ebook img

A theorem concerning twisted and untwisted partition functions in U(N) and SU(N) lattice gauge theories PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A theorem concerning twisted and untwisted partition functions in U(N) and SU(N) lattice gauge theories

A theorem concerning twisted and untwisted partition functions in U(N) and SU(N) lattice gauge theories 9 0 0 2 TakuyaKanazawa∗ n a DepartmentofPhysics,Universityof Tokyo, Tokyo 113-0033,Japan J 8 January 9,2009 ] t a l - p Abstract e h [ 3 Inordertogetacluetounderstandingthevolume-dependenceofvortexfreeenergy(whichisdefinedas v 2 the ratio of the twisted against the untwisted partition function), we investigate the relation between vortex 4 7 freeenergiesdefinedonlatticesofdifferentsizes. Anequalityisderivedthroughasimplecalculationwhich 2 . 5 equatesagenerallinearcombinationofvortexfreeenergiesdefinedonalatticetothatonasmallerlattice.The 0 8 couplingsinthedenominatorandinthenumeratorhowevershowsadiscrepancy,andwearguethatitvanishes 0 : v inthethermodynamiclimit. ComparisonbetweenourresultandtheworkofTomboulisisalsopresented. In i X theappendixwecarefullyexaminetheproofofquarkconfinementbyTomboulisandsummarizeitsloopholes. r a PACSnumbers:11.15.Ha,12.38.Aw keywords:latticegaugetheory,vortexfreeenergy,Migdal-Kadanofftransformation,quarkconfinement ∗Email:[email protected] 1 §1 Introduction Quarkconfinement,or(moregenerally)colorconfinementisoneofthemostlong-standingproblemsintheo- reticalphysics[1]. SofarmanyproposalshavebeenmadeconcerningthenonperturbativedynamicsofQCD whichyieldconfinement,includingthedualsuperconductivityscenario[2]andcentervortexscenario[3](see [4]forareview),butatrulysatisfyingpictureseemstobestillmissingandpreciserelationshipbetweendif- ferentscenariosiselusive. InthelatticegaugetheoryitisformulatedasthearealawoftheWilsonloopinthe absenceofdynamicalfermions,whichindicatesalinearstaticpotentialV(r)(cid:181) rbetweeninfinitelyheavyquark and anti-quark. So far the area law has been rigorouslyproved(in the physicists’ sense) for quite restricted models[5,6,7]althoughithasbeennumericallycheckedbyMonteCarlosimulationsforyears[8]. The concept of center vortices in non-abelian gauge theories was introduced long time ago [3, 6, 7, 9]. Thispicturesuccessfullyexplainsmanyaspectsofinfra-redpropertiesofYang-Millstheoryatthequalitative level, and also at the quantitative level it is reported that Monte Carlo simulations show that the value of thestringtensioncanbemostlyrecoveredbytheeffectivevortexdegreesoffreedom(‘P-vortex’)whichone extractsviaa procedurecalled ‘centerprojection’[10]. Itisalso reportedthatquenchingP-vorticesleadsto thedisappearanceofarealawandtherestorationofchiralsymmetryatthesametime[11],whichsuggeststhat thevorticesrepresentinfra-redpropertiesofthetheoryinacomprehensivemanner. Inaddition,thepicturethatthepercolationofcentervorticesleadstothearealawhasafirmgroundbased ontheTomboulis-Yaffeinequality[12]: hW(C)i≤2 1(1−e−Fv) AC/Lm Ln (1) 2 n o forSU(2),whichcanbeprovedrigorouslyonthelattice. HereA denotestheareaenclosedbyarectangleC C whichliesina[m ,n ]-plane,W(C)istheWilsonloopassociatedtoCinthefundamentalrepresentationandLm isthelengthofthelatticeinthem -thdirection.Accordingtothisinequalitythearealawofthel.h.s. followsif thevortexfreeenergyF vanishesinthethermodynamiclimitinsuchawaythatF ≈e−r Lm Ln . Thequantityr v v givesalowerboundofthestringtension,andiscalledthe’tHooftstringtension.ThisbehaviorofF isverified v withinthestrongcouplingclusterexpansion[13]andisalsosupportedbyMonteCarlosimulations[14]. Soit isworthwhiletostudythevolumedependenceofF particularlyatintermediateandweakcouplings. v Inthisworkweattempttomakeaconnectionbetweenvortexfreeenergiesdefinedonlatticesofdifferent 2 sizes. Thesetupofthisnoteisasfollows.In§2weestablishanequalitywhichrelatestheratiooftheordinary andthetwistedpartitionfunctiononalatticetothatonasmallerlattice,withoutanyrestrictiononthecoupling strength. The cost is that there is a slight discrepancy between the couplingsin the denominatorand in the numerator, but it can be shown to tend to zero in the thermodynamic limit. In §3 we examine the relation between our result and the work of Tomboulis [15].1 Final section is devoted to summary and concluding remarks.Intheappendixwecarefullyexaminetheproofofquarkconfinementinref.[15],listingitsloopholes. Inviewoftheseriousscarcityofrigorousresultsinthisareaofresearch,ouranalyticalworkwhichinvolves noapproximationseemstobeofbasicimportance,andwehopethatthisresultwillserveasabuildingblock oftheproofofquarkconfinementinthefuture. §2 The main result Letusbeginbydescribingthebasic set-upoflatticegaugetheory. LetL a d-dimensionalhypercubiclattice of length Lm (m =1,...,d) in each direction with the periodic boundary condition imposed. Let L (n) a d- dimensionalhypercubiclattice of lengthLm /bn(m =1...,d) in each directionwith a parameterb∈N. The numberofplaquettesinL isdenotedby|L |. ThepartitionfunctiononthelatticeL isdefinedas ZL ({cr})≡ (cid:213) dUb (cid:213) fp(Up)≡ (cid:213) dUb (cid:213) 1+(cid:229) drcr(b )c r(Up) , (2) Z b∈L p⊂L Z b∈L p⊂L r6=1 h i wheredUisthenormalizedHaarmeasureofgaugegroupGandUpisaplaquettevariable;Up≡Ux,m Ux+m ,n Ux†+n ,m Ux†,n . InwhatfollowsweonlyconsiderG=U(N)andSU(N). Thesubscriptrlabelsirreduciblerepresentationsof G and d is the dimension, c is the characterof the r-th representation(1 is the trivialrepresentation). The r r coefficients{c (b )}canbedeterminedthroughthecharacterexpansionof(forinstance)theWilsonaction: r eb ReTrU dU′eb ReTrU′ ≡ f (U)=1+(cid:229) d c (b )c (U). (3) p r r r Z r6=1 . Itcanbecheckedthatc ≥0holdsforeveryr, whichguaranteesthereflectionpositivityofthemeasureand r unitarityofthecorrespondingquantum-mechanicalsystem. MultiplyingaplaquettevariableU byanontrivialelementofthecenterofthegaugegroupiscalledatwist p which, inphysicalterms, generatesa magneticfluxpiercingthe plaquette. LetC(G)denotethecenterofG; 1SomeaspectsofTomboulis’paperwhicharenottoucheduponinthisnoteareexaminedinref.[16]. 3 C(SU(N))=Z andC(U(N))=U(1). Thetwistedpartitionfunctionreads N ZLg({cr})≡ (cid:213) dUb (cid:213) fp(gUp) (cid:213) fp(Up′), g∈C(G). (4) Z b∈L p⊂V p′⊂L \V HereV isasetofstackedplaquetteswhichwindsaround(d−2)ofthed periodicdirectionsofL forminga (d−2)-dimensionaltorusontheduallattice. (UsingreflectionpositivityonecanshowZLg ≤ZL [17]andthe vortexfreeenergyFvg associatedtothetwistbygisdefinedbye−Fvg =ZLg/ZL .) Ourmainresultisasfollows: Theorem 1. Let H an arbitrary discrete subgroupofU(1) for G=U(N) and H =Z for G=SU(N). Fix N a setofpositivecoefficients{c′} andn∈N, andchooseaconstantAg>0foreachg∈H arbitrarily. Then r there exists l ({c′r})>0 such that for any 0<a <l ({c′r}) and for sufficiently large |L | there exists a L ≡ 1 a L (a ,{cr},{c′r})suchthat|a −a L |≤O |L | and (cid:16) (cid:17) ZL ({cr}) = ZL (n)({a c′r}) (5) ZL ({cr}) ZL (n)({a L c′r}) with ZL ({cr})≡ (cid:229) AgZLg({cr}). (6) g∈H Proof. LetusdefinefunctionsCL (a ,{cr},{c′r}),CL (a ,{cr},{c′r})by ZL ({cr})=eCL (a ,{cr},{c′r})|L |ZL (n)({a c′r}), (7) ZL ({cr})=eCL (a ,{cr},{c′r})|L |ZL (n)({a c′r}). (8) Takingtheratioof(7)and(8)yields ZL ({cr}) =e{CL (a ,{cr},{c′r})−CL (a ,{cr},{c′r})}|L |ZL (n)({a c′r}). (9) ZL ({cr}) ZL (n)({a c′r}) From(9)and2Ae< ZL ({cr}), ZL (n)({a c′r}) < (cid:229) Agwehave ZL ({cr}) ZL (n)({a c′r}) g∈H 1 CL (a ,{cr},{c′r})−CL (a ,{cr},{c′r}) ≤O |L | . (10) (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) Nowletusrewrite(7)intomoreusefulform: 1 |L (n)| 1 |L | logZL ({cr})=CL (a ,{cr},{c′r})+ |L | "|L (n)| logZL (n)({a c′r})#. (11) 2edenotestheunitelementofH. 4 Thel.h.s. hasawell-definedthermodynamiclimitwhichwedenotebyz({c }). Itiswellknown[13,18]that r strongcouplingclusterexpansionhasanon-vanishingradiusofconvergencewhichisindependentofthetotal volume,sothereexistsl ({c′})suchthat[...]inther.h.s.of(11)canbewellapproximatedbythelowestorder r strongcouplingclusterexpansionfor0<a <l ({c′}),giving r z({cr})=C¥ (a ,{cr},{c′r})+ bandd (cid:229) dr2 a c′r 6+O a c′r 10 , (12) r6=1 (cid:0) (cid:1) (cid:0)(cid:0) (cid:1) (cid:1) 1 2 wherea3≡ 3,a4≡ 3 andwedenominatedC¥ (a ,{cr},{c′r})≡|Lli|→m¥ CL (a ,{cr},{c′r}). Thus dC¥ (a ,{cr},{c′r}) ≃−C a 5 for 0<a <l ({c′}), (13) da 0 r dCL where the factor C is independent of the volume. Therefore has a non-vanishing lower bound for 0 da (cid:12) (cid:12) arbitrarilylarge|L |.Fromthisfactand(10)followsthatif|L |iss(cid:12)(cid:12)ufficie(cid:12)(cid:12)ntlylargethereexistsa L (a ,{cr},{c′r}) 1 suchthat|a −a L |≤O |L | andCL (a ,{cr},{c′r})=CL (a L ,{cr},{c′r}). Hence(5)isproved. (cid:16) (cid:17) Onecanrelaxthecondition{Ag>0|g∈H}withinascopewhichdoesnotaffecttheexistenceofastrictly ZL ({cr}) positivelowerboundfor . ZL ({cr}) Note that a and {c′} have no dependence on {c }, for they are parameters we introduced by hand. As r r the free energy density z({c }) in the l.h.s. of (12) is a quantity which reflects the phase structure of the r model, it is not necessarily analytic in {c } and in b . In the r.h.s. of (12), such a nonanalyticity in {c } r r residesinC¥ (a ,{cr},{c′r})simplybecausetherestofther.h.s. of(12)isindependentof{cr}. Notealsothat C¥ (a ,{cr},{c′r}) is Taylor-expandableand analytic in a ; the analyticity ina and a possible nonanalyticity in{c }shouldbestrictlydistinguished.3 r Letuslookat(5)inmoredetail.Sincea L convergestoa inthethermodynamiclimit,onemaybetempted ZL ({cr}) toarguethat lim isindependentof{c }because r |L |→¥ ZL ({cr}) lim ZL ({cr}) = lim ZL (n)({a c′r}) = lim ZL (n)({a c′r}). (14) |L |→¥ ZL ({cr}) |L |→¥ ZL (n)({a L c′r}) |L |→¥ ZL (n)({a c′r}) Itwouldbevaluabletoclarifywhythisclaimisincorrect.Letusrewrite(5)as ZL ({cr}) = ZL (n)({a c′r}) ZL (n)({a c′r}) . (15) ZL ({cr}) ZL (n)({a c′r}) ZL (n)({a L c′r}) 3TheauthorisgratefultoK.R.Itoforvaluablecorrespondenceonthispoint. 5 |a −a L |≤O |L1| allows us to write a L =a + gL (a ,|{L c(rn})|,{c′r}) with |gL |≤O(1). For 0<a ,a L < (cid:16) (cid:17) l ({c′r})wemayapplytheconvergentclusterexpansiontologZL (n)({a c′r})andlogZL (n)({a L c′r})toobtain Z ({a c′}) 1 1 ZLL(n(n))({a L cr′r}) ≡exp"|L (n)| |L (n)| logZL (n)({a c′r})− |L (n)| logZL (n)({a L c′r})!# (16) =exp |L (n)|(cid:229) sr,k (a c′r)k−(a L c′r)k (17) " r,k # n o =exp"−gL (cid:229)r,ksr,k(c′r)kka k−1+O |L 1(n)| # (18) (cid:16) (cid:17) −→ exp −g¥ (cid:229) sr,k(c′r)kka k−1 as|L |→¥ . (19) " r,k # {sr,k} are coefficientsof clusters. (19) clearly shows how the discrepancybetween a and a L persists in the thermodynamiclimitandwenowseewhythepreviousclaimisincorrect.Note,furthermore,thatthefunction g¥ (a ,{cr},{c′r})≡ lim gL (a ,{cr},{c′r})isnotnecessarilyanalyticin{cr};informationinthel.h.s. of(15) |L |→¥ aboutthephasestructureofthemodelisnowpackagedwithinasingleunknownfunctiong¥ . We wouldlike tocommentonapossiblepathfromtheorem1toaproofofquarkconfinement. Suppose G=SU(N). Theorem2. IfN-alityofther-threpresentationisnon-zero,wehave g 1 (cid:229) ZL ({cr}) AC/Lm Ln |hW(C)i|≤2 1− (20) r n N g∈ZN ZL ({cr})o for the normalized Wilson loopW (C)≡ 1 c P(cid:213) U , where P implies path-orderingand h...i in the r r b d r b∈C (cid:0) (cid:1) l.h.s. istheexpectationvaluew.r.t. ZL ({cr}). 1 Detailedproofof(20)isgiveninref.[17]andweskipithere. LetAg= for∀g∈Z andassumethat N N CL (a 0,{cr},{c′r})=CL (a 0,{cr},{c′r})holdforsomea 0∈[0,l ({c′r})]. Substitutinga =a 0 into(9)gives ZL ({cr}) ≡ 1 (cid:229) ZLg({cr}) = ZL (n)({a 0c′r}). (21) ZL ({cr}) (cid:16) N g∈ZN ZL ({cr})(cid:17) ZL (n)({a 0c′r}) Fromthedefinitionofl ({c′}),ther.h.s. canbeestimatedbytheconvergentclusterexpansion,giving r ZL (n)({a 0c′r}) ≈1−O(e−r L(mn)Ln(n))=1−O(e−r Lm Ln /b2n) (22) Z ({a c′}) L (n) 0 r whereL(mn)≡Lm /bnisthelengthofL (n) inm -thdirection.Inserting(22)into(20)weobtain |hW (C)i|.e−r AC/b2n, (23) r 6 hencethequarkconfinementfollows.Whethertheabovestrategy(tosearchfortheintersectionpointofcurves CL (·,{cr},{c′r})andCL (·,{cr},{c′r}))isviableornotremainstobeseen. §3 Comparison with Tomboulis’ approach Thepurposeofthissectionistoelucidatethesimplificationandgeneralizationachievedintheprevioussection, throughthecomparisonwiththeapproachinref.[15],whereonlyG=SU(2)istreatedexplicitly. Thewhole argumentinref.[15]seemstorestontheMigdal-Kadanoff(MK)renormalizationgrouptransformationbelow: b2r dU f (U,n) bd−2 1 c (U) p j c (n+1)≡Z dj  ∈[0,1], j= 1,1, 3,... (24) j (cid:2) (cid:3) bd−2 2 2 dU f (U,n)  p   Z   (cid:2) (cid:3)    wherer∈(0,1)isanewlyintroducedparameterand b exp TrU fp(U,n)≡1+(cid:229) djcj(n)c j(U), fp(U,0)≡ (cid:16) 2 b (cid:17) , b ≡ g42 . (25) j6=0 dU exp TrU 2 Z (cid:16) (cid:17) Whenr=1,(24)reducestotheoriginalMKtransformation[19,20]. Thereasonwhyr isintroducedwillbe brieflyexplainedlater. Inadditionthefollowingquantityisdefined: bd−2 b2 F (n)≡ dU f (U,n) . (26) 0 p Z (cid:16) (cid:2) (cid:3) (cid:17) Startingpointistheinequality ZL ≤F0(1)|L (1)|ZL (1)({cj(1)}) (27) whichis provedin appendixA ofref.[15]. A variablea ∈[0,1]andan interpolationfunctionh(a ,t)isthen introduced,whichissupposedtosatisfy ¶ h ¶ h >0, <0, h(0,t)=0, h(1,t)=1. (28) ¶a ¶ t Thedomainoft∈Risarbitrary. From1≤ZL and(27),weseethatthereexistsavaluea =a L(1,h)(t)∈[0,1]suchthat ZL =F0(1)h(a L(1,h)(t),t)|L (1)|ZL (1)({a L(1,h)(t)cj(1)}). (29) 7 Similarlyitcanbeshownthatthereexistsavaluea =a +(1)(t)∈[0,1]suchthat L ,h ZL+=F0(1)h(a L+,(h1)(t),t)|L (1)|ZL+(1)({a L+,(h1)(t)cj(1)}) (30) 1 where Z+ ≡ (Z+Z(−)) is introduced for a technical reason 4 ; Z(−) is the twisted partition function for 2 SU(2). Notethatboth(29)and(30)areindependentoft. Letustaketheirratio5: ZL+ = F0(1)h(a L+,(h1)(t),t)|L (1)|ZL+(1)({a L+,(h1)(t)cj(1)}) (31) ZL F0(1)h(a L(1,h)(t),t)|L (1)|ZL (1)({a L(1,h)(t)cj(1)}) = F0(1)h(a L+,(h1)(t),t)|L (1)| ZL+(1)({a L+,(h1)(t)cj(1)}) ZL+(1)({a L(1,h)(t)cj(1)}). (32) F0(1)h(a L(1,h)(t),t)|L (1)| ZL+(1)({a L(1,h)(t)cj(1)}) ZL (1)({a L(1,h)(t)cj(1)}) From 1 < ZL+ <1 and 1 < ZL+(1)({a L(1,h)(t)cj(1)}) <1, (33) 2 ZL 2 Z ({a (1)(t)c (1)}) L (1) L ,h j wehave 1 < F0(1)h(a L+,(h1)(t),t)|L (1)| ZL+(1)({a L+,(h1)(t)cj(1)}) <2. (34) 2 F0(1)h(a L(1,h)(t),t)|L (1)| ZL+(1)({a L(1,h)(t)cj(1)}) ThisandthefactthatZ+ ({a c (1)})isamonotonicallyincreasingfunctionofa yield L (1) j 1 a (1)(t)−a +(1)(t) ≤O . (35) L ,h L ,h |L (1)| (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) This implies that h(a (1)(t),t) and h((cid:12)a +(1)(t),t) can be(cid:12)made arbitrarily close to each other if one lets |L | L ,h L ,h sufficientlylarge.Thereforeaslightshiftoft→t+d twillenableustoget h(a (1)(t+d t),t+d t)=h(a +(1)(t),t), (36) L ,h L ,h dh(a (1)(t),t) providedthat L ,h 6→0for|L |→¥ . Thatthenewlyintroducedparameterr∈(0,1)guaranteesthis dt canbeprovedthrougharatherinvolvedcalculation;then(31)gives ZL+ = ZL+(1)({a L+,(h1)(t+)cj(1)}). (37) ZL Z ({a (1)(t)c (1)}) L (1) L ,h j Repeatingaboveprocedure,thefollowingisproved[15]: 4ThemeasureofZ+isreflectionpositive,whichisnecessarytoderive(30).ThemeasureofZ(−)isnotreflectionpositive. 5Onecanchoosedifferentvaluesoft’sin(31)fornumeratoranddenominator,althoughwedon’tdosohere. 8 Theorem3. Foranyn∈Nandsufficientlylarge|L |,thereexista (n)(t ),a +(n)(t+)∈[0,1]suchthat L ,h n L ,h n 1 a (n)(t )−a +(n)(t+) ≤O and L ,h n L ,h n |L (n)| (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) (cid:12) (cid:12) ZL+ = ZL+(n)({a L+,(hn)(tn+)cj(n)}). (38) ZL Z ({a (n)(t )c (n)}) L (n) L ,h n j 1 Itisclearthattheorem3followsfromtheorem1asaspecialcase H=Z ,c′ =c (n)andA1=A−1= . 2 j j 2 (cid:16) (cid:17) A differenceworthnotingisthattheproofoftheorem1necessitatesneithertheMKtransformation(andthe related inequality(27)) northe speciallinear combinationZ+ ≡(Z+Z(−))/2. We could entirelyavoid the complicationcausedbyr,whichseemstobeasignificantsimplification. §4 Summary and concluding remarks Inthisnoteweinvestigatedthelatticegaugetheoryforgeneralgaugegroupswithnontrivialcenter,andproved a formula which relates the ratio of twisted and untwisted partition functions to that on the smaller lattice. Althoughthe couplingsin the numeratorandin the denominatorcannotbe exactlymatched, we showedthe discrepancyto bevanishinglysmallin the thermodynamiclimit. We presenteda strategyto provethequark confinement,andalsocomparedourworkwithTomboulis’approachinref.[15]clarifyingthatgreatsimplifi- cationhasoccurredinourformulation. As has already been clear, our theorem is correct both for SU(N) and forU(1). Whether the theory is confiningor not, or whetheris asymptoticallyfree ornot, has nothingto do with the theorem, and the same isalsotruefortheorem3. Althoughtheorem3ispresentedinref.[15]asacornerstonefortheproofofquark confinement, it must be confessed that his and our formalism are not quite successful in incorporating the dynamicsofthetheory;entirelynewtechniquemightbenecessarytoprovethequarkconfinementfollowing thestrategydescribedin§2. Acknowledgment The author is gratefulto Tamiaki Yoneya, Yoshio Kikukawa, Hiroshi Suzuki, Shoichi Sasaki, Shun Uchino, KeiichiR.ItoandTerryTomboulisforusefuldiscussions. HealsothanksTetsuoHatsudaandTetsuoMatsui 9 who stimulated him to investigate ref.[15]. This work was supported in part by Global COE Program “the PhysicalSciencesFrontier”,MEXT,Japan. A Appendix Inthefollowingwecommentonthevalidityoftheadvocatedproofofquarkconfinementinfourdimensional SU(2) lattice gauge theory [15], to help the reader understand the precise relation between our work and ref.[15]. Thereaderwhoisonlyinterestedinaqualitativeunderstandingontheviabilityoftheproposedproof maywanttogodirectlytothelastparagraphofthisappendix,inwhichalesstechnical,quiteintuitiveoverview ofthesituationispresented. A.1 Correctness Firstofall,theproofismathematicallyincompleteatleastinfouraspects. 1. In theorem 3 of this paper, a +(n)(t+) numerically differs from a (n)(t ) in general. However, if we L ,h n L ,h n couldfindt∗∈R(atleastforn≫1forwhichc (n)≪1;wewilldiscussthispointshortly)suchthat j a +(n)(t∗)=a (n)(t∗), then the usualstrongcouplingclusterexpansionmethodcouldbe appliedto the L ,h L ,h r.h.s. of(38),thusgivingaproofofquarkconfinement. InthiswayTomboulisreducedtheproblemof quarkconfinementtotheproblemofshowingtheexistenceofsucht∗∈R. Furthermoreheattemptedto findsucht∗byinterpolatinga +(n)(t)−a (n)(t)=0(theequationtobesolved)andanotherindependent L ,h L ,h equationwhosesolutionwe knowdoesexist, byoneparameter0≤l ≤1. Theresultisa singletwo- variableequationY (l ,t)=0,whereY (1,t)=0isequivalenttoa +(n)(t)−a (n)(t)=0andY (0,t)=0 L ,h L ,h is the other equation that can be solved by some t ∈R. Assuming the existence of t(l ) such that 0 Y (l ,t(l ))=0andthendifferentiatingbothsidesbyl ,wehave dt Y ,l (l ,t) =− (39) dl Y (l ,t) ,t where the subscripts denote partial derivatives. (Y (l ,t)6=0 is assumed in (39), but it is rigorously ,t provedinref.[15].) Thuswhatweshoulddoistotosolvethedifferentialequation(39)withtheinitial conditiont(0)=t andfindt(1),whichisnothingbutt∗. Herecomesthecruxoftheproblem:heargues 0 thatY (l ,t)6=0for0≤l ≤1isa sufficientconditionfortheexistenceoft(1)sinceonecanextend ,t 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.