ebook img

A Tour of Representation Theory (Graduate Studies in Mathematics) PDF

674 Pages·2018·9.411 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Tour of Representation Theory (Graduate Studies in Mathematics)

GRADUATE STUDIES 193 IN MATHEMATICS A Tour of Representation Theory Martin Lorenz A Tour of Representation Theory GRADUATE STUDIES 193 IN MATHEMATICS A Tour of Representation Theory Martin Lorenz EDITORIAL COMMITTEE Daniel S. Freed (Chair) Bjorn Poonen Gigliola Staffilani Jeff A. Viaclovsky 2010 Mathematics Subject Classification. Primary 16Gxx, 16Txx, 17Bxx, 20Cxx, 20Gxx. For additional informationand updates on this book, visit www.ams.org/bookpages/gsm-193 Library of Congress Cataloging-in-Publication Data Names: Lorenz,Martin,1951-author. Title: Atourofrepresentationtheory/MartinLorenz. Description: Providence,RhodeIsland: AmericanMathematicalSociety,[2018]|Series: Gradu- atestudiesinmathematics;volume193|Includesbibliographicalreferencesandindexes. Identifiers: LCCN2018016461|ISBN9781470436803(alk. paper) Subjects: LCSH: Representations of groups. | Representations of algebras. | Representations of Lie algebras. | Vector spaces. | Categories (Mathematics) | AMS: Associative rings and algebras – Representation theory of rings and algebras – Representation theory of rings and algebras. msc | Associative rings and algebras – Hopf algebras, quantum groups and related topics – Hopf algebras, quantum groups and related topics. msc | Nonassociative rings and algebras – Lie algebras and Lie superalgebras – Lie algebras and Lie superalgebras. msc | Grouptheoryandgeneralizations–Representationtheoryofgroups –Representationtheory ofgroups. msc|Grouptheoryandgeneralizations–Linearalgebraicgroupsandrelatedtopics –Linearalgebraicgroupsandrelatedtopics. msc Classification: LCCQA176.L672018|DDC515/.7223–dc23 LCrecordavailableathttps://lccn.loc.gov/2018016461 Copying and reprinting. Individual readersofthispublication,andnonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. (cid:2)c 2018bytheAmericanMathematicalSociety. Allrightsreserved. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 232221201918 For Maria Contents Preface xi Conventions xvii PartI. Algebras Chapter1. RepresentationsofAlgebras 3 1.1. Algebras 3 1.2. Representations 24 1.3. PrimitiveIdeals 41 1.4. Semisimplicity 50 1.5. Characters 65 Chapter2. FurtherTopicsonAlgebras 79 2.1. Projectives 79 2.2. FrobeniusandSymmetricAlgebras 96 PartII. Groups Chapter3. GroupsandGroupAlgebras 113 3.1. Generalities 113 3.2. FirstExamples 124 3.3. MoreStructure 131 3.4. SemisimpleGroupAlgebras 143 3.5. FurtherExamples 150 3.6. SomeClassicalTheorems 159 vii viii Contents 3.7. Characters,SymmetricPolynomials,andInvariantTheory 170 3.8. DecomposingTensorPowers 179 Chapter4. SymmetricGroups 187 4.1. Gelfand-ZetlinAlgebras 189 4.2. TheBranchingGraph 192 4.3. TheYoungGraph 197 4.4. ProofoftheGraphIsomorphismTheorem 205 4.5. TheIrreducibleRepresentations 217 4.6. TheMurnaghan-NakayamaRule 222 4.7. Schur-WeylDuality 235 PartIII. LieAlgebras Chapter5. LieAlgebrasandEnvelopingAlgebras 245 5.1. LieAlgebraBasics 246 5.2. TypesofLieAlgebras 253 5.3. ThreeTheoremsaboutLinearLieAlgebras 257 5.4. EnvelopingAlgebras 266 5.5. GeneralitiesonRepresentationsofLieAlgebras 278 5.6. TheNullstellensatzforEnvelopingAlgebras 287 5.7. Representationsofsl 300 2 Chapter6. SemisimpleLieAlgebras 315 6.1. CharacterizationsofSemisimplicity 316 6.2. CompleteReducibility 320 6.3. CartanSubalgebrasandtheRootSpaceDecomposition 325 6.4. TheClassicalLieAlgebras 334 Chapter7. RootSystems 341 7.1. AbstractRootSystems 342 7.2. BasesofaRootSystem 349 7.3. Classification 356 7.4. LatticesAssociatedtoaRootSystem 361 Chapter8. RepresentationsofSemisimpleLieAlgebras 373 8.1. Reminders 374 8.2. Finite-DimensionalRepresentations 377 8.3. HighestWeightRepresentations 379 Contents ix 8.4. Finite-DimensionalIrreducibleRepresentations 385 8.5. TheRepresentationRing 390 8.6. TheCenteroftheEnvelopingAlgebra 393 8.7. Weyl’sCharacterFormula 408 8.8. SchurFunctorsandRepresentationsofsl(V) 418 PartIV. HopfAlgebras Chapter9. Coalgebras,Bialgebras,andHopfAlgebras 427 9.1. Coalgebras 427 9.2. Comodules 441 9.3. BialgebrasandHopfAlgebras 447 Chapter10. RepresentationsandActions 465 10.1. RepresentationsofHopfAlgebras 466 10.2. FirstApplications 476 10.3. TheRepresentationRingofaHopfAlgebra 485 10.4. ActionsandCoactionsofHopfAlgebrasonAlgebras 492 Chapter11. AffineAlgebraicGroups 503 11.1. AffineGroupSchemes 503 11.2. AffineAlgebraicGroups 508 11.3. RepresentationsandActions 512 11.4. Linearity 515 11.5. IrreducibilityandConnectedness 520 11.6. TheLieAlgebraofanAffineAlgebraicGroup 526 11.7. AlgebraicGroupActionsonPrimeSpectra 530 Chapter12. Finite-DimensionalHopfAlgebras 541 12.1. FrobeniusStructure 541 12.2. TheAntipode 549 12.3. Semisimplicity 552 12.4. DivisibilityTheorems 559 12.5. Frobenius-SchurIndicators 567 Appendices AppendixA. TheLanguageofCategoriesandFunctors 575 A.1. Categories 575

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.