ebook img

A treatise on quantum Clifford algebras PDF

182 Pages·2002·1.062 MB·English
by  Fauser.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A treatise on quantum Clifford algebras

2 A Treatise on 0 0 2 b e Quantum Clifford Algebras F 7 1 v 9 5 0 2 0 2 0 / A Q Habilitationsschrift . h t Dr. Bertfried Fauser a m : v i X r a Universita¨t Konstanz Fachbereich Physik Fach M 678 78457 Konstanz January 25, 2002 To Dorothea Ida and Rudolf Eugen Fauser BERTFRIED FAUSER — UNIVERSITY OF KONSTANZ I ABSTRACT:QuantumCliffordAlgebras(QCA),i.e. CliffordHopfgebrasbased on bilinear forms of arbitrary symmetry, are treated in a broad sense. Five al- ternative constructions of QCAs are exhibited. Grade free Hopf gebraic product formulas are derived for meet and join of Graßmann-Cayley algebras including co-meet and co-join for Graßmann-Cayleyco-gebras whichare very efficientand maybeusedinRobotics,leftandrightcontractions,leftandrightco-contractions, Clifford and co-Clifford products, etc. The Chevalley deformation, using a Clif- ford map, arises as a special case. We discuss Hopf algebra versus Hopf gebra, the latter emerging naturally from a bi-convolution. Antipode and crossing are consequences of the product and co-product structure tensors and not subjectable toachoice. AfrequentlyusedKuperberglemmaisrevisitednecessitatingthedef- inition of non-local products and interacting Hopf gebras which are generically non-perturbative. A ‘spinorial’ generalization of the antipode is given. The non- existence of non-trivialintegrals in low-dimensional Clifford co-gebras is shown. Generalizedcliffordizationis discussedwhichis basedonnon-exponentiallygen- erated bilinear forms in general resulting in non unital, non-associative products. Reasonable assumptions lead to bilinear forms based on 2-cocycles. Cliffordiza- tion is used to derive time- and normal-ordered generating functionals for the Schwinger-Dysonhierarchiesof non-linear spinorfieldtheory andspinorelectro- dynamics. The relation between the vacuum structure, the operator ordering, and the Hopf gebraic counit is discussed. QCAs are proposed as the natural language for(fermionic) quantumfield theory. MSC2000: 16W30Coalgebras,bialgebras, Hopfalgebras; 15-02 Researchexposition (monographs, surveyarticles); 15A66Cliffordalgebras,spinors; 15A75Exterior algebra,Grassmann algebra; 81T15Perturbativemethods of renormalization II A Treatise onQuantumCliffordAlgebras Contents Abstract I Table of Contents II Preface VII Acknowledgement XII 1 PeanoSpaceand Graßmann-CayleyAlgebra 1 1.1 Normed space–normed algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hilbert space,quadratic space– classicalCliffordalgebra . . . . . . . . . . . . . 3 1.3 Weyl space–symplectic Cliffordalgebras (Weylalgebras) . . . . . . . . . . . . 4 1.4 Peanospace –Graßmann-Cayleyalgebras . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 The bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 The wedgeproduct –join . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.3 The vee-product– meet . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.4 Meet andjoinforhyperplanesand co-vectors . . . . . . . . . . . . . . . 11 2 BasicsonCliffordalgebras 15 2.1 Algebras recalled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Tensor algebra,Graßmann algebra,Quadratic forms . . . . . . . . . . . . . . . . 17 2.3 Cliffordalgebrasby generators andrelations . . . . . . . . . . . . . . . . . . . . 20 2.4 Cliffordalgebrasby factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Cliffordalgebrasby deformation –Quantum Cliffordalgebras . . . . . . . . . . 22 2.5.1 The Clifford(cid:0)(cid:2)(cid:1)(cid:4)m(cid:3)(cid:6)(cid:5)(cid:8)ap(cid:7)(cid:6)(cid:9)(cid:11).(cid:10) . . .(cid:0)(cid:2)(cid:1)(cid:4).(cid:3)(cid:6)(cid:5)(cid:8).(cid:7)(cid:13).(cid:12)(cid:14).(cid:10) . . . . . . . . . . . . . . . . . . . . . . 23 2.5.2 Relationof and . . . . . . . . . . . . . . . . . . . . . 25 2.6 Cliffordalgebrasof multivectors . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Cliffordalgebrasby cliffordization . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 Dottedand un-dottedbases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8.1 Linearforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8.2 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.8.3 Reversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 III IV A Treatise onQuantumCliffordAlgebras 3 Graphicalcalculi 33 3.1 The Kuperberggraphical method . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.1 Originof themethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 Tensoralgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Pictographicalnotation of tensoralgebra . . . . . . . . . . . . . . . . . 37 3.1.4 Some particulartensors andtensorequations . . . . . . . . . . . . . . . 38 3.1.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.6 Kuperberg’sLemma3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Commutativediagramsversus tangles . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Tangles forknottheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Tangles forconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Hopfalgebras 49 4.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (cid:15) 4.1.2 -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Co-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (cid:16) 4.2.2 -comodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Hopf algebras i.e. antipodal bialgebras . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Morphismsofconnectedco-algebrasandconnectedalgebras: grouplike convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.2 Hopf algebradefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Hopfgebras 65 5.1 Cup andcap tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.1 Evaluation andco-evaluation . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.2 Scalar andco-scalarproducts. . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.3 Induced gradedscalarand co-scalarproducts . . . . . . . . . . . . . . . 68 5.2 Product co-productduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 Byevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.2 Byscalar products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3 Cliffordizationof RotaandStein . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.1 Cliffordizationof products . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.2 Cliffordizationof co-products . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.3 Cliffordmaps for anygrade . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.4 Inversionformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Convolution algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 BERTFRIED FAUSER — UNIVERSITY OF KONSTANZ V 5.5 Crossing fromtheantipode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.6 Local versus non-local productsandco-products . . . . . . . . . . . . . . . . . 85 5.6.1 KuperbergLemma3.2. revisited . . . . . . . . . . . . . . . . . . . . . . 85 5.6.2 Interactingandnon-interacting Hopf gebras . . . . . . . . . . . . . . . . 87 6 Integrals, meet,join, unipotents,and ‘spinorial’antipode 91 6.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Meet andjoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3 Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.4 Convolutiveunipotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.4.1 Convolutive’adjoint’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.4.2 Asquare rootof the antipode . . . . . . . . . . . . . . . . . . . . . . . . 99 6.4.3 Symmetrizedproductco-procduct tangle . . . . . . . . . . . . . . . . . 100 7 Generalized cliffordizat(cid:5)(cid:19)ion(cid:18) (cid:5) 101 (cid:17) (cid:17) 7.1 Linear formson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2 Properties of generalizedCliffordproducts . . . . . . . . . . . . . . . . . . . . . 103 7.2.1 Unitsfor generalizedCliffordproducts . . . . . . . . . . . . . . . . . . 104 7.2.2 Associativityof generalizedCliffordproducts . . . . . . . . . . . . . . . 105 7.2.3 Commutationrelationsand generalizedCliffordproducts . . . . . . . . . 107 7.2.4 Laplaceexpansion i.e. product co-productduality impliesexponentially generatedbilinearforms . . . . . . . . . . . . . . . . . . . . . . . . . . 108 (cid:20) 7.3 Renormalization groupand -pairing . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.1 Renormalizationgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.2 Renormalized time-orderedproductsas generalizedCliffordproducts . . 111 8 (Fermionic)quantumfield theoryand CliffordHopfgebra 115 8.1 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.2 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.3 Functional equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.4 Vertex renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.5 Time- andnormal-ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.5.1 Spinorfieldtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.5.2 Spinorquantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . 125 8.5.3 Renormalized time-orderedproducts . . . . . . . . . . . . . . . . . . . . 127 8.6 On thevacuumstructure . . . . . . . .(cid:3)(cid:23)(cid:22)(cid:24).(cid:10) . . . . . . . . . . . . . . . . . . . . . 128 (cid:21) 8.6.1 Oneparticle Fermioscillator, (cid:3)(cid:26)(cid:25)(cid:27)(cid:10) . . . . . . . . . . . . . . . . . . . . 128 (cid:21) 8.6.2 Twoparticle Fermioscillator, . . . . . . . . . . . . . . . . . . . . 130 VI A Treatise onQuantumCliffordAlgebras A CLIFFORDand BIGEBRApackagesforMaple 137 A.1 Computer algebraandMathematical physics . . . . . . . . . . . . . . . . . . . . 137 A.2 The CLIFFORDPackage –rudiments of version5 . . . . . . . . . . . . . . . . 139 A.3 The BIGEBRAPackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 A.3.1 &cco–Cliffordco-product . . . . . . . . . . . . . . . . . . . . . . . . 144 A.3.2 &gco–Graßmann co-product . . . . . . . . . . . . . . . . . . . . . . . 144 A.3.3 &gco d –dottedGraßmann co-product . . . . . . . . . . . . . . . . . . 145 A.3.4 &gpl co– GraßmannPlu¨ckerco-product . . . . . . . . . . . . . . . . 146 A.3.5 &map–maps productsontotensorslots . . . . . . . . . . . . . . . . . . 146 A.3.6 &t–tensorproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.3.7 &v–vee-product, i.e. meet . . . . . . . . . . . . . . . . . . . . . . . . . 147 A.3.8 bracket– thePeanobracket . . . . . . . . . . . . . . . . . . . . . . . 148 A.3.9 contract– contractionof tensorslots . . . . . . . . . . . . . . . . . . 148 A.3.10 define– Maple define,patched . . . . . . . . . . . . . . . . . . . . . 149 A.3.11 drop t –dropstensorsigns . . . . . . . . . . . . . . . . . . . . . . . . 149 A.3.12 EV–evaluation map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 A.3.13 gantipode–Graßmann antipode . . . . . . . . . . . . . . . . . . . . 149 A.3.14 gco unit– Graßmannco-unit . . . . . . . . . . . . . . . . . . . . . . 150 A.3.15 gswitch– graded(i.e. Graßmann)switch . . . . . . . . . . . . . . . . 151 A.3.16 help–mainhelp-page of BIGEBRApackage . . . . . . . . . . . . . . 151 A.3.17 init–init procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 A.3.18 linop/linop2–actionof a linear operatorona Cliffordpolynom . . 151 A.3.19 make BI Id–cup tangleneed for&cco . . . . . . . . . . . . . . . . . 152 A.3.20 mapop/mapop2–actionof an operatorona tensorslot . . . . . . . . . 152 A.3.21 meet–same as &v(vee-product) . . . . . . . . . . . . . . . . . . . . . 152 A.3.22 pairing– Apairing w.r.t. a bilinearform . . . . . . . . . . . . . . . . 152 A.3.23 peek–extract a tensorslot . . . . . . . . . . . . . . . . . . . . . . . . 152 A.3.24 poke–inserta tensorslot . . . . . . . . . . . . . . . . . . . . . . . . . 153 A.3.25 remove eq– removestautological equations . . . . . . . . . . . . . . 153 A.3.26 switch– ungraded switch . . . . . . . . . . . . . . . . . . . . . . . . 153 A.3.27 tcollect– collectsw.r.t. the tensorbasis . . . . . . . . . . . . . . . . 153 A.3.28 tsolve1– tanglesolver . . . . . . . . . . . . . . . . . . . . . . . . . 153 A.3.29 VERSION– showsthe versionof thepackage . . . . . . . . . . . . . . . 154 A.3.30 type/tensorbasmonom–new Mapletype . . . . . . . . . . . . . . 154 A.3.31 type/tensormonom– newMaple type . . . . . . . . . . . . . . . . 154 A.3.32 type/tensorpolynom–new Mapletype . . . . . . . . . . . . . . . 155 Bibliography 156

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.