ebook img

A Textbook of Engineering Mathematics by NP Bali and Dr Manish Goyal PDF

16 Pages·2015·1.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Textbook of Engineering Mathematics by NP Bali and Dr Manish Goyal

A TEXTBOOK OF ENGINEERING MATHEMATICS For B.Sc. (Engg.), B.E., B. Tech., M.E. and Equivalent Professional Examinations By N.P. BALI Dr. MANISH GOYAL Formerly Principal M.Sc. (Mathematics), Ph.D., CSIR-NET S.B. College, Gurgaon Associate Professor Haryana Department of Mathematics Institute of Applied Sciences & Humanities G.L.A. University, Mathura, U.P. LLLLLAAAAAXXXXXMMMMMIIIII PPPPPUUUUUBBBBBLLLLLIIIIICCCCCAAAAATTTTTIIIIIOOOOONNNNNSSSSS (((((PPPPP))))) LLLLLTTTTTDDDDD BANGALORE (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) CHENNAI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) COCHIN (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) GUWAHATI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) HYDERABAD JALANDHAR (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) KOLKATA (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) LUCKNOW (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) MUMBAI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) RANCHI NEW DELHI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) BOSTON, USA Copyright © 2014 by Laxmi Publications Pvt. Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Published by: LAXMI PUBLICATIONS (P) LTD 113, Golden House, Daryaganj, New Delhi-110002 Phone: 011-43 53 25 00 Fax: 011-43 53 25 28 www.laxmipublications.com [email protected] Price: ````` 875.00 Only. First Edition : 1996, Sixth Edition : 2004, Seventh Edition : 2007, Reprint : 2008, 2009, 2010, Eighth Edition : 2011, Ninth Edition : 2014 OFFICES (cid:8) Bangalore 080-26 75 69 30 (cid:8) Jalandhar 0181-222 12 72 (cid:8) Chennai 044-24 34 47 26 (cid:8) Kolkata 033-22 27 43 84 (cid:8) Cochin 0484-237 70 04, 405 13 03 (cid:8) Lucknow 0522-220 99 16 (cid:8) Guwahati 0361-254 36 69, 251 38 81 (cid:8) Mumbai 022-24 91 54 15, 24 92 78 69 (cid:8) Hyderabad 040-24 65 23 33 (cid:8) Ranchi 0651-220 44 64 EEM-0539-875-ATB ENGG MATH-BAL C— Typeset at: Excellent Graphics, Delhi. Printed at: CONTENTS 1. Complex Numbers ..........................................................................................1–83 1.1. Real Numbers........................................................................................................ 1 1.2. Basic Properties of Real Numbers........................................................................ 1 1.3. Complex Numbers................................................................................................. 2 1.4. Conjugate Complex Numbers............................................................................... 2 1.5. Geometrical Representation of Complex Numbers ............................................. 2 1.6. Properties of Complex Numbers........................................................................... 3 1.7. Standard Form of a Complex Number................................................................. 3 1.8. Effect of Rotation, in the Anti-clockwise Direction, Through an Angle (cid:68) on the Complex Number ..................................................................................... 12 1.9. De Moivre’s Theorem .......................................................................................... 20 1.10. Roots of a Complex Number ............................................................................... 30 1.11. Exponential Function of a Complex Variable.................................................... 53 1.12. Circular Functions of a Complex Variable......................................................... 54 1.13. Trigonometrical Formulae for Complex Quantities .......................................... 55 1.14. Logarithms of Complex Numbers....................................................................... 57 1.15. The General Exponential Function.................................................................... 60 1.16. Hyperbolic Functions .......................................................................................... 63 1.17. Formulae of Hyperbolic Functions ..................................................................... 65 1.18. Inverse Hyperbolic Functions............................................................................. 72 1.19. C + iS Method of Summation.............................................................................. 75 2. Theory of Equations and Curve Fitting.....................................................84–138 2.1. Polynomial........................................................................................................... 84 2.2. Zero Polynomial................................................................................................... 84 2.3. Equality of Two Polynomials.............................................................................. 84 2.4. Complete and Incomplete Polynomials.............................................................. 84 2.5. Zero of a Polynomial............................................................................................ 85 2.6. Division Algorithm.............................................................................................. 85 2.7. Polynomial Equation........................................................................................... 85 2.8. Root of an Equation............................................................................................. 85 2.9. Synthetic Division............................................................................................... 86 2.10. Fundamental Theorem of Algebra...................................................................... 88 2.11. Multiplication of Roots........................................................................................ 93 2.12. Diminishing and Increasing the Roots............................................................... 94 2.13. Removal of Terms................................................................................................ 96 ( v ) ( vi ) 2.14. Reciprocal Equations ........................................................................................ 100 2.15. Sum of the Integral Powers of the Roots and Symmetric Functions.............. 105 2.16. Symmetric Functions of the Roots.................................................................... 109 2.17. Descarte’s Rule of Signs.................................................................................... 111 2.18. Cardon’s Method .............................................................................................. 111 2.19. Irreducible Case of Cardon’s Solution.............................................................. 116 2.20. Descarte’s Method............................................................................................. 117 2.21. Ferrari’s Solution of the Biquadratic ............................................................... 120 2.22. Curve Fitting..................................................................................................... 122 2.23. Graphical Method.............................................................................................. 122 2.24. Method of Group Averages ............................................................................... 124 2.25. Equations Involving Three Constants.............................................................. 126 2.26. Principle of Least Squares................................................................................ 130 2.27. Method of Moments........................................................................................... 136 3. Matrices......................................................................................................139–194 3.1. Definitions (Matrices)........................................................................................ 139 3.2. Addition of Matrices.......................................................................................... 142 3.3. Multiplication of a Matrix by a Scalar ............................................................. 142 3.4. Properties of Matrix Addition........................................................................... 143 3.5. Matrix Multiplication........................................................................................ 144 3.6. Properties of Matrix Multiplication.................................................................. 146 3.7. Transpose of a Matrix....................................................................................... 149 3.8. Properties of Transpose of a Matrix................................................................. 149 3.9. Symmetric Matrix ............................................................................................. 150 3.10. Skew-symmetric Matrix (or Anti-symmetric Matrix) ...................................... 150 3.11. Every Square Matrix can Uniquely be Expressed as the Sum of a Symmetric Matrix and a Skew-symmetric Matrix.......................................... 151 3.12. Orthogonal Matrix............................................................................................. 151 3.13. For any Two Orthogonal Matrices A and B, Show that AB is an Orthogonal Matrix............................................................................................. 151 3.14. Adjoint of a Square Matrix ............................................................................... 152 3.15. Singular and Non-singular Matrices................................................................ 153 3.16. Inverse (or Reciprocal) of a Square Matrix...................................................... 153 3.17. The Inverse of a Square Matrix, if it Exists, is Unique................................... 153 3.18. Theorem : The Necessary and Sufficient Condition for a Square Matrix A to Possess Inverse is that | A | (cid:122) 0 (i.e., A is Non-singular)....................... 153 3.19. If A is Invertible, Then so is A–1 and (A–1)–1 = A............................................... 155 3.20. If A and B be Two Non-singular Square Matrices of the Same Order, then (AB)–1 = B–1 A–1 .......................................................................................... 155 3.21. If A is a Non-singular Square Matrix, then so is A(cid:99) and (A(cid:99))–1 = (A–1)(cid:99)............ 155 3.22. If A and B are Two Non-singular Square Matrices of the Same Order, then adj(AB)=(adj B) (adj A).................................................................................... 156 ( vii ) 3.23. Elementary Transformations (or Operations).................................................. 157 3.24. Elementary Matrices......................................................................................... 158 3.25. The Following Theorems on the Effect of E-operations on Matrices Hold Good .......................................................................................................... 158 3.26. Inverse of Matrix by E-operations (Gauss-jordan Method)............................. 159 3.27. Rank of a Matrix ............................................................................................... 160 3.28. Solution of a System of Linear Equations........................................................ 165 3.29. Vectors ............................................................................................................... 171 3.30. Linear Dependence and Linear Independence of Vectors............................... 171 3.31. Linear Transformations.................................................................................... 172 3.32. Orthogonal Transformation.............................................................................. 173 3.33. Complex Matrices.............................................................................................. 175 3.34. Characteristic Equation.................................................................................... 178 3.35. Eigen Vectors..................................................................................................... 178 3.36. Cayley Hamilton Theorem................................................................................ 181 3.37. Reduction of a Matrix to Diagonal Form.......................................................... 184 3.38. Quadratic Forms ............................................................................................... 186 3.39. Linear Transformation of a Quadratic Form................................................... 187 3.40. Canonical Form................................................................................................. 187 3.41. Index and Signature of the Quadratic Form.................................................... 188 3.42. Definite, Semi-definite and Indefinite Real Quadratic Forms........................ 188 3.43. Law-of-inertia of Quadratic Form .................................................................... 188 3.44. Reduction to Canonical Form by Orthogonal Transformation........................ 191 4. Analytical Solid Geometry........................................................................195–336 4.1. Introduction....................................................................................................... 195 4.2. Co-ordinate Axes and Co-ordinate Planes ....................................................... 195 4.3. Co-ordinates of a Point...................................................................................... 195 4.4. Distance between Two Points........................................................................... 197 4.5. Section Formula ................................................................................................ 198 4.6. Centroid of a Triangle....................................................................................... 201 4.7. Tetrahedron....................................................................................................... 201 4.8. Centroid of a Tetrahedron ................................................................................ 202 4.9. Angle between Two Skew (or Non-coplanar) Lines......................................... 203 4.10. Direction Cosines of a Line............................................................................... 203 4.11. A Useful Result ................................................................................................. 203 4.12. Relation between Direction Cosines................................................................. 204 4.13. Direction Ratios of a Line ................................................................................. 205 4.14. Direction Ratios of the Line Joining Two Points............................................. 206 4.15. Angle between Two Lines ................................................................................. 206 4.16. Find the Angle between Two Lines whose Direction Ratios are a , b , c 1 1 1 and a , b , c . Deduce the Condition for Perpendicularity and Parallelism 2 2 2 of Two Lines....................................................................................................... 208 ( viii ) 4.17. Projection........................................................................................................... 216 4.18. To Prove that the Projection of the Join of two Points (x , y , z ), (x , y , z ) 1 1 1 2 2 2 on a Line whose Direction Cosines are l, m, n is l(x – x ) + m(y – y ) 2 1 2 1 + n(z – z ) .......................................................................................................... 216 2 1 4.19. The Plane........................................................................................................... 218 4.20. General Equation of First Degree in x, y, z Represents a Plane............................................................................................................... 218 4.21. Intercept Form .................................................................................................. 219 4.22. Normal Form..................................................................................................... 221 4.23. Three Point Form.............................................................................................. 223 4.24. (a) Angle between Two Planes.......................................................................... 225 4.24. (b) Perpendicular Distance of a Point from a Plane ........................................ 227 4.25. Any Plane Through the Intersection of Two Given Planes............................. 229 4.26. Planes Bisecting the Angles between Two Planes........................................... 231 4.27. Projection on a Plane......................................................................................... 232 4.28. Theorem............................................................................................................. 232 4.29. General Form .................................................................................................... 237 4.30. Symmetrical Form............................................................................................. 237 4.31. Reduction of the General Equations to the Symmetrical Form...................... 241 4.32. Perpendicular Distance Formula ..................................................................... 242 x(cid:16) x y(cid:16) y z(cid:16) z 4.33. To Find the Point of Intersection of the Line 1 (cid:32) 1 (cid:32) 1 l m n with the plane ax + by + cz + d = 0................................................................... 248 x(cid:16) x y(cid:16) y z(cid:16) z 4.34. The Conditions that the Line 1 (cid:32) 1 (cid:32) 1 may be Parallel to l m n the Plane ax + by + cz + d = 0 are al + bm + cn = 0 and ax + by + cz + d (cid:122) 0......................................................................................... 249 1 1 1 x(cid:16) x y(cid:16) y z(cid:16) z 4.35. The Conditions that the Line 1 (cid:32) 1 (cid:32) 1 may Lie in the Plane l m n ax + by + cz + d = 0 are al + bm + cn = 0 and ax + by + cz + d = 0............... 249 1 1 1 x(cid:16) x y(cid:16) y z(cid:16) z 4.36. The Condition for the Line 1 (cid:32) 1 (cid:32) 1 to be Perpendicular l m n to the Plane ax + by + cz + d = 0....................................................................... 249 4.37. Angle between a Line and a Plane................................................................... 253 4.38. Any Plane Through a Given Line..................................................................... 253 x(cid:16) x y(cid:16) y z(cid:16) z 4.39. To Find the Condition that the Two Lines 1 (cid:32) 1 (cid:32) 1, l m n 1 1 1 x(cid:16) x2 (cid:32) y(cid:16) y2 = z(cid:16) z2 may Intersect (or May be Coplanar) l2 m2 n2 and to Find the Equation of the Plane in which they Lie ............................... 261 4.40. Shortest Distance between Two Lines ............................................................. 265 ( ix ) 4.41. Magnitude and Equations of Shortest Distance.............................................. 265 4.42. Intersection of Three Planes............................................................................. 275 4.43. Definition (The Sphere)..................................................................................... 281 4.44. Equations of a Sphere in Different Forms....................................................... 281 4.45. Touching Spheres.............................................................................................. 282 4.46. Four-point Form................................................................................................ 283 4.47. Diameter Form.................................................................................................. 284 4.48. Section of a Sphere by a Plane.......................................................................... 289 4.49. Intersection of Two Spheres ............................................................................. 290 4.50. Equations of a Circle......................................................................................... 290 4.51. Any Sphere Through a Given Circle................................................................. 294 4.52. Great Circle ....................................................................................................... 294 4.53. Definition of the Tangent Plane ....................................................................... 298 4.54. Equation of the Tangent Plane at a Point........................................................ 298 4.55. Angle of Intersection of Two Spheres............................................................... 303 4.56. Condition of Orthogonality of Two Spheres..................................................... 304 4.57. Definition (The Cone)........................................................................................ 308 4.58. Equation of the Cone with Vertex at the Origin.............................................. 308 4.59. The Direction Cosines (or Direction Ratios) of a Generator of a Cone Satisfy the Equation of the Cone whose Vertex is the Origin ............... 311 4.60. Quadric Cone Through the Axes ...................................................................... 311 4.61. Right Circular Cone .......................................................................................... 312 4.62. To Find the Equation to the Cone whose Vertex is the Point ((cid:68), (cid:69), (cid:74)) and Base the Conic F(x, y) = ax2 + by2 + 2hxy + 2fy + 2gx + c = 0, z = 0................. 315 4.63. Enveloping Cone................................................................................................ 317 4.64. Angle between Two Lines in which a Plane Through the Vertex Cuts a Cone ................................................................................................................ 318 4.65. Definitions (The Cylinder) ................................................................................ 323 4.66. To Find the Equation to the Cylinder whose Generators are Parallel x y z to the Line (cid:32) (cid:32) and Intersect the Curve.............................................. 324 l m n 4.67. Equation of Right Circular Cylinder................................................................ 326 4.68. Enveloping Cylinder.......................................................................................... 328 4.69. Definition (The Conicoids) ................................................................................ 330 5. Succesive and Partial Differentiation......................................................337–426 5.1. Successive Differentiation ................................................................................ 337 5.2. Calculation of nth Order Derivatives ................................................................ 337 5.3. Use of Partial Fractions.................................................................................... 342 5.4. Leibnitz Theorem .............................................................................................. 345 5.5. Determination of the Value of The nth Derivative of a Function at x = 0....... 351 5.6. Function of Two Variables................................................................................ 354 ( x ) 5.7. Continuity.......................................................................................................... 354 5.8. Partial Derivatives of First Order.................................................................... 355 5.9. Partial Derivatives of Higher Order................................................................. 356 5.10. Homogeneous Functions................................................................................... 363 5.11. Euler’s Theorem on Homogeneous Functions.................................................. 364 5.12. If u is a Homogeneous Function of Degree n in x and y, ................................. 364 5.13. Deductions From Euler’s Theorem................................................................... 365 5.14. Composite Functions......................................................................................... 372 5.15. Differentiation of Composite Functions ........................................................... 373 5.16. Taylor’s Theorem for a Function of Two Variables.......................................... 380 5.17. Jacobians ........................................................................................................... 385 5.18. Definitions ......................................................................................................... 385 5.19. Properties of Jacobians (Chain Rules) ............................................................. 385 5.20. Theorem............................................................................................................. 386 5.21. Jacobian of Implicit Functions ......................................................................... 387 5.22. Functional Relationship.................................................................................... 388 5.23. Approximation of Errors................................................................................... 397 5.24. Maxima and Minima of Functions of Two Variables....................................... 403 5.25. Conditions for F(x, y) to be Maximum or Minimum........................................ 404 5.26. Rule to Find The Extreme Values of a Function z = f(x, y) ............................. 404 5.27. Conditions for f(x, y, z) to be Maximum or Minimum...................................... 405 5.28. Lagrange’s Method of Undetermined Multipliers ........................................... 408 5.29. Geometrical Meaning of Partial Derivatives ................................................... 417 5.30. Tangent Plane and Normal to a Surface.......................................................... 418 5.31. Differentiation under Integral Sign ................................................................. 420 6. Multiple Integrals.......................................................................................427–475 6.1. Double Integrals................................................................................................ 427 6.2. Evaluation of Double Integrals......................................................................... 428 6.3. Evaluation of Double Integrals in Polar Co-ordinates .................................... 434 6.4. Change of Order of Integration ........................................................................ 437 6.5. Triple Integrals ................................................................................................. 440 6.6. Change of Variables.......................................................................................... 442 6.7. Area by Double Integration .............................................................................. 449 6.8. Volume as a Double Integral ............................................................................ 449 6.9. Volume as a Triple Integral.............................................................................. 455 6.10. Volumes of Solids of Revolution........................................................................ 457 6.11. Calculation of Mass........................................................................................... 458 6.12. Centre of Gravity (c.g.)...................................................................................... 460 6.13. Centre of Pressure............................................................................................. 463 6.14. Moment of Inertia ............................................................................................. 466

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.