥ ǫ → → Using Fontana’siRnequality(2), we concludethate(4π−ǫ)(φuǫ)2 is boundedin Ls(Br0(p))forsome s > 1. Note that φ 1 on B (p). Applying elliptic estimates to (22), we have that u is ≡ r0/2 ǫ uniformlyboundedin B (p),whichcontradictsc + again. Therefore u 2dv ⇀ δ , andthiscompletestheprro0/o2fofthelemma. ǫ → ∞ |∇g ǫ| g (cid:3)p Lemma12. λ hasapositivelowerboundandµ isbounded. ǫ ǫ Proof. Notethat ZΣe(4π−ǫ)u2ǫdvg ≤ZΣ(cid:16)1+(4π−ǫ)u2ǫe(4π−ǫ)u2ǫ(cid:17)dvg =volg(Σ)+(4π−ǫ)λǫ. ThistogetherwithLemma10impliesthatλ hasapositivelowerbound.ByLemma11,wehave ǫ thatu isboundedinL2(Σ). Moreover,since ǫ 1 1 λǫ ZΣ|uǫ|e(4π−ǫ)u2ǫdvg ≤1+ λǫe4πvolg(Σ), weconcludethatµ isaboundedsequence. (cid:3) ǫ Letexp bethe exponentialmapat x andinj (Σ)be theinjectivityradiusof(Σ,g). There xǫ ǫ g existsaδ,0 < δ < inj (Σ), suchthatforanyǫ > 0, exp mapstheEuclideandiscB (0) R2 g xǫ δ ⊂ centeredattheoriginwithradiusδontothegeodesicdiscB (x ) Σ. Let δ ǫ ⊂ rǫ = λǫc−ǫ1e−(2π−ǫ/2)c2ǫ, (30) p g (x)=(exp g)(r x), x B (0). ǫ ∗xǫ ǫ ∀ ∈ δrǫ−1 Foranyfixedβ,0<β<4π,weeestimate rǫ2eβc2ǫ =λǫc−ǫ2e−(4π−ǫ−β)c2ǫ ≤c−ǫ2ZΣu2ǫeβu2ǫdvg →0, (31) herewehaveusedProposition8andLemma11. Inparticular,r 0. Thisleadsto ǫ → g ξ in C2 (R2), (32) ǫ → loc where ξ denotesthe Euclideanmetreic. Define two sequences of blow-upfunctionson the Eu- clideandiscB (0)by δrǫ−1 ψ (x)=c 1u (exp (r x)), ϕ (x)=c (u (exp (r x)) c ). ǫ −ǫ ǫ xǫ ǫ ǫ ǫ ǫ xǫ ǫ − ǫ It is first discovered by Adimurthi and M. Struwe [3] that the above function sequences are suitableforthiskindofproblems.Bytheequation(22),wehaveonB (0), δrǫ−1 −∆gǫψǫ =αrǫ2ψǫ +c−ǫ2ψǫe(4π−ǫ)(1+ψǫ)ϕǫ −rǫ2c−ǫ1µǫKg, (33) −∆egǫϕǫ =αrǫ2c2ǫψǫ +ψǫe(4π−ǫ)(1+ψǫ)ϕǫ −rǫ2cǫµǫKge, (34) e e 8 whereK (x)=K (exp (r x)).Itiseasytoseethat∆ ψ 0inL (R2), ψ 1andψ (0)=1. Applyingg ellipticgestimxǫateǫsto (33) andnoting(32),gwǫ eǫh→aveψ ∞locψinC| 1ǫ|(≤R2), wheǫreψisa e e ǫ → loc distributionalsolutionto ∆ ψ=0 in R2, ψ 1, ψ(0)=1. ξ − | |≤ ThentheLiouvilletheoremimpliesthatψ 1onR2. Inviewof(31),∆ ϕ isboundedinB ≡foranyfixedR>0.Notealsothatϕ (x) 0=ϕ (0) forall x B (0). Agǫppǫlyingelliptic estiRmatesto (34), we haveϕ ϕ inC1ǫ (R≤2), wherǫeϕ ∈ δrǫ−1 e ǫ → loc satisfies ∆ ϕ=e8πϕ in R2, ϕ(0)=0=supϕ. (35) ξ − R2 Moreover,wehave e8πϕ(x)dx limsup e(4π−ǫ)(u2ǫ(expxǫ(rǫx))−c2ǫ)dx ZBR(0) ≤ ǫ→0 ZBR(0) = limsup e(4π−ǫ)(u2ǫ(expxǫ(y))−c2ǫ)rǫ−2dy ǫ→0 ZBRrǫ(0) 1 = limǫ→s0upλǫ ZBRrǫ(xǫ)u2ǫe(4π−ǫ)u2ǫdvg 1 (36) ≤ byusing(30),changeofvariables,andψ 1inC1 (R2). Inviewof(35)and(36),aresultof ǫ → loc ChenandLi[7]impliesthat 1 ϕ(x)= log(1+πx2), x R2. (37) −4π | | ∀ ∈ Asaconsequence e8πϕdx=1. (38) ZR2 Inconclusion,weobtainthefollowing: Proposition13. ψ 1inC1 (R2)andϕ ϕinC1 (R2),whereϕsatisfies(37)and(38). ǫ → loc ǫ → loc Proposition 13 providesthe convergencebehavior of u near the blow-uppoint p. For the ǫ convergencebehaviorofu awayfrom p,wehavethefollowing: ǫ Proposition14. c u ⇀GweaklyinW1,q(Σ)forall1<q<2,andc u GinC1 (Σ p ) ǫ ǫ ǫ ǫ → loc \{ } ∩ L2(Σ),whereGisaGreenfunctionsatisfying ∆ G αG =δ 1+α ΣGdvgK in Σ  g − p− 2πRχ(Σ) g (39)  ΣGKgdvg =0. Moreover,GcanbedecompoRsedas 1 G = f(r)logr+A +ψ , (40) −2π p α whererdenotesthegeodesicdistancefrom p, f(r)isanonnegativesmoothdecreasingfunction, which is equal to 1 in B (p), and to zero for r inj (Σ), A is a constant real number, injg(Σ)/2 ≥ g p ψ C1(Σ)withψ (p)=0. α α ∈ 9 Proof. With a slight modification of proofs of ([25], Lemmas 4.5-4.9), we obtain c u ⇀ G ǫ ǫ weakly in W1,q(Σ) for all 1 < q < 2, and c u G in C1 (Σ p ) L2(Σ), where G is a ǫ ǫ → loc \ { } ∩ distributional solution to (39). It is known ([4], Section 4.10, p. 106) that there exists some functionh L (Σ)suchthat ∞ ∈ 1 ∆ f(r)logr =δ +h g −2π ! p inthedistributionalsense. Hence ∆ G+ 1 f(r)logr =αG h 1+α ΣGdvgK (41) g 2π ! − − 2πRχ(Σ) g inthedistributionalsense. SinceG Ls(Σ)forany s 1bytheSobolevembeddingtheorems, ∈ ≥ the terms on the right hand side of (41) belong to Ls(Σ) for all s 1. By elliptic estimates, G+ 1 f(r)logr C1(Σ),whichimplies(40). ≥ (cid:3) 2π ∈ In the following, we shall derive an upper boundof the integrals Σe(4π−ǫ)u2ǫdvg. There are two waysto obtainthe upperbound: One isto use the capacityestimRate whichis dueto Y. Li [16]; The other is to employ Carleson-Chang’s estimate (Lemma 5), which was first used by Li-Liu-Yang[17]. Hereweprefertothesecondway. Inviewof(40),wehave ∂G G2dv = α G2dv G ds ZΣ\Bδ(p)|∇g | g ZΣ\Bδ(p) g−Z∂Bδ(p) ∂ν g 1+α Gdv Σ g K Gdv − 2πχR(Σ) ZΣ\Bδ(p) g g 1 1 = log +A +α G 2+o (1). 2π δ p k k2 δ Henceweobtain 1 1 1 u 2dv = log +A +α G 2+o (1)+o (1) . (42) ZΣ\Bδ(p)|∇g ǫ| g c2ǫ 2π δ p k k2 δ ǫ ! Lets =sup u andu =(u s )+. Thenu W1,2(B (p)).By(42)andthefactthat ǫ ∂Bδ(p) ǫ ǫ ǫ − ǫ ǫ ∈ 0 δ e e u 2dv =1 u 2dv +α u2dv , ZBδ(p)|∇g ǫ| g −ZΣ\Bδ(p)|∇g ǫ| g ZΣ ǫ g wehave 1 1 1 u 2dv τ =1 log +A +o (1)+o (1) . Z |∇g ǫ| g ≤ ǫ − c2 2π δ p δ ǫ ! Bδ(p) ǫ Now we choose an isotheermal coordinate system (U,φ; x1,x2 ) near p such that B (p) U, 2δ φ(p) = 0, and the metric g = eh(dx12 +dx22) forsome{functio}nh C1(φ(U))with h(0)⊂= 0. ∈ Clearly, for any δ > 0, there exists some c(δ) > 0 with c(δ) 0 as δ 0 such that dv g (1+c(δ))dxandφ(B (p)) B (0) R2. Notingthatu =→0outsideB→(p),wehave ≤ δ δ(1+c(δ)) ǫ δ ⊂ ⊂ e (u φ 1)2dx= u 2dv = u dv τ . ǫ − g ǫ g g ǫ g ǫ ZBδ(1+c(δ))(0)|∇ ◦ | Zφ−1(Bδ(1+c(δ))(0))|∇ | ZBδ(p)|∇ | ≤ 10 e e e

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.