A Trudinger-Moser inequality on compact Riemannian surface involving Gaussian curvature YunyanYang DepartmentofMathematics,RenminUniversityofChina,Beijing100872,P.R.China 5 1 0 2 n Abstract a MotivatedbyarecentworkofX.ChenandM.Zhu(Commun. Math. Stat.,1(2013)369-385), J we establish a Trudinger-Moserinequality on compact Riemannian surface without boundary. 9 2 Theproofisbasedonblow-upanalysistogetherwithCarleson-Chang’sresult(Bull. Sci. Math. 110 (1986) 113-127). This inequality is different from the classical one, which is due to L. ] Fontana(Comment. Math. Helv.,68(1993)415-454),sincetheGaussiancurvatureisinvolved. G As an application, we improve Chen-Zhu’s result as follows: A modified Liouville energy of D conformalRiemannianmetrichasauniformlowerbound,providedthattheEulercharacteristic . isnonzeroandthevolumeoftheconformalsurfacehasauniformpositivelowerbound. h t a Keywords: Trudinger-Moserinequality,blow-upanalysis,Liouvilleenergy m 2010MSC: 46E35;58J05 [ 1 v 1. Introduction 0 7 Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K beitsGaussiancurvature 4 g andχ(Σ)beitsEulercharacteristic.LetW1,2(Σ)bethecompletionofC (Σ)underthenorm 7 ∞ 0 1/2 . u = ( u2+u2)dv , (1) 01 k kW1,2(Σ) ZΣ |∇g | g! 5 where is the gradientoperatorand dv is the Riemannian volume element. As a limit case g g ∇ 1 of the Sobolev embeddingtheorem, the Trudinger-Moserinequality [29, 20, 19, 23, 18] plays : v an important role in analysis and geometry. In an elegant paper [13], L. Fontana proved that i D. Adams’ results [1], Trudinger-Moser inequalities for higher order derivatives, still hold on X compactRiemannianmanifoldswithoutboundary.Amongthose,thereisthefollowing r a sup eγu2dv <+ , γ 4π. (2) g u∈W1,2(Σ), Σudvg=0, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ ≤ R R Motivated by works of Adimurthi-Druet[2], the author [24, 25, 26] and C. Tintarev [22], we obtainedin[27]thatforanyα<λ (Σ),thereholds ∗g sup eγu2dv <+ , γ 4π, (3) g u∈W1,2(Σ), Σudvg=0, Σ|∇gu|2dvg−α Σu2dvg≤1ZΣ ∞ ∀ ≤ R R R Emailaddress:[email protected](YunyanYang) Preprintsubmittedto*** January30,2015 andextremalfunctionforthisinequalityexists. Hereλ (Σ)isthefirsteigenvalueoftheLaplace- ∗g Beltramioperatorwithrespecttothemeanvaluezerocondition,namely λ (Σ)= inf u2dv . (4) ∗g u∈W1,2(Σ),Σudvg=0,Σu2dvg=1ZΣ|∇g | g R R Clearlyλ (Σ) > 0 and(3) improves(2). Asaconsequenceof(3), wehaveaweakformofthe ∗g Trudinger-Moserinequality.Namely,foranyα<λ (Σ),thereexistssomeconstantCdepending ∗g onlyon(Σ,g)andαsuchthatforallu W1,2(Σ),thereholds ∈ u2dv α (u u)2dv 16πln eudv +16πu C, (5) g g g g ZΣ|∇ | − ZΣ − − ZΣ ≥− whereu= 1 udv . Whenα=0,theinequalitywasobtainedbyDing-Jost-Li-Wang[9]. volg(Σ) Σ g ForanyconfoRrmalmetricg˜ =eug,whereu C2(Σ),theLiouvilleenergyofg˜ reads ∈ g˜ L (g˜)= ln (R dv +R dv ), g g˜ g˜ g g ZΣ g whereR andR aretwicetheGaussiancurvatureK andK respectively.Since g g˜ g g˜ R =e u(∆ u+R ), g˜ − g g wehave L (g˜)= u2+4K u dv . (6) g g g g ZΣ(cid:16)|∇ | (cid:17) IfΣisatopologicaltwosphereandvol (Σ) = vol (Σ) = 4π,thenitwasprovedbyX.Chenand g˜ g M.Zhu[8]thatthereexistssomeconstantCdependingonlyon(Σ,g)suchthat L (g˜) C. (7) g ≥− This is a veryimportantissue in the Calabi flow [6, 8]. Note that (5) can be derivedfrom(3). One would expect an inequality, which is an analog of (3) and stronger than (7). To state our results,wefixseveralnotations.Letusfirstdefineafunctionspace K = u W1,2(Σ): K udv =0 (8) g g g ( ∈ ZΣ ) andanassociateeigenvalueoftheLaplace-Beltramioperator λ (Σ)= inf u2dv . (9) g g g u∈Kg, Σu2dvg=1ZΣ|∇ | R Clearly, K is a closed subspace of W1,2(Σ). While unlike λ (Σ) given as in (4), λ (Σ) is not g ∗g g necessarilynonzero. Forexample,λ (Σ) = 0ifK 0. InLemma6below,weshalldescribea g g necessaryandsufficientconditionunderwhichλ (Σ≡)>0. Ifα<λ (Σ)andu K ,wewrite g g g ∈ 1/2 u = u2dv α u2dv . (10) 1,α g g g k k ZΣ|∇ | − ZΣ ! Clearly is an equivalent norm to defined as in (1) on the function space K , 1,α W1,2(Σ) g k·k k·k providedthatα < λ (Σ). The first and the mostimportantresultin thispaper can be stated as g follows: 2 Theorem1. Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K beitsGaussian g curvature,andK ,λ (Σ)bedefinedasin(8),(9)respectively. SupposethattheEulercharacter- g g isticχ(Σ),0. Thenforanyα<λ (Σ),thereholds g sup e4πu2dv <+ , (11) g u∈Kg,kuk1,α≤1ZΣ ∞ where isanormdefinedasin(10). Moreover,4πisthebestconstant,inotherwords,if 1,α k·k e4πu2 isreplacedbyeγu2 in(11)foranyγ>4π,thentheabovesupremumisinfinity. An extremely interesting case of Theorem 1 is α = 0. If λ (Σ) > 0, the norm is g 1,0 well defined on the function space K , and thus (11) is an analog of Fontana’s inequkal·itky (2). g Furthermore,thefollowingtheoremrevealstherelationbetweentheTrudinger-Moserinequality andthetopologyofΣ. Theorem2. Let(Σ,g)beacompactRiemanniansurfacewithoutboundary,K bedefinedasin g (8). ThentheTrudinger-Moserinequality sup e4πu2dv <+ (12) g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ R holdsifandonlyiftheEulercharacteristicχ(Σ),0. Letusexplaintherelationbetween(12)and(2)undertheassumptionthatχ(Σ),0.First,we canseethatbothbestconstantsofthetwoinequalitiesare4π.Second,thesubcriticalinequalities inbothcasesareequivalent.Precisely,theinequalities sup eγu2dv <+ , γ<4π, g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ R holdsifandonlyif(2)holdsforallγ<4π.Third,inthecriticalcase,(12)isindependentof(2). AnotherinterestingproblemfortheTrudinger-Moserinequalityistheexistenceofextremal functions. Pioneerworksin thisdirectionwere dueto Carleson-Chang[5], M. Struwe [21], F. Flucher [12], K. Lin [15], Ding-Jost-Li-Wang [9, 10], and Adimurthi-Struwe[3]. Concerning theextremalfunctionsfor(11),wehavethefollowing: Theorem 3. If the Euler characteristic χ(Σ) , 0, then for any γ 4π and α < λ (Σ), where g λ (Σ)isdefinedasin(9),thesupremumin(11)canbeattainedby≤somefunctionu K with g ∗ g ∈ u 1. ∗ 1,α k k ≤ Onewouldaskwhatwillhappenwhenχ(Σ) = 0. Wetalkaboutthissituationbriefly. From Lemma6below,weknowthatλ (Σ) = 0. BytheYounginequality2ab ǫa2+ǫ 1b2, ǫ > 0, g − ≤ ∀ andFontana’sinequality(2),wecanprovethat sup e4πu2dv <+ , α<0. (13) g u∈W1,2(Σ),kuk1,α≤1ZΣ ∞ ∀ For details of the proof of (13), we refer the reader to [11, 28]. Thus (13) is weaker than (2). Therealsoholds sup e4πu2dv sup e4πu2dv . g g u∈Kg,kuk1,α≤1ZΣ ≤u∈W31,2(Σ),kuk1,α≤1ZΣ Hence,inthecaseχ(Σ) = 0,(11)isstilltrueandslightlyweakerthan(2). ItwasprovedbyY. Li [16] that the extremalfunction for (13) exists, while it is open whether or not the extremal functionfor(11)existsundertheassumptionχ(Σ)=0. Thisissuewillnotbediscussedhere. FinallyweapplyTheorem1toChen-Zhu’sproblem[8]. Letg˜ = eugbeametricconformal tog,whereu C2(Σ). Ifχ(Σ),0,wedefineamodifiedLiouvilleenergyofg˜,by ∈ 8 L (g˜)= u2+ K u dv . (14) g ZΣ |∇g | χ(Σ) g ! g In particular, if Σ is a topological two sphere, then L (g˜) coincides with the Liouville energy g L (g˜)definedasin(6). Wedenote g C (Σ)= sup e4πu2dv . (15) g g u∈Kg, Σ|∇gu|2dvg≤1ZΣ R ThefollowingtheoremgeneralizesChen-Zhu’sresult(7). Theorem 4. Let (Σ,g) be a compactRiemanniansurface without boundary. Supposethat the Eulercharacteristicχ(Σ) , 0. Foranyconformalmetric g˜ = eugwith u C2(Σ), ifvol (Σ) g˜ ∈ ≥ µvol (Σ)forsomeconstantµ>0,thenthereholds g µvol (Σ) g L (g˜) 16πln , g ≥ C (Σ) g whereL (g˜)andC (Σ)aredefinedasin(14)and(15)respectively. g g TheproofofTheorem1andTheorem3isbasedonblow-upanalysis.Wefollowthelinesof [25,27],andtherebyfollowcloselyY.Li[16]andAdimurthi-Druet[2]. Earlierworkshadbeen donebyDing-Jost-Li-Wang[9,10]andAdimuthi-Struwe[3]. BothTheorem2andTheorem4 areconsequencesofTheorem1. ThefollowinglemmaduetoCarleson-Chang[5]willbeused inouranalysis. Lemma 5. Let B be the unitdisc in R2. Assume v is a sequenceof functionsin W1,2(B) { ǫ}ǫ>0 0 with v 2dx=1. If v 2dx⇀δ asǫ 0weaklyinsenseofmeasure.Then B|∇ ǫ| |∇ ǫ| 0 → R limsup (e4πv2ǫ 1)dx πe. ǫ 0 ZB − ≤ → Anotherkeyingredientinouranalysisisthewell-knownGauss-Bonnetformula(seeforexample [14],Section3.J.1,p. 176),namely K dv =2πχ(Σ). (16) g g ZΣ Throughout this paper, we often denote various constants by the same C, also we do not distinguishsequenceandsubsequence.Theremainingpartofthispaperisorganizedasfollows: Theorem 1 and Theorem 3 are proved in Section 2; Theorem 2 and Theorem 4 are proved in Section3andSection4respectively. 4 2. ATrudinger-MoserinequalityinvolvingGaussiancurvature In this section, we prove Theorem 1 and Theorem 3 by using blow-up analysis. We need severalpreliminaryresultsbeforebeginningtheblow-upprocedure. Lemma6. λ (Σ)>0ifandonlyifχ(Σ),0. g Proof. Letusfirstprovethatλ (Σ) canbeattained. Bydefinitionofλ (Σ) (see(9)before),we g g take u K such that u2dv = 1 and u 2dv λ (Σ) as j + . Clearly u is j ∈ g Σ j g Σ|∇g j| g → g → ∞ j boundedinW1,2(Σ). ThusR,uptoasubsequenRce,wecanassume u ⇀u weakly in W1,2(Σ), j 0 u u strongly in L2(Σ). j 0 → Itthenfollowsthat u2dv =1, u 2dv λ (Σ). (17) ZΣ 0 g ZΣ|∇g 0| g ≤ g Sinceu K ,wehave j g ∈ K u dv = lim K u dv =0. (18) g 0 g g j g ZΣ j→+∞ZΣ By(17)and(18),wehavethatu K attainsλ (Σ). 0 g g ∈ If χ(Σ) , 0, we claim that λ (Σ) > 0. Suppose not. We have λ (Σ) = 0 and thus u C g g 0 ≡ for some constant C. In view of (18), we have by using the Gauss-Bonnet formula (16) that 2πCχ(Σ)=0. HenceC =0. Thiscontradicts u2dv =1. Onthecontrary,ifχ(Σ)=0,thenthe Σ 0 g Gauss-Bonnetformulaimpliesthatu c KR foranyc R. Henceλ (Σ)=0. (cid:3) g g ≡ ∈ ∈ AnimmediateconsequenceofLemma6isthefollowing: Lemma7. Supposethatχ(Σ),0. Then u K ,wehave u2dv 1 u2dv . ∀ ∈ g Σ g ≤ λg(Σ) Σ|∇g | g R R Proposition8. Supposethatχ(Σ),0. Thereholds sup eγu2dv <+ , γ<4π. (19) g u∈Kg, Σ|∇gu|2dvg≤1ZΣ ∞ ∀ R Proof. Takeanyu K with u2dv 1. Denoteu= 1 udv . Foranyfixedγ< 4π, ∈ g Σ|∇g | g ≤ volg(Σ) Σ g wecanfindsomeγ ,sayγ =R(γ+4π)/2,andaconstantCdepenRdingonlyonγsuchthat 0 0 γu2 γ (u u)2+Cu2. 0 ≤ − ByLemma7,thereexistssomeconstantCdependingonlyon(Σ,g)suchthat 1 u2 u2dv C. ≤ volg(Σ)ZΣ g ≤ ThenitfollowsfromFontana’sinequality(2)that eγu2dvg C eγ0(u−u)2dvg C ZΣ ≤ ZΣ ≤ 5 forsomeconstantCdependingonlyon(Σ,g)andγ. Therefore(19)follows. (cid:3) Weremarkthatifχ(Σ) , 0,thenProposition8indicatesthatFontana’ssubcriticalinequali- tiesimply(19). Conversely,assuming(19),thenusingthesameargumentasintheaboveproof wecanget(2)foranyγ<4π.Therefore,(19)isequivalentto(2)withγ<4π. Intheremainingpartofthissection,wealwaysassumeχ(Σ),0andα<λ (Σ). g Lemma9. Forany0<ǫ <4π,thereexistssomeu C1(Σ) K with u =1suchthat ǫ g ǫ 1,α ∈ ∩ k k e(4π−ǫ)u2ǫdvg = sup e(4π−ǫ)u2dvg. (20) ZΣ u∈Kg,kuk1,α≤1ZΣ Proof. Foranyfixed0<ǫ <4π,wechooseu K with u 1suchthatas j + , j g j 1,α ∈ k k ≤ → ∞ e(4π−ǫ)u2jdvg sup e(4π−ǫ)u2dvg. (21) ZΣ →u∈Kg,kuk1,α≤1ZΣ By Lemma 7, u is bounded in W1,2(Σ). Then we can assume, up to a subsequence, u ⇀ u j j ǫ weaklyinW1,2(Σ),u u stronglyinL2(Σ),andu u a.e.inΣ. Assuch,wehave j ǫ j ǫ → → u 2dv limsup u 2dv . g ǫ g g j g ZΣ|∇ | ≤ j + ZΣ|∇ | → ∞ Thisimmediatelyleadsto u 1and ǫ 1,α k k ≤ u u 2dv 1 u 2 +o (1). ZΣ|∇g j−∇g ǫ| g ≤ −k ǫk1,α j Observe (4π ǫ)u2 (4π ǫ/2)(u u )2+32π2ǫ 1u2. − j ≤ − j− ǫ − ǫ ItfollowsfromtheHo¨lderinequalityandProposition8thate(4π−ǫ)u2j isboundedinLq(Σ)forsome q> 1. Hencee(4π−ǫ)u2j e(4π−ǫ)u2ǫ stronglyinL1(Σ). Thistogetherwith(21)leadsto(20). Since u K ,wehaveu →K . Itiseasytoseethat u =1. j g ǫ g ǫ 1,α ∈ ∈ k k Byastraightforwardcalculation,weknowthatu satisfiestheEuler-Lagrangeequation ǫ ∆guǫ −αuǫ = λ1ǫuǫe(4π−ǫ)u2ǫ −µǫKg µλǫǫ ==R2Σπχ1u(Σ2ǫ)e((cid:16)4λπ1ǫ−ǫR)Σu2ǫudǫveg(4π−ǫ)u2ǫdvg+αRΣuǫdvg(cid:17), (22) where∆ istheLaplace-Beltramioperator.Ellipticestimateimpliesthatu C1(Σ). (cid:3) g ǫ ∈ Lemma10. Wehave lim e(4π−ǫ)u2ǫdvg = sup e(4π−ǫ)u2dvg. (23) ǫ→0ZΣ u∈Kg,kuk1,α≤1ZΣ 6 Proof. By Lemma9, Σe(4π−ǫ)u2ǫdvg isincreasingwith respectto ǫ > 0. Hence thelimitonthe left hand side of (23)Rdoesexist, possibly it is infinity. Noting that for any fixed u K with g ∈ u 1,wehave 1,α k k ≤ e4πu2dvg =lim e(4π−ǫ)u2dvg lim e(4π−ǫ)u2ǫdvg, ZΣ ǫ 0ZΣ ≤ǫ 0ZΣ → → andwhence sup e4πu2dvg lim e(4π−ǫ)u2ǫdvg. (24) u∈Kg,kuk1,α≤1ZΣ ≤ǫ→0ZΣ Ontheotherhand,itisobviousthat lim e(4π−ǫ)u2ǫdvg sup e4πu2dvg. (25) ǫ→0ZΣ ≤u∈Kg,kuk1,α≤1ZΣ Combining(24)and(25),weget(23). (cid:3) We now follow the linesof [25, 27], and therebyfollowclosely Y. Li [16] and Adimurthi- Druet[2]. Similarblow-upschemehadbeenusedbyDing-Jost-Li-Wang[9,10]andAdimurthi- Struwe [3]. Denote c = u (x ) = max u . If c is bounded, applying elliptic estimates to ǫ ǫ ǫ Σ ǫ ǫ | | | | (22),wealreadyconcludetheexistenceofextremalfunction.Withoutlossofgenerality,wemay assumec =u (x ) + andx p Σasǫ 0. ǫ ǫ ǫ ǫ → ∞ → ∈ → Lemma11. u ⇀0weaklyinW1,2(Σ),u 0stronglyinLq(Σ)forallq 1,and u 2dv ⇀ ǫ ǫ g ǫ g → ≥ |∇ | δ weaklyinsenseofmeasureasǫ 0,whereδ istheusualDiracmeasurecenteredat p. p p → Proof. Since u = 1andu K , itfollowsfromLemma7thatu isboundedinW1,2(Σ). ǫ 1,α ǫ g ǫ k k ∈ Precisely,wehave λ (Σ)+1 u 2dv + u2dv g . (26) ZΣ|∇g ǫ| g ZΣ ǫ g ≤ λg(Σ) α − In view of (26), without loss of generality, we can assume u ⇀ u weakly in W1,2(Σ), and ǫ 0 u u stronglyinLq(Σ)forallq 1. Itfollowsthat ǫ 0 → ≥ u 2dv =1+α u2dv +o (1) (27) ZΣ|∇g ǫ| g ZΣ 0 g ǫ and (u u )2dv =1 u 2dv +α u2dv +o (1). (28) ZΣ|∇g ǫ − 0 | g −ZΣ|∇g 0| g ZΣ 0 g ǫ Supposeu . 0. Inviewof(28),Proposition8togetherwiththeHo¨lderinequalityimpliesthat 0 e4πu2ǫ isboundedinLq(Σ)foranyfixedqwith1≤q<1/(1−ku0k21,α).Applyingellipticestimates to (22), we have that u is uniformly bounded in Σ, which contradicts c + . Therefore ǫ ǫ → ∞ u 0and(27)becomes 0 ≡ u 2dv =1+o (1). (29) g ǫ g ǫ ZΣ|∇ | Suppose u 2dv ⇀µinsenseofmeasure. Ifµ,δ ,theninviewof(29)andu 0,wecan g ǫ g p 0 |∇ | ≡ choosesufficientlysmallr >0andacut-offfunctionφ C1(B (p))suchthat0 φ 1,φ 1 onB (p), φ 4/r 0and ∈ 0 r0 ≤ ≤ ≡ r0/2 |∇g 0|≤ 0 limsup (φu )2dv <1. g ǫ g ǫ→0 ZBr0(p)|∇7 | Let φu = 1 φu dv . Since u 0 stronglyin Lq(Σ) for allq 1, φu 0 as ǫ 0. ǫ volg(Σ) Σ ǫ g ǫ → ≥ ǫ → → Using Fontana’siRnequality(2), we concludethate(4π−ǫ)(φuǫ)2 is boundedin Ls(Br0(p))forsome s > 1. Note that φ 1 on B (p). Applying elliptic estimates to (22), we have that u is ≡ r0/2 ǫ uniformlyboundedin B (p),whichcontradictsc + again. Therefore u 2dv ⇀ δ , andthiscompletestheprro0/o2fofthelemma. ǫ → ∞ |∇g ǫ| g (cid:3)p Lemma12. λ hasapositivelowerboundandµ isbounded. ǫ ǫ Proof. Notethat ZΣe(4π−ǫ)u2ǫdvg ≤ZΣ(cid:16)1+(4π−ǫ)u2ǫe(4π−ǫ)u2ǫ(cid:17)dvg =volg(Σ)+(4π−ǫ)λǫ. ThistogetherwithLemma10impliesthatλ hasapositivelowerbound.ByLemma11,wehave ǫ thatu isboundedinL2(Σ). Moreover,since ǫ 1 1 λǫ ZΣ|uǫ|e(4π−ǫ)u2ǫdvg ≤1+ λǫe4πvolg(Σ), weconcludethatµ isaboundedsequence. (cid:3) ǫ Letexp bethe exponentialmapat x andinj (Σ)be theinjectivityradiusof(Σ,g). There xǫ ǫ g existsaδ,0 < δ < inj (Σ), suchthatforanyǫ > 0, exp mapstheEuclideandiscB (0) R2 g xǫ δ ⊂ centeredattheoriginwithradiusδontothegeodesicdiscB (x ) Σ. Let δ ǫ ⊂ rǫ = λǫc−ǫ1e−(2π−ǫ/2)c2ǫ, (30) p g (x)=(exp g)(r x), x B (0). ǫ ∗xǫ ǫ ∀ ∈ δrǫ−1 Foranyfixedβ,0<β<4π,weeestimate rǫ2eβc2ǫ =λǫc−ǫ2e−(4π−ǫ−β)c2ǫ ≤c−ǫ2ZΣu2ǫeβu2ǫdvg →0, (31) herewehaveusedProposition8andLemma11. Inparticular,r 0. Thisleadsto ǫ → g ξ in C2 (R2), (32) ǫ → loc where ξ denotesthe Euclideanmetreic. Define two sequences of blow-upfunctionson the Eu- clideandiscB (0)by δrǫ−1 ψ (x)=c 1u (exp (r x)), ϕ (x)=c (u (exp (r x)) c ). ǫ −ǫ ǫ xǫ ǫ ǫ ǫ ǫ xǫ ǫ − ǫ It is first discovered by Adimurthi and M. Struwe [3] that the above function sequences are suitableforthiskindofproblems.Bytheequation(22),wehaveonB (0), δrǫ−1 −∆gǫψǫ =αrǫ2ψǫ +c−ǫ2ψǫe(4π−ǫ)(1+ψǫ)ϕǫ −rǫ2c−ǫ1µǫKg, (33) −∆egǫϕǫ =αrǫ2c2ǫψǫ +ψǫe(4π−ǫ)(1+ψǫ)ϕǫ −rǫ2cǫµǫKge, (34) e e 8 whereK (x)=K (exp (r x)).Itiseasytoseethat∆ ψ 0inL (R2), ψ 1andψ (0)=1. Applyingg ellipticgestimxǫateǫsto (33) andnoting(32),gwǫ eǫh→aveψ ∞locψinC| 1ǫ|(≤R2), wheǫreψisa e e ǫ → loc distributionalsolutionto ∆ ψ=0 in R2, ψ 1, ψ(0)=1. ξ − | |≤ ThentheLiouvilletheoremimpliesthatψ 1onR2. Inviewof(31),∆ ϕ isboundedinB ≡foranyfixedR>0.Notealsothatϕ (x) 0=ϕ (0) forall x B (0). Agǫppǫlyingelliptic estiRmatesto (34), we haveϕ ϕ inC1ǫ (R≤2), wherǫeϕ ∈ δrǫ−1 e ǫ → loc satisfies ∆ ϕ=e8πϕ in R2, ϕ(0)=0=supϕ. (35) ξ − R2 Moreover,wehave e8πϕ(x)dx limsup e(4π−ǫ)(u2ǫ(expxǫ(rǫx))−c2ǫ)dx ZBR(0) ≤ ǫ→0 ZBR(0) = limsup e(4π−ǫ)(u2ǫ(expxǫ(y))−c2ǫ)rǫ−2dy ǫ→0 ZBRrǫ(0) 1 = limǫ→s0upλǫ ZBRrǫ(xǫ)u2ǫe(4π−ǫ)u2ǫdvg 1 (36) ≤ byusing(30),changeofvariables,andψ 1inC1 (R2). Inviewof(35)and(36),aresultof ǫ → loc ChenandLi[7]impliesthat 1 ϕ(x)= log(1+πx2), x R2. (37) −4π | | ∀ ∈ Asaconsequence e8πϕdx=1. (38) ZR2 Inconclusion,weobtainthefollowing: Proposition13. ψ 1inC1 (R2)andϕ ϕinC1 (R2),whereϕsatisfies(37)and(38). ǫ → loc ǫ → loc Proposition 13 providesthe convergencebehavior of u near the blow-uppoint p. For the ǫ convergencebehaviorofu awayfrom p,wehavethefollowing: ǫ Proposition14. c u ⇀GweaklyinW1,q(Σ)forall1<q<2,andc u GinC1 (Σ p ) ǫ ǫ ǫ ǫ → loc \{ } ∩ L2(Σ),whereGisaGreenfunctionsatisfying ∆ G αG =δ 1+α ΣGdvgK in Σ g − p− 2πRχ(Σ) g (39) ΣGKgdvg =0. Moreover,GcanbedecompoRsedas 1 G = f(r)logr+A +ψ , (40) −2π p α whererdenotesthegeodesicdistancefrom p, f(r)isanonnegativesmoothdecreasingfunction, which is equal to 1 in B (p), and to zero for r inj (Σ), A is a constant real number, injg(Σ)/2 ≥ g p ψ C1(Σ)withψ (p)=0. α α ∈ 9 Proof. With a slight modification of proofs of ([25], Lemmas 4.5-4.9), we obtain c u ⇀ G ǫ ǫ weakly in W1,q(Σ) for all 1 < q < 2, and c u G in C1 (Σ p ) L2(Σ), where G is a ǫ ǫ → loc \ { } ∩ distributional solution to (39). It is known ([4], Section 4.10, p. 106) that there exists some functionh L (Σ)suchthat ∞ ∈ 1 ∆ f(r)logr =δ +h g −2π ! p inthedistributionalsense. Hence ∆ G+ 1 f(r)logr =αG h 1+α ΣGdvgK (41) g 2π ! − − 2πRχ(Σ) g inthedistributionalsense. SinceG Ls(Σ)forany s 1bytheSobolevembeddingtheorems, ∈ ≥ the terms on the right hand side of (41) belong to Ls(Σ) for all s 1. By elliptic estimates, G+ 1 f(r)logr C1(Σ),whichimplies(40). ≥ (cid:3) 2π ∈ In the following, we shall derive an upper boundof the integrals Σe(4π−ǫ)u2ǫdvg. There are two waysto obtainthe upperbound: One isto use the capacityestimRate whichis dueto Y. Li [16]; The other is to employ Carleson-Chang’s estimate (Lemma 5), which was first used by Li-Liu-Yang[17]. Hereweprefertothesecondway. Inviewof(40),wehave ∂G G2dv = α G2dv G ds ZΣ\Bδ(p)|∇g | g ZΣ\Bδ(p) g−Z∂Bδ(p) ∂ν g 1+α Gdv Σ g K Gdv − 2πχR(Σ) ZΣ\Bδ(p) g g 1 1 = log +A +α G 2+o (1). 2π δ p k k2 δ Henceweobtain 1 1 1 u 2dv = log +A +α G 2+o (1)+o (1) . (42) ZΣ\Bδ(p)|∇g ǫ| g c2ǫ 2π δ p k k2 δ ǫ ! Lets =sup u andu =(u s )+. Thenu W1,2(B (p)).By(42)andthefactthat ǫ ∂Bδ(p) ǫ ǫ ǫ − ǫ ǫ ∈ 0 δ e e u 2dv =1 u 2dv +α u2dv , ZBδ(p)|∇g ǫ| g −ZΣ\Bδ(p)|∇g ǫ| g ZΣ ǫ g wehave 1 1 1 u 2dv τ =1 log +A +o (1)+o (1) . Z |∇g ǫ| g ≤ ǫ − c2 2π δ p δ ǫ ! Bδ(p) ǫ Now we choose an isotheermal coordinate system (U,φ; x1,x2 ) near p such that B (p) U, 2δ φ(p) = 0, and the metric g = eh(dx12 +dx22) forsome{functio}nh C1(φ(U))with h(0)⊂= 0. ∈ Clearly, for any δ > 0, there exists some c(δ) > 0 with c(δ) 0 as δ 0 such that dv g (1+c(δ))dxandφ(B (p)) B (0) R2. Notingthatu =→0outsideB→(p),wehave ≤ δ δ(1+c(δ)) ǫ δ ⊂ ⊂ e (u φ 1)2dx= u 2dv = u dv τ . ǫ − g ǫ g g ǫ g ǫ ZBδ(1+c(δ))(0)|∇ ◦ | Zφ−1(Bδ(1+c(δ))(0))|∇ | ZBδ(p)|∇ | ≤ 10 e e e