ebook img

A Textbook of Electrical Technology Volume III -Transmission and Distribution PDF

454 Pages·2007·14.83 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Textbook of Electrical Technology Volume III -Transmission and Distribution

(cid:3)(cid:10)(cid:9)(cid:4)(cid:1)(cid:9)(cid:4)(cid:13) (cid:3) (cid:10) (cid:9) (cid:4) (cid:1) (cid:9) (cid:4) (cid:13) (cid:20)(cid:21)(cid:14) (cid:7)"%(cid:31)%(cid:7)(cid:11)(cid:2)(cid:5)(cid:13)(cid:20)(cid:26)(cid:16)(cid:20)(cid:20)(cid:16)(cid:9)(cid:13)(cid:7)(cid:5)(cid:13)(cid:17)(cid:7)"(cid:16)(cid:20)(cid:8)(cid:2)(cid:16)#(cid:22)(cid:8)(cid:16)(cid:9)(cid:13) %%%./012.034 Transmission and Distribution of D.C. Power—Two- wire and Three-wire System—Voltage Drop and Transmission Efficiency—Methods of Feeding Distributor— D.C.Distributor Fed at One End— Uniformly Loaded Distributor— Distributor Fed at Both Ends with Equal Voltages — Distributor Fed at Both Ends with Unequal Voltages—Uniform Loading with Distributor Fed at Both Ends— Concentrated and Uniform Loading with Distributor Fed at One End— Ring Distributor— Current Loading and Load-point Voltages in a 3-wire System—Three-wire System— Balancers—Boosters—Comparison of 2-wire and 3-wire Distribution Systems—Objective Tests (cid:20)(cid:22)(cid:14) (cid:7)(cid:7)$%(cid:31)%(cid:7)(cid:11)(cid:2)(cid:5)(cid:13)(cid:20)(cid:26)(cid:16)(cid:20)(cid:20)(cid:16)(cid:9)(cid:13)(cid:7)(cid:5)(cid:13)(cid:17)(cid:7)"(cid:16)(cid:20)(cid:8)(cid:2)(cid:16)#(cid:22)(cid:8)(cid:16)(cid:9)(cid:13) %%%(cid:7)(cid:7)(cid:7).035(cid:7)(cid:15).064 General Layout of the System— Power Systems and System Networks — Systems of A.C. Distribution-Single-phase, 2- wire System-Single-phase, 3-wire System-Two-phase, 3-wire System-Two-phase, 4-wire System—Three-phase, 3-wire System-Three-phase, 4-wire System—Distribution—Effect of Voltage on Transmission Efficiency —Comparison of Conductor Materials Required for Various Overhead Systems—Constants of a Transmission Line—Reactance of an Isolated Single-phase Transmission Line—Reactance of 3-phase Transmission Line—Capacitance of a Single-phase Transmission Line—Capacitance of a Three-phase Transmission Line-Short Single-phase Line Calculations— Short Three-phase Transmission Line Constants — Effects of Capacitance—Nominal T-method- “Nominal” π- method—Ferranti Effect-Charging Current and Line Loss of an Unloaded Transmission Line—Generalised Circuit Constants of a Transmission Line—Corona-Visual Critical Voltage—Corona Power —Disadvantages of Corona— (ix) Underground Cables—Insulation Resistance of a Single-core Cable—Capacitance and Dielectric Stress— Capacitance of 3-core Belted Cables—Tests for Three-phase Cable Capacitance—A.C. Distribution Calculations—Load Division Between Parallel Lines — Suspension Insulators— Calculation of Voltage Distribution along Different Units— Interconnectors—Voltage Drop Over the Interconnector— Sag and Stress Analysis— Sag and Tension with Supports at Equal Levels —Sag and Tension with Supports at Unequal Levels-Effect of Wind and Ice — Objective Tests. (cid:20)(cid:23)(cid:14) (cid:7)(cid:7)"(cid:16)(cid:20)(cid:8)(cid:2)(cid:16)#(cid:22)(cid:8)(cid:16)(cid:9)(cid:13)(cid:7)$(cid:22)(cid:8)(cid:9)(cid:26)(cid:5)(cid:8)(cid:16)(cid:9)(cid:13) %%%(cid:7)(cid:7)(cid:7)(cid:7).065(cid:7)(cid:15)(cid:7).016 Introduction—Need Based Energy Management (NBEM) — Advantages of NBEM—Conventional Distribution Network—Automated System — Sectionalizing Switches — Remote Terminal Units (RTU’s) — Data Acquisition System (DAS) — Communication Interface — Power line carrier communication (PLCC) — Fibre optics data communication — Radio communication — Public telephone communication — Satellite communication — Polling scheme — Distribution SCADA — Man - Machine Interface — A Typical SCADA System — Distribution Automation — Load Management in DMS Automated Distribution System — Data acquisition unit — Remote terminal unit (RTU) — Communication unit — Substation Automation — Requirements — Functioning — Control system — Protective System — Feeder Automation — Distribution equipment — Interface equipment — Automation equipment — Consumer Side Automation — Energy Auditing—Advantages of Distribution Automation — Reduced line loss —Power quality — Deferred capital expenses – Energy cost reduction – Optimal energy use — Economic benefits — Improved reliability — Compatibility — Objective Tests. (cid:20)(cid:24)(cid:14) (cid:7)(cid:7)(cid:7)(cid:24)(cid:23)(cid:3)(cid:6)(cid:8)(cid:2)(cid:16)(cid:6)(cid:7)(cid:11)(cid:2)(cid:5)(cid:6)(cid:8)(cid:16)(cid:9)(cid:13) %%%(cid:7)(cid:7)(cid:7).011(cid:7)(cid:15)(cid:7).700 General—Traction Systems—Direct Steam Engine Drive — Diesel-electric Drive-Battery-electric Drive- Advantages of Electric Traction—Disadvantages of Electric Traction — Systems of Railway Electrification—Direct Current System—Single- phase Low frequency A.C. System—Three- phase Low frequency A.C. System—Composite System — (x) Kando System-Single-phase A.C. to D.C. System— Advantages of 25 kV 50 Hz A.C. System—Disadvantages of 25kV A.C. System—Block Diagram of an A.C. Locomotive—The Tramways —The Trolley Bus-Overhead Equipment (OHE) — Collector Gear of OHE—The Trolley Collector—The Bow Collector—The Pantograph Collector — Conductor Rail Equipment—Types of Railway Services — Train Movement—Typical Speed/Time Curve— Speed/Time Curves for Different Services—Simplified Speed/Time Curve—Average and Schedule Speed — SI Units in Traction Mechanics—Confusion Regarding Weight and Mass of a Train—Quantities Involved in Traction Mechanics—Relationship Between Principal Quantities in Trapezoidal Diagram—Relationship Between Principal Quantities in Quadrilateral Diagram —Tractive Effort for Propulsion of a Train—Power Output From Driving Axles— Energy Output from Driving Axles—Specific Energy Output—Evaluation of Specific Energy Output —Energy Consumption—Specific Energy Consumption-Adhesive Weight—Coefficient of Adhesion—Mechanism of Train Movement—General Feature of Traction Motor — Speed— Torque Characteristic of D.C. Motor — Parallel Operation of Series Motors with Unequal Wheel Diameter — Series Operation of series Motor with Uneuqal Wheel Diameter — Series Operation of Shunt Motors with Unequal Wheel Diameter — Parallel Operation of Shunt Motors with Unequal Wheel Diameter — Control of D.C. Motors —Series -Parallel Starting — To find t, t and η of starting — Series s p Parallel Control by Shunt Transition Method — Series Parallel control by Bridge Transition — Braking in Traction — Rheostatic Braking—Regenerative Braking with D.C. Motors — Objective Tests. (cid:20)(cid:20)(cid:14) (cid:7)(cid:7)(cid:7)&(cid:13)(cid:17)(cid:22)(cid:20)(cid:8)(cid:2)(cid:16)(cid:5)(cid:23)(cid:7)$ (cid:23)(cid:16)(cid:6)(cid:5)(cid:8)(cid:16)(cid:9)(cid:13)(cid:20)(cid:7)(cid:9)(cid:4)(cid:7)(cid:24)(cid:23)(cid:3)(cid:6)(cid:8)(cid:2)(cid:16)(cid:6)(cid:7)(cid:21)(cid:9)(cid:8)(cid:9)(cid:2)(cid:20) %%%(cid:7)(cid:7)(cid:7)(cid:7).707(cid:7)(cid:15)(cid:7).718 Advantages of Electric Drive—Classification of Electric Drives —Advantages of Individual Drive—Selection of a Motor—Electrical Characteristics —Types of Enclosures— Bearings—Transmission of Power —Noise— Motors of Different Industrial Drives — Advantages of Electrical Braking Over Mechanical Braking — Types of Electric Braking—Plugging Applied to DC Motors—Plugging of Induction Motors—Rheostatic Braking—Rheostatic Braking (xi) of DC Motors—Rheostatic Braking Torque—Rheostatic Braking of Induction Motors — Regenerative Braking— Energy Saving in Regenerative Braking - Objective Tests. (cid:20)(cid:25)(cid:14) (cid:7)(cid:7)(cid:7)(cid:18)(cid:5)(cid:8)(cid:16)(cid:13)(cid:28)(cid:7)(cid:5)(cid:13)(cid:17)(cid:7)(cid:30)(cid:3)(cid:2)(cid:19)(cid:16)(cid:6)(cid:3)(cid:7)(cid:31)(cid:5) (cid:5)(cid:6)(cid:16)(cid:8)(cid:14) %%%(cid:7)(cid:7)(cid:7)(cid:7).71/(cid:7)(cid:15)(cid:7).644 Size and Rating — Estimation of Motor Rating — Different Types of Industrial Loads—Heating of Motor or Temperature Rise—Equation for Heating of Motor — Heating Time Constant — Equation for Cooling of Motor or Temperature Fall — Cooling Time Constant — Heating and Cooling Curves — Load Equalization — Use of Flywheels — Flywheel Calculations — Load Removed (Flywheel Accelerating) — Choice of Flywheel — Objective Tests. (cid:20)(cid:26)(cid:14) (cid:7)(cid:7)(cid:7)(cid:24)(cid:23)(cid:3)(cid:6)(cid:8)(cid:2)(cid:9)(cid:13)(cid:16)(cid:6)(cid:7)(cid:31)(cid:9)(cid:13)(cid:8)(cid:2)(cid:9)(cid:23)(cid:7)(cid:9)(cid:4)(cid:7)$(cid:31)(cid:7)(cid:21)(cid:9)(cid:8)(cid:9)(cid:2)(cid:20) %%%(cid:7)(cid:7)(cid:7)(cid:7).645(cid:7)(cid:15)(cid:7).654 Classes of Electronic AC Drives — Variable-Frequency Speed Control of a SCIM—Variable Voltage Speed Control of a SCIM—Speed Control of a SCIM with Rectifier Inverter System—Chopper Speed Control of a WRIM—Electronic Speed Control of Synchronous Motors—Speed Control by Current fed D.C. Link—Synchronous Motor and Cycloconverter— Digital Control of Electric Motors — Application of Digital Control—Objective Tests. (cid:20)(cid:27)(cid:14) (cid:7)(cid:7)(cid:7)(cid:24)(cid:23)(cid:3)(cid:6)(cid:8)(cid:2)(cid:16)(cid:6)(cid:7)((cid:3)(cid:5)(cid:8)(cid:16)(cid:13)(cid:28) %%%(cid:7)(cid:7)(cid:7)(cid:7).655(cid:7)(cid:15)(cid:7).603 Introduction—Advantages of Electric Heating—Different Methods of Heat Transfer — Methods of Electric Heating— Resistance Heating—Requirement of a Good Heating Element—Resistance Furnaces or Ovens—Temperature Control of Resistance Furnaces—Design of Heating Element —Arc Furnaces—Direct Arc Furnace—Indirect Arc Furnace — Induction Heating—Core-type Induction Furnace— Vertical Core-Type Induction Furnace—Indirect Core-Type Induction Furnace—Coreless Induction Furnace—High Frequency Eddy-current Heating—Dielectric Heating — Dielectric Loss-Advantages of Dielectric Heating— Applications of Dielectric Heating — Choice of Frequency — Infrared Heating — Objective Tests. (cid:20)(cid:28)(cid:14) (cid:7)(cid:7)(cid:24)(cid:23)(cid:3)(cid:6)(cid:8)(cid:2)(cid:16)(cid:6)(cid:7)(cid:25)(cid:3)(cid:23)(cid:17)(cid:16)(cid:13)(cid:28) %%%(cid:7)(cid:7)(cid:7)(cid:7).60.(cid:7)(cid:15)(cid:7).614 Definition of Welding—Welding Processes—Use of (xii) Electricity in Welding—Formation and Characteristics of Electric Arc—Effect of Arc Length — Arc Blow—Polarity in DC Welding — Four Positions of Arc Welding— Electrodes for Metal Arc Welding—Advantages of Coated Electrodes—Types of Joints and Types of Applicable Welds—Arc Welding Machines—V-I Characteristics of Arc Welding D.C. Machines — D.C. Welding Machines with Motor Generator Set—AC Rectified Welding Unit — AC Welding Machines—Duty Cycle of a Welder — Carbon Arc Welding — Submerged Arc Welding —Twin Submerged Arc Welding — Gas Shield Arc Welding — TIG Welding — MIG Welding — MAG Welding—Atomic Hydrogen Welding—Resistance Welding—Spot Welding—Seam Welding—Projection Welding —Butt Welding-Flash Butt Welding—Upset Welding—Stud Welding—Plasma Arc Welding—Electroslag Welding—Electrogas Welding — Electron Beam Welding—Laser Welding—Objective Tests. (cid:20)(cid:29)(cid:14) (cid:7)(cid:7)(cid:7)&(cid:23)(cid:23)(cid:22)(cid:26)(cid:16)(cid:13)(cid:5)(cid:8)(cid:16)(cid:9)(cid:13) %%%(cid:7)(cid:7)(cid:7)(cid:7).615(cid:7)(cid:7)(cid:15)(cid:7).184 Radiations from a Hot Body—Solid Angle—Definitions — Calculation of Luminance (L) of a Diffuse Reflecting Surface — Laws of Illumination or Illuminance — Laws Governing Illumination of Different Sources — Polar Curves of C.P. Distribution—Uses of Polar Curves - Determination of M.S.C.P and M.H.C.P. from Polar Diagrams—Integrating Sphere or Photometer — Diffusing and Reflecting Surfaces: Globes and Reflectors—Lighting Schemes —Illumination Required for Different Purposes — Space / Height Ratio— Design of Lighting Schemes and Lay-outs—Utilisation Factor or Coefficient of Utilization [η] — Depreciation Factor (p) —Floodlighting —Artificial Sources of Light — Incandescent Lamp—Filament Dimensions —Incandescent Lamp Characteristics—Clear and Inside—frosted Gas-filled Lamps—Discharge Lamps—Sodium Vapour Lamp—High- Pressure Mercury Vapour Lamp — Fluorescent Mercury— Vapour Lamps— Fluorescent Lamp— Circuit with Thermal Switch —Startless Fluorescent Lamp Circuit — Stroboscopic Effect of Fluorescent Lamps — Comparison of Different Light Sources — Objective Tests. (cid:25)(cid:21)(cid:14) (cid:7)(cid:7)(cid:7)(cid:11)(cid:5)(cid:2)(cid:16)(cid:4)(cid:4)(cid:20)(cid:7)(cid:5)(cid:13)(cid:17)(cid:7)(cid:24)(cid:6)(cid:9)(cid:13)(cid:9)(cid:26)(cid:16)(cid:6)(cid:7)(cid:31)(cid:9)(cid:13)(cid:20)(cid:16)(cid:17)(cid:3)(cid:2)(cid:5)(cid:8)(cid:16)(cid:9)(cid:13)(cid:20) %%%(cid:7)(cid:7)(cid:7)(cid:7)(cid:7).185(cid:7)(cid:7)(cid:15)(cid:7)43.0 Economic Motive—Depreciation—Indian Currency — (xiii) Factors Influencing Costs and Tariffs of Electric Supply — Demand — Average Demand — Maximum Demand — Demand Factor—Diversity of Demand—Diversity Factor — Load Factor—Significance of Load Factor — Plant Factor or Capacity Factor— Utilization Factor (or Plant use Factor)— Connected Load Factor—Load Curves of a Generating Station — Tariffs-Flat Rate— Sliding Scale — Two-part Tariff — Kelvin's Law-Effect of Cable Insulation —Note on Power Factor—Disadvantages of Low Power Factor—Economics of Power Factor—Economical Limit of Power Factor Correction — Objective Tests. (xiv) (cid:1)(cid:2) (cid:1) (cid:2) (cid:3) (cid:4) (cid:5) (cid:6) (cid:7) Learning Objectives D.C. ➣➣➣➣➣ Transmission and Distribu- tion of D.C. Power TRANSMISSION ➣➣➣➣➣ Two-wire and Three-wire System AND ➣➣➣➣➣ Voltage Drop and Transmission Efficiency ➣➣➣➣➣ Methods of Feeding DISTRIBUTION Distributor ➣➣➣➣➣ D.C.Distributor Fed at One End ➣➣➣➣➣ Uniformaly Loaded Distributor ➣➣➣➣➣ Distributor Fed at Both Ends with Equal Voltage ➣➣➣➣➣ Distributor Fed at Both ends with Unequal Voltage ➣➣➣➣➣ Uniform Loading with Dis- tributor Fed at Both Ends ➣➣➣➣➣ Concentrated and Uniform Loading with Distributor Fed at One End ➣➣➣➣➣ Ring Distributor ➣➣➣➣➣ Current Loading and Load-point Voltage in a 3-wire System (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:8)(cid:11)(cid:9)(cid:12)(cid:4)(cid:6)(cid:7)(cid:13)(cid:14)(cid:7)(cid:15)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:17)(cid:18)(cid:19)(cid:7)(cid:10)(cid:4)(cid:17)(cid:6)(cid:13)(cid:20)(cid:9)(cid:21)(cid:4)(cid:1)(cid:22)(cid:3)(cid:4)(cid:23)(cid:9)(cid:15) ➣➣➣➣➣ Three-wire System (cid:14)(cid:18)(cid:6)(cid:9)(cid:13)(cid:24)(cid:7)(cid:4)(cid:11)(cid:15)(cid:4)(cid:11)(cid:20)(cid:8)(cid:10)(cid:7)(cid:13)(cid:15)(cid:7)(cid:25)(cid:4)(cid:13)(cid:9)(cid:4)(cid:13)(cid:4)(cid:15)(cid:9)(cid:7)(cid:17)(cid:26)(cid:27)(cid:17)(cid:4)(cid:9)(cid:10)(cid:13)(cid:20)(cid:15)(cid:28)(cid:18)(cid:10)(cid:29)(cid:7)(cid:10)(cid:21) (cid:1)(cid:30)(cid:3)(cid:4)(cid:31)(cid:16)(cid:7)(cid:4)(cid:7)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:8)(cid:11)(cid:9)(cid:12)(cid:4)(cid:9)(cid:10)(cid:13)(cid:14)(cid:7)(cid:6)(cid:15)(cid:4)(cid:13)(cid:6)(cid:18)(cid:20)(cid:24)(cid:4)(cid:13)(cid:4)(cid:9)(cid:10)(cid:13)(cid:20)(cid:15)(cid:29)(cid:11)(cid:15)(cid:15)(cid:11)(cid:18)(cid:20)(cid:4)(cid:6)(cid:11)(cid:20)(cid:7) ➣➣➣➣➣ Balancers (cid:9)(cid:18)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:13)(cid:10)(cid:7)(cid:13)(cid:4)(cid:19)(cid:16)(cid:7)(cid:10)(cid:7)(cid:4)(cid:17)(cid:18)(cid:19)(cid:7)(cid:10)(cid:4)(cid:11)(cid:15)(cid:4)(cid:20)(cid:7)(cid:7)(cid:25)(cid:7)(cid:25)(cid:21)(cid:4)(cid:1) (cid:3)(cid:4)(cid:31)(cid:16)(cid:7)(cid:10)(cid:7)(cid:21)(cid:4)(cid:11)(cid:20) ➣➣➣➣➣ Boosters (cid:9)(cid:16)(cid:7)(cid:4)(cid:15)(cid:27)!(cid:15)(cid:9)(cid:13)(cid:9)(cid:11)(cid:18)(cid:20)(cid:21)(cid:4)(cid:14)(cid:18)(cid:6)(cid:9)(cid:13)(cid:24)(cid:7)(cid:4)(cid:11)(cid:15)(cid:4)(cid:25)(cid:7)(cid:8)(cid:10)(cid:7)(cid:13)(cid:15)(cid:7)(cid:25)(cid:4)(cid:19)(cid:11)(cid:9)(cid:16)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:16)(cid:7)(cid:6)(cid:17) ➣➣➣➣➣ Comparison of 2-wire and (cid:18)(cid:28)(cid:4)(cid:15)(cid:9)(cid:7)(cid:17)(cid:26)(cid:25)(cid:18)(cid:19)(cid:20)(cid:4)(cid:9)(cid:10)(cid:13)(cid:20)(cid:15)(cid:28)(cid:18)(cid:10)(cid:29)(cid:7)(cid:10)(cid:21)(cid:4)(cid:1)"(cid:3)(cid:4)#(cid:24)(cid:13)(cid:11)(cid:20)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:9)(cid:10)(cid:13)(cid:20)(cid:15)(cid:29)(cid:11)(cid:15)(cid:26) 3-wire Distribution System (cid:15)(cid:11)(cid:18)(cid:20)(cid:4)(cid:6)(cid:11)(cid:20)(cid:7)(cid:15)(cid:4)(cid:8)(cid:13)(cid:10)(cid:10)(cid:12)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:7)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:8)(cid:11)(cid:9)(cid:12)(cid:21)(cid:4)(cid:1)$(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:8)(cid:11)(cid:9)(cid:12) (cid:10)(cid:7)(cid:13)(cid:8)(cid:16)(cid:7)(cid:15)(cid:4)(cid:9)(cid:16)(cid:7)(cid:4)(cid:28)(cid:11)(cid:20)(cid:13)(cid:6)(cid:4)(cid:8)(cid:18)(cid:20)(cid:15)(cid:27)(cid:29)(cid:17)(cid:9)(cid:11)(cid:18)(cid:20)(cid:4)(cid:17)(cid:18)(cid:11)(cid:20)(cid:9)(cid:15) 1570 Electrical Technology 40.1. Transmission and Distribution of D.C. Power By transmission and distribution of electric power is meant its conveyance from the central station where it is generated to places, where it is demanded by the consumers like mills, factories, residential and commercial buildings, pumping stations etc. Electric power may be transmitted by two methods. (i) By overhead system or (ii) By underground system—this being especially suited for densely- populated areas though it is somewhat costlier than the first method. In over-head system, power is conveyed by bare conductors of copper or aluminium which are strung between wooden or steel poles erected at convenient distances along a route. The bare copper or aluminium wire is fixed to an insulator which is itself fixed onto a cross-arm on the pole. The number of cross-arms carried by a pole depends on the number of wires it has to carry. Line supports consist of (i) pole structures and (ii) tower. Poles which are made of wood, reinforced concrete or steel are used up to 66 kV whereas steel towers are used for higher voltages. The underground system employs insulated cables which may be single, double or triple-core etc. A good system whether overhead or underground should fulfil the following requirements : 1. The voltage at the consumer’s premises must be maintained within ± 4 or ± 6% of the declared voltage, the actual value depending on the type of load*. 2. The loss of power in the system itself should be a small percentage (about 10%) of the power transmitted. 3. The transmission cost should not be unduly excessive. 4. The maximum current passing through the conductor should be limited to such a value as not to overheat the conductor or damage its insulation. 5. The insulation resistance of the whole system should be very high so that there is no undue leakage or danger to human life. It may, however, be mentioned here that these days all production of power is as a.c. power and nearly all d.c. power is obtained from large a.c. power systems by using converting machinery like synchronous or rotary converters, solid-state converters and motor-generator sets etc. There are many sound reasons for producing power in the form of alternating current rather than direct current. (i) It is possible, in practice, to construct large high-speed a.c. generators of capacities up to 500 MW. Such generators are economical both in the matter of cost per kWh of electric energy produced as well as in operation. Unfortunately, d.c. generators cannot be built of ratings higher than 5 MW because of commutation trouble. Moreover, since they must operate at low speeds, it necessi- tates large and heavy machines. (ii) A.C. voltage can be efficiently and conveniently raised or lowered for economic transmis- sion and distribution of electric power respectively. On the other hand, d.c. power has to be generated at comparatively low voltages by units of relatively low power ratings. As yet, there is no economical method of raising the d.c. voltage for transmission and lowering it for distribution. Fig. 40.1 shows a typical power system for obtaining d.c. power from a.c. power. Other details such as instruments, switches and circuit breakers etc. have been omitted. Two 13.8 kV alternators run in parallel and supply power to the station bus-bars. The voltage is stepped up by 3-phase transformers to 66 kV for transmission purposes** and is again stepped down to 13.8 kV at the sub-station for distribution purposes. Fig. 40.1 shows only three methods com- monly used for converting a.c. power to d.c. power at the sub-station. * According to Indian Electricity Rules, voltage fluctuations should not exceed ± 5% of normal voltage for 1 L.T. supply and ± 12 % for H.T. supply. 2 ** Transmission voltages of upto 400 kV are also used. D.C. Transmission and Distribution 11557711 Fig. 40.1 (a) a 6-phase mercury-arc rectifier gives 600 V d.c. power after the voltage has been stepped down to a proper value by the transformers. This 600-V d.c. power is generally used by electric railways and for electrolytic processes. (b) a rotary converter gives 230 V d.c. power. (c) a motor-generator set converts a.c. power to 500/250 d.c. The above figure shows a motor-generator set. Nowadays, we power for 3-wire distribution use solid-state devices, called rectifiers, to convert standard AC to DC current. Back in the olden days, they needed a “motor systems. dynamo” set to make the conversion as shown above. An AC In Fig. 40.2 is shown a schematic motor would turn a DC Generator, as pictured above diagram of low tension distribution system for d.c. power. The whole system consists of a network of cables or conductors which convey power from central station to the consumer’s premises. The station bus-bars are fed by a number of generators (only two shown in the figure) running in parallel. From the bus-bars, the power is carried by many feeders which radiate to various parts of a city or locality. These feeders deliver power at certain points to a distributor which runs along the various streets. The points FF, as shown in the figure, are known as feeding points. Power connections to the various consumers are given from this distributor and not directly from the feeder. The wires which convey power from the distributor to the consumer’s premises are known as service mains (S). Sometimes when there is only one distributor in a locality, several sub-distributors (SD) branching off from the distributor are employed and service mains are now connected to them instead of distributor as shown in the figure. Obviously, a feeder is designed on the basis of its current-carrying capacity whereas the design of distributor is based on the voltage drop occurring in it. 1572 Electrical Technology Fig. 40.2 40.2. Two-wire and Three-wire Systems In d.c. systems, power may be fed and distributed either by (i) 2-wire system or (ii) 3-wire system. Fig. 40.3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.