A TEXTBOOK OF ENGINEERING MATHEMATICS For B.Sc. (Engg.), B.E., B. Tech., M.E. and Equivalent Professional Examinations By N.P. BALI Dr. MANISH GOYAL Formerly Principal M.Sc. (Mathematics), Ph.D., CSIR-NET S.B. College, Gurgaon Associate Professor Haryana Department of Mathematics Institute of Applied Sciences & Humanities G.L.A. University, Mathura, U.P. LLLLLAAAAAXXXXXMMMMMIIIII PPPPPUUUUUBBBBBLLLLLIIIIICCCCCAAAAATTTTTIIIIIOOOOONNNNNSSSSS (((((PPPPP))))) LLLLLTTTTTDDDDD BANGALORE (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) CHENNAI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) COCHIN (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) GUWAHATI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) HYDERABAD JALANDHAR (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) KOLKATA (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) LUCKNOW (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) MUMBAI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) RANCHI NEW DELHI (cid:78)(cid:78)(cid:78)(cid:78)(cid:78) BOSTON, USA Copyright © 2014 by Laxmi Publications Pvt. Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Published by: LAXMI PUBLICATIONS (P) LTD 113, Golden House, Daryaganj, New Delhi-110002 Phone: 011-43 53 25 00 Fax: 011-43 53 25 28 www.laxmipublications.com [email protected] Price: ````` 875.00 Only. First Edition : 1996, Sixth Edition : 2004, Seventh Edition : 2007, Reprint : 2008, 2009, 2010, Eighth Edition : 2011, Ninth Edition : 2014 OFFICES (cid:8) Bangalore 080-26 75 69 30 (cid:8) Jalandhar 0181-222 12 72 (cid:8) Chennai 044-24 34 47 26 (cid:8) Kolkata 033-22 27 43 84 (cid:8) Cochin 0484-237 70 04, 405 13 03 (cid:8) Lucknow 0522-220 99 16 (cid:8) Guwahati 0361-254 36 69, 251 38 81 (cid:8) Mumbai 022-24 91 54 15, 24 92 78 69 (cid:8) Hyderabad 040-24 65 23 33 (cid:8) Ranchi 0651-220 44 64 EEM-0539-875-ATB ENGG MATH-BAL C— Typeset at: Excellent Graphics, Delhi. Printed at: CONTENTS 1. Complex Numbers ..........................................................................................1–83 1.1. Real Numbers........................................................................................................ 1 1.2. Basic Properties of Real Numbers........................................................................ 1 1.3. Complex Numbers................................................................................................. 2 1.4. Conjugate Complex Numbers............................................................................... 2 1.5. Geometrical Representation of Complex Numbers ............................................. 2 1.6. Properties of Complex Numbers........................................................................... 3 1.7. Standard Form of a Complex Number................................................................. 3 1.8. Effect of Rotation, in the Anti-clockwise Direction, Through an Angle (cid:68) on the Complex Number ..................................................................................... 12 1.9. De Moivre’s Theorem .......................................................................................... 20 1.10. Roots of a Complex Number ............................................................................... 30 1.11. Exponential Function of a Complex Variable.................................................... 53 1.12. Circular Functions of a Complex Variable......................................................... 54 1.13. Trigonometrical Formulae for Complex Quantities .......................................... 55 1.14. Logarithms of Complex Numbers....................................................................... 57 1.15. The General Exponential Function.................................................................... 60 1.16. Hyperbolic Functions .......................................................................................... 63 1.17. Formulae of Hyperbolic Functions ..................................................................... 65 1.18. Inverse Hyperbolic Functions............................................................................. 72 1.19. C + iS Method of Summation.............................................................................. 75 2. Theory of Equations and Curve Fitting.....................................................84–138 2.1. Polynomial........................................................................................................... 84 2.2. Zero Polynomial................................................................................................... 84 2.3. Equality of Two Polynomials.............................................................................. 84 2.4. Complete and Incomplete Polynomials.............................................................. 84 2.5. Zero of a Polynomial............................................................................................ 85 2.6. Division Algorithm.............................................................................................. 85 2.7. Polynomial Equation........................................................................................... 85 2.8. Root of an Equation............................................................................................. 85 2.9. Synthetic Division............................................................................................... 86 2.10. Fundamental Theorem of Algebra...................................................................... 88 2.11. Multiplication of Roots........................................................................................ 93 2.12. Diminishing and Increasing the Roots............................................................... 94 2.13. Removal of Terms................................................................................................ 96 ( v ) ( vi ) 2.14. Reciprocal Equations ........................................................................................ 100 2.15. Sum of the Integral Powers of the Roots and Symmetric Functions.............. 105 2.16. Symmetric Functions of the Roots.................................................................... 109 2.17. Descarte’s Rule of Signs.................................................................................... 111 2.18. Cardon’s Method .............................................................................................. 111 2.19. Irreducible Case of Cardon’s Solution.............................................................. 116 2.20. Descarte’s Method............................................................................................. 117 2.21. Ferrari’s Solution of the Biquadratic ............................................................... 120 2.22. Curve Fitting..................................................................................................... 122 2.23. Graphical Method.............................................................................................. 122 2.24. Method of Group Averages ............................................................................... 124 2.25. Equations Involving Three Constants.............................................................. 126 2.26. Principle of Least Squares................................................................................ 130 2.27. Method of Moments........................................................................................... 136 3. Matrices......................................................................................................139–194 3.1. Definitions (Matrices)........................................................................................ 139 3.2. Addition of Matrices.......................................................................................... 142 3.3. Multiplication of a Matrix by a Scalar ............................................................. 142 3.4. Properties of Matrix Addition........................................................................... 143 3.5. Matrix Multiplication........................................................................................ 144 3.6. Properties of Matrix Multiplication.................................................................. 146 3.7. Transpose of a Matrix....................................................................................... 149 3.8. Properties of Transpose of a Matrix................................................................. 149 3.9. Symmetric Matrix ............................................................................................. 150 3.10. Skew-symmetric Matrix (or Anti-symmetric Matrix) ...................................... 150 3.11. Every Square Matrix can Uniquely be Expressed as the Sum of a Symmetric Matrix and a Skew-symmetric Matrix.......................................... 151 3.12. Orthogonal Matrix............................................................................................. 151 3.13. For any Two Orthogonal Matrices A and B, Show that AB is an Orthogonal Matrix............................................................................................. 151 3.14. Adjoint of a Square Matrix ............................................................................... 152 3.15. Singular and Non-singular Matrices................................................................ 153 3.16. Inverse (or Reciprocal) of a Square Matrix...................................................... 153 3.17. The Inverse of a Square Matrix, if it Exists, is Unique................................... 153 3.18. Theorem : The Necessary and Sufficient Condition for a Square Matrix A to Possess Inverse is that | A | (cid:122) 0 (i.e., A is Non-singular)....................... 153 3.19. If A is Invertible, Then so is A–1 and (A–1)–1 = A............................................... 155 3.20. If A and B be Two Non-singular Square Matrices of the Same Order, then (AB)–1 = B–1 A–1 .......................................................................................... 155 3.21. If A is a Non-singular Square Matrix, then so is A(cid:99) and (A(cid:99))–1 = (A–1)(cid:99)............ 155 3.22. If A and B are Two Non-singular Square Matrices of the Same Order, then adj(AB)=(adj B) (adj A).................................................................................... 156 ( vii ) 3.23. Elementary Transformations (or Operations).................................................. 157 3.24. Elementary Matrices......................................................................................... 158 3.25. The Following Theorems on the Effect of E-operations on Matrices Hold Good .......................................................................................................... 158 3.26. Inverse of Matrix by E-operations (Gauss-jordan Method)............................. 159 3.27. Rank of a Matrix ............................................................................................... 160 3.28. Solution of a System of Linear Equations........................................................ 165 3.29. Vectors ............................................................................................................... 171 3.30. Linear Dependence and Linear Independence of Vectors............................... 171 3.31. Linear Transformations.................................................................................... 172 3.32. Orthogonal Transformation.............................................................................. 173 3.33. Complex Matrices.............................................................................................. 175 3.34. Characteristic Equation.................................................................................... 178 3.35. Eigen Vectors..................................................................................................... 178 3.36. Cayley Hamilton Theorem................................................................................ 181 3.37. Reduction of a Matrix to Diagonal Form.......................................................... 184 3.38. Quadratic Forms ............................................................................................... 186 3.39. Linear Transformation of a Quadratic Form................................................... 187 3.40. Canonical Form................................................................................................. 187 3.41. Index and Signature of the Quadratic Form.................................................... 188 3.42. Definite, Semi-definite and Indefinite Real Quadratic Forms........................ 188 3.43. Law-of-inertia of Quadratic Form .................................................................... 188 3.44. Reduction to Canonical Form by Orthogonal Transformation........................ 191 4. Analytical Solid Geometry........................................................................195–336 4.1. Introduction....................................................................................................... 195 4.2. Co-ordinate Axes and Co-ordinate Planes ....................................................... 195 4.3. Co-ordinates of a Point...................................................................................... 195 4.4. Distance between Two Points........................................................................... 197 4.5. Section Formula ................................................................................................ 198 4.6. Centroid of a Triangle....................................................................................... 201 4.7. Tetrahedron....................................................................................................... 201 4.8. Centroid of a Tetrahedron ................................................................................ 202 4.9. Angle between Two Skew (or Non-coplanar) Lines......................................... 203 4.10. Direction Cosines of a Line............................................................................... 203 4.11. A Useful Result ................................................................................................. 203 4.12. Relation between Direction Cosines................................................................. 204 4.13. Direction Ratios of a Line ................................................................................. 205 4.14. Direction Ratios of the Line Joining Two Points............................................. 206 4.15. Angle between Two Lines ................................................................................. 206 4.16. Find the Angle between Two Lines whose Direction Ratios are a , b , c 1 1 1 and a , b , c . Deduce the Condition for Perpendicularity and Parallelism 2 2 2 of Two Lines....................................................................................................... 208 ( viii ) 4.17. Projection........................................................................................................... 216 4.18. To Prove that the Projection of the Join of two Points (x , y , z ), (x , y , z ) 1 1 1 2 2 2 on a Line whose Direction Cosines are l, m, n is l(x – x ) + m(y – y ) 2 1 2 1 + n(z – z ) .......................................................................................................... 216 2 1 4.19. The Plane........................................................................................................... 218 4.20. General Equation of First Degree in x, y, z Represents a Plane............................................................................................................... 218 4.21. Intercept Form .................................................................................................. 219 4.22. Normal Form..................................................................................................... 221 4.23. Three Point Form.............................................................................................. 223 4.24. (a) Angle between Two Planes.......................................................................... 225 4.24. (b) Perpendicular Distance of a Point from a Plane ........................................ 227 4.25. Any Plane Through the Intersection of Two Given Planes............................. 229 4.26. Planes Bisecting the Angles between Two Planes........................................... 231 4.27. Projection on a Plane......................................................................................... 232 4.28. Theorem............................................................................................................. 232 4.29. General Form .................................................................................................... 237 4.30. Symmetrical Form............................................................................................. 237 4.31. Reduction of the General Equations to the Symmetrical Form...................... 241 4.32. Perpendicular Distance Formula ..................................................................... 242 x(cid:16) x y(cid:16) y z(cid:16) z 4.33. To Find the Point of Intersection of the Line 1 (cid:32) 1 (cid:32) 1 l m n with the plane ax + by + cz + d = 0................................................................... 248 x(cid:16) x y(cid:16) y z(cid:16) z 4.34. The Conditions that the Line 1 (cid:32) 1 (cid:32) 1 may be Parallel to l m n the Plane ax + by + cz + d = 0 are al + bm + cn = 0 and ax + by + cz + d (cid:122) 0......................................................................................... 249 1 1 1 x(cid:16) x y(cid:16) y z(cid:16) z 4.35. The Conditions that the Line 1 (cid:32) 1 (cid:32) 1 may Lie in the Plane l m n ax + by + cz + d = 0 are al + bm + cn = 0 and ax + by + cz + d = 0............... 249 1 1 1 x(cid:16) x y(cid:16) y z(cid:16) z 4.36. The Condition for the Line 1 (cid:32) 1 (cid:32) 1 to be Perpendicular l m n to the Plane ax + by + cz + d = 0....................................................................... 249 4.37. Angle between a Line and a Plane................................................................... 253 4.38. Any Plane Through a Given Line..................................................................... 253 x(cid:16) x y(cid:16) y z(cid:16) z 4.39. To Find the Condition that the Two Lines 1 (cid:32) 1 (cid:32) 1, l m n 1 1 1 x(cid:16) x2 (cid:32) y(cid:16) y2 = z(cid:16) z2 may Intersect (or May be Coplanar) l2 m2 n2 and to Find the Equation of the Plane in which they Lie ............................... 261 4.40. Shortest Distance between Two Lines ............................................................. 265 ( ix ) 4.41. Magnitude and Equations of Shortest Distance.............................................. 265 4.42. Intersection of Three Planes............................................................................. 275 4.43. Definition (The Sphere)..................................................................................... 281 4.44. Equations of a Sphere in Different Forms....................................................... 281 4.45. Touching Spheres.............................................................................................. 282 4.46. Four-point Form................................................................................................ 283 4.47. Diameter Form.................................................................................................. 284 4.48. Section of a Sphere by a Plane.......................................................................... 289 4.49. Intersection of Two Spheres ............................................................................. 290 4.50. Equations of a Circle......................................................................................... 290 4.51. Any Sphere Through a Given Circle................................................................. 294 4.52. Great Circle ....................................................................................................... 294 4.53. Definition of the Tangent Plane ....................................................................... 298 4.54. Equation of the Tangent Plane at a Point........................................................ 298 4.55. Angle of Intersection of Two Spheres............................................................... 303 4.56. Condition of Orthogonality of Two Spheres..................................................... 304 4.57. Definition (The Cone)........................................................................................ 308 4.58. Equation of the Cone with Vertex at the Origin.............................................. 308 4.59. The Direction Cosines (or Direction Ratios) of a Generator of a Cone Satisfy the Equation of the Cone whose Vertex is the Origin ............... 311 4.60. Quadric Cone Through the Axes ...................................................................... 311 4.61. Right Circular Cone .......................................................................................... 312 4.62. To Find the Equation to the Cone whose Vertex is the Point ((cid:68), (cid:69), (cid:74)) and Base the Conic F(x, y) = ax2 + by2 + 2hxy + 2fy + 2gx + c = 0, z = 0................. 315 4.63. Enveloping Cone................................................................................................ 317 4.64. Angle between Two Lines in which a Plane Through the Vertex Cuts a Cone ................................................................................................................ 318 4.65. Definitions (The Cylinder) ................................................................................ 323 4.66. To Find the Equation to the Cylinder whose Generators are Parallel x y z to the Line (cid:32) (cid:32) and Intersect the Curve.............................................. 324 l m n 4.67. Equation of Right Circular Cylinder................................................................ 326 4.68. Enveloping Cylinder.......................................................................................... 328 4.69. Definition (The Conicoids) ................................................................................ 330 5. Succesive and Partial Differentiation......................................................337–426 5.1. Successive Differentiation ................................................................................ 337 5.2. Calculation of nth Order Derivatives ................................................................ 337 5.3. Use of Partial Fractions.................................................................................... 342 5.4. Leibnitz Theorem .............................................................................................. 345 5.5. Determination of the Value of The nth Derivative of a Function at x = 0....... 351 5.6. Function of Two Variables................................................................................ 354 ( x ) 5.7. Continuity.......................................................................................................... 354 5.8. Partial Derivatives of First Order.................................................................... 355 5.9. Partial Derivatives of Higher Order................................................................. 356 5.10. Homogeneous Functions................................................................................... 363 5.11. Euler’s Theorem on Homogeneous Functions.................................................. 364 5.12. If u is a Homogeneous Function of Degree n in x and y, ................................. 364 5.13. Deductions From Euler’s Theorem................................................................... 365 5.14. Composite Functions......................................................................................... 372 5.15. Differentiation of Composite Functions ........................................................... 373 5.16. Taylor’s Theorem for a Function of Two Variables.......................................... 380 5.17. Jacobians ........................................................................................................... 385 5.18. Definitions ......................................................................................................... 385 5.19. Properties of Jacobians (Chain Rules) ............................................................. 385 5.20. Theorem............................................................................................................. 386 5.21. Jacobian of Implicit Functions ......................................................................... 387 5.22. Functional Relationship.................................................................................... 388 5.23. Approximation of Errors................................................................................... 397 5.24. Maxima and Minima of Functions of Two Variables....................................... 403 5.25. Conditions for F(x, y) to be Maximum or Minimum........................................ 404 5.26. Rule to Find The Extreme Values of a Function z = f(x, y) ............................. 404 5.27. Conditions for f(x, y, z) to be Maximum or Minimum...................................... 405 5.28. Lagrange’s Method of Undetermined Multipliers ........................................... 408 5.29. Geometrical Meaning of Partial Derivatives ................................................... 417 5.30. Tangent Plane and Normal to a Surface.......................................................... 418 5.31. Differentiation under Integral Sign ................................................................. 420 6. Multiple Integrals.......................................................................................427–475 6.1. Double Integrals................................................................................................ 427 6.2. Evaluation of Double Integrals......................................................................... 428 6.3. Evaluation of Double Integrals in Polar Co-ordinates .................................... 434 6.4. Change of Order of Integration ........................................................................ 437 6.5. Triple Integrals ................................................................................................. 440 6.6. Change of Variables.......................................................................................... 442 6.7. Area by Double Integration .............................................................................. 449 6.8. Volume as a Double Integral ............................................................................ 449 6.9. Volume as a Triple Integral.............................................................................. 455 6.10. Volumes of Solids of Revolution........................................................................ 457 6.11. Calculation of Mass........................................................................................... 458 6.12. Centre of Gravity (c.g.)...................................................................................... 460 6.13. Centre of Pressure............................................................................................. 463 6.14. Moment of Inertia ............................................................................................. 466