Scientia Magna Vol. 12 (2017), No. 1, 132-144 A survey on Smarandache notions in number theory I: Smarandache function Huaning Liu School of Mathematics, Northwest University Xi’an 710127, China E-mail: [email protected] Abstract In this paper we give a survey on recent results on Smarandache function. Keywords Smarandache notion, Smarandache function, sequence, mean value. 2010 Mathematics Subject Classification 11A07, 11B50, 11L20, 11N25. §1. Definition and simple properties Foranypositiveintegern,thefamousSmarandachefunctionS(n)isdefinedasthesmallest positive integer m such that n|m!. That is, S(n)=min{m: n|m!, n∈N}. (1.1) Many people studied the lower bound of S(n). M. Le [16]. Let p>2 be a prime. Then S(cid:0)2p−1(2p−1)(cid:1)≥2p+1. J. Su [35]. Let p≥5 be a prime. Then S(cid:0)2p−1(2p−1)(cid:1)≥6p+1. J. Su and S. Shang [36]. Let p≥7 be a prime. Then S(2p+1)≥6p+1. M. Liang [23]. Let p>7 be a prime. Then S(2p±1)≥8p+1. T. Wen [40]. Let p≥17 be a prime. Then S(2p±1)≥10p+1. C. Shi [33]. Let p≥17 be a prime. Then S(2p±1)≥14p+1. X. Wang [38]. For any m∈N, let p≥9m2(logm+1)3 be a prime. Then S(2p−1)≥ 2mp+1. F. Li and C. Yang [20]. Let a and b be distinct positive integers, and let p ≥ 17 be a prime. Then S(ap+bp)≥8p+1. P. Shi and Z. Liu [34]. Let a and b be distinct positive integers, and let p ≥ 17 be a prime. Then S(ap+bp)≥10p+1. L. Gao, H. Hao and W. Lu [6]. Let a and b be positive integers with a > b, and let p≥17 be a prime. Then S(ap−bp)≥8p+1. J. Wang [37]. Let F = 22n +1 be the Fermat number. Then S(F ) ≥ 8·2n +1 for n n n≥3. M. Zhu [55]. Let F = 22n +1 be the Fermat number. Then S(F ) ≥ 12·2n +1 for n n n≥3. M. Liu and Y. Jin [26]. Let F = 22n +1 be the Fermat number. Then S(F ) ≥ n n 4(4n+9)·2n+1 for n≥4. Vol. 12 AsurveyonSmarandachenotionsinnumbertheoryI:Smarandachefunction 133 M. Bencze [2]. For positive integer sequences m ,··· ,m , we have 1 n (cid:32) n (cid:33) n (cid:89) (cid:88) S m ≤ S(m ). k k k=1 k=1 M. Le [17]. There are infinite many n∈N such that S(n)≤S(n−S(n)). The distribution properties have also been studied. W. Zhu [56]. Let m = pT1pT2···pTk, where p ,p ,··· ,p are distinct primes. For any 1 2 k 1 2 k n∈N, we have (cid:16) m (cid:17) S(mn)=n· max {(p −1)T }+O lnn . 1≤i≤k i i lnm M. Le [15]. For any distinct positive integers k and n, log S(cid:0)nk(cid:1) is never a positive kn integer. F. Du [4]. 1. Assume that n = p p ···p , where p ,p ,··· ,p are distinct primes. 1 2 k 1 2 k (cid:88) 1 Then can not be an integer. S(d) d|n (cid:88) 1 2. Suppose that n=pT, where p>2 is a prime and T ≤p. Then can not be an S(d) d|n integer. 3. Let n=pT1pT2···pTk−1·p , where p ,p ,··· ,p are distinct primes. If S(n)=p , then 1 2 k−1 k 1 2 k k (cid:88) 1 can not be an integer. S(d) d|n L. Huan [9]. 1. Assume that n = p p ···p , where p ,p ,··· ,p are distinct primes. 1 2 k 1 2 k Then we have (cid:89)S(d)=p ·p2···p2k−2p2k−1. 1 2 k−1 k d|n B. Liu and X. Pan [25]. For any positive integer n, the formula S(2)S(4)···S(2n) S(1)S(3)···S(2n−1) is an integer if and only if n=1. A. Zhang [49]. For integer n>1, we have (cid:18) (cid:19) 1 1 |{m: 1≤m≤n,S(m) is a prime}|=1+O . n lnn W. Xiong [43]. Define ES(n)=|{a:1≤a≤n,2|S(a)}|, OS(n)=|{a:1≤a≤n,2(cid:45)S(a)}|. Then for integer n>1, we have (cid:18) (cid:19) ES(n) 1 =O . OS(n) lnn 134 H.Liu No. 1 Q. Liao and W. Luo [24]. Let p be a prime and α be a positive integer. 1) For any positive integer r and α=pr, we have S(pα)=pr+1−pr+p. 2) For any positive integer r, t∈[1,r] and α=pr−t, we have S(pα)=pr+1−pr. 3) For any positive integer r, t∈[r+1,pr−pr−1] and α=pr−t. (I) If n−1 (cid:88) α=pr−r− (−1)i−1(pki −k )+(−1)npkn i i=1 with k <pki−1(p−1)−1, 1≤i≤n−1, i then we have (cid:32) n (cid:33) (cid:88) S(pα)=(p−1) pr+ (−1)ipki +(−1)np. i=1 (II) If n−1 α=pr−r−(cid:88)(−1)i−1(pki −k )+(−1)n(cid:0)pkn −t(cid:1) i i=1 with t∈[1,k ] and n k <pki−1(p−1)−1, 1≤i≤n−1, i then (cid:32) n (cid:33) (cid:88) S(pα)=(p−1) pr+ (−1)ipki . i=1 Q. Liao and W. Luo [24]. Let φ(n) be the Euler function and let σ(n) be the sum of the different positive factors for n. 1) For any positive integer k, there are no any prime p and positive integer m coprime with p, such that φ(pm)=S(pk) and S(pk)≥S(mk). 2)Foranypositiveintegerk, iftherearesomeprimepandpositiveintegermcoprimewith p, suchthatφ(p2m)=S(p2k)andS(p2k)≥S(mk), thenp=2k+1or2(cid:54)=p≤k. Furthermore, (I) If 2k+1=p, then (p,m)=(2k+1,1), (2k+1,2), (2,3). (II) If 2≤p≤k, then k ≥3 and 2≤φ(m)≤ 2k2+k−1, k ≡2(mod3), 3 2≤φ(m)≤ 2k2+k, otherwise. 3 Vol. 12 AsurveyonSmarandachenotionsinnumbertheoryI:Smarandachefunction 135 3) For any positive integer k, if there are some prime p and positive integer m coprime with p, such that φ(pαm) = S(pαk) and S(pαk) ≥ S(mk). Then αk+1 > pα−3(p2 −1) and 1≤φ(m)≤q, where αk+1=qpα−3(p2−1)+r, 0≤r <pα−3(p2−1). 4) For any positive integer k, there exist some prime p and positive integer m coprime with p, such that φ(p3m)=S(p3k) and S(p3k)≥S(mk), m=1,2. Q. Liao and W. Luo [24]. 1) For any prime p, there is no any positive integer α such σ(pα) that is a positive integer. S(pα) 2) Let p be an odd prime, α≥1 and n=2αp. ∞ (cid:88)(cid:104)p(cid:105) σ(n) (I) If ≥α and is a positive integer, then 2α+1 ≡1(mod p). 2i S(n) i=1 ∞ (cid:88)(cid:104)p(cid:105) σ(n) (II) If <α and is a positive integer, then 2i S(n) i=1 σ(n) 2α+1−1 S(2α) =m and p=m −1, S(n) d d where d=(cid:0)2α+1−1,S(2α)(cid:1) and 0<m≤d. §2. Mean values of the Smarandache function (cid:88) C. Yang and D. Liu [45]. Define σ(n)= d. For any real x≥3 we have d|n (cid:88) π2 x2 (cid:18) x2 (cid:19) σ(S(n))= · +O . 12 lnx ln2x n≤x Y. Wang [39]. For any real x≥2 we have the asymptotic formula (cid:88) S(n) π2 x (cid:18) x (cid:19) = · +O . n 6 lnx ln2x n≤x W. Yao [48]. Let Λ(n) be the Mangoldt function. For any real x≥1 we have (cid:88) x2 (cid:18)x2loglogx(cid:19) Λ(n)S(n)= +O . 4 logx n≤x B. Shi [31]. Let k be any fixed positive integer. For any real x≥1 we have (cid:88)Λ(n)S(n)=x2(cid:88)k ci +O(cid:18) x2 (cid:19), logix logk+1x n≤x i=0 where c (i=0,1,··· ,k) are constants, and c =1. i 0 136 H.Liu No. 1 Z. Lv [28]. Let k be any fixed positive integer. For any real x>2 we have the asymptotic formula (cid:88)(S(n)−S(S(n)))2 = 2ζ(cid:18)3(cid:19)x23 (cid:88)k ci +O(cid:32) x32 (cid:33), 3 2 logix logk+1x n≤x i=1 where ζ(s) is the Riemann zeta function, c (i = 1,2,··· ,k) are computable constants, and i c =1. 1 J. Ge [7]. The Smarandache LCM function SL(n) is defined as the smallest positive integer k such that n | [1,2,··· ,k], where [1,2,··· ,k] denotes the least common multiple of 1,2,··· ,k. Let k be any fixed positive integer. For any real x > 2 we have the asymptotic formula (cid:88)(SL(n)−S(n))2 = 2ζ(cid:18)3(cid:19)x23 (cid:88)k ci +O(cid:32) x32 (cid:33), 3 2 logix logk+1x n≤x i=1 where ζ(s) is the Riemann zeta function, c (i=1,2,··· ,k) are computable constants. i X. Fan and C. Zhao [5]. Let d(n) be the divisor function. For any real x≥2 we have (cid:88) π4 x2 (cid:18) x2 (cid:19) S(n)d(n)= · +O . 36 lnx ln2x n≤x Z. Lv [29]. Let k ≥2 be any fixed positive integer. For any real x>1 we have (cid:88)S(n)d(n)= π4 · x2 +(cid:88)k ci·x2 +O(cid:18) x2 (cid:19), 36 lnx lnix lnk+1x n≤x i=2 where c (i=2,3,··· ,k) are computable constants. i (cid:88) M. Zhu [54]. Define σ (n)= dα, α≥1. Let k ≥2 be any fixed positive integer. For α d|n any real x>1 we have (cid:88)S(n)σ (n)= ζ(α+2)ζ(2) · xα+2 +(cid:88)k ci·xα+2 +O(cid:18) xα+2 (cid:19), α 2+α lnx lnix lnk+1x n≤x i=2 where c (i=2,3,··· ,k) are computable constants. i H. Zhou [53]. Let k ≥1 be any fixed positive integer. For any complex s with Re s>1 we have (cid:88)∞ Λ(nk) ζ(cid:48)(ks) =−ζ(s) . Ss(nk) ζ(ks) n=1 Y. Guo [8]. Define a function F(n) as follows: 0, if n=1, F(n)= α1p1+α2p2+···+αrpr, if n>1 and n=pα11pα22···pαrr. Let k ≥1 be any fixed positive integer. For any real x>1 we have (cid:88)(F(n)−S(n))2 =(cid:88)k ci·x2 +O(cid:18) x2 (cid:19), lni+1x lnk+2x n≤x i=1 Vol. 12 AsurveyonSmarandachenotionsinnumbertheoryI:Smarandachefunction 137 π2 where c (i=1,2,··· ,k) are computable constants, and c = . i 1 6 C. Shi [32]. For any positive integer k, the Smarandache kn-digital sequence a(k,n) is defined as all positive integers which can be partitioned into two groups such that the second part is k times bigger that the first. For 1≤k ≤9 and real x>1 we have (cid:88) S(n) 3π2 = lnlnx+O(1). a(k,n) 20k n≤x C. Yang, C. Li and D. Liu [44]. For any real x≥2 we have (cid:88) ζ(3)x3 (cid:18) x3 (cid:19) S2(n)= +O , 3lnx ln2x n≤x (cid:88) S2(n) ζ(3)x2 (cid:18) x2 (cid:19) = +O . n 3lnx ln2x n≤x W. Huang [11]. Let k ≥1 be any fixed integer. For any real x≥2 we have (cid:88) ζ(k+1) xk+1 (cid:18)xk+1(cid:19) Sk(n)= · +O , k+1 lnx ln2x n≤x (cid:88) Sk(n) 2ζ(k+1) xk (cid:18) xk (cid:19) = · +O . n k+1 lnx ln2x n≤x C. Li, C. Yang and D. Liu [19]. Let P(n) denote the largest prime factor of n. For any real x≥2 we have (cid:32) (cid:33) (cid:88) S(n) 6x23 x23 =xln2+ +O . P(n) lnx ln2x n≤x M. Yang [46]. For any real x≥2 we have (cid:18) (cid:19) (cid:88) S(n) xlnlnx =x+O , SL(n) lnx n≤x (cid:18) (cid:19) (cid:88) P(n) xlnlnx =x+O . SL(n) lnx n≤x L. Li, J. Hao and R. Duan [22]. For any real x≥1 we have (cid:88) lnS(n)=xlnx+O(x). n≤x Z. Liu and P. Shi [27]. For any real x≥3 and β >1 we have (cid:16) (cid:17) (cid:88)(S(n)−P(n))β = 2ζ β+21 xβ+21 +O(cid:32)xβ+21(cid:33). (β+1)lnx ln2x n≤x 138 H.Liu No. 1 W. Huang [12]. For n =pα1pα2···pαk, we define (cid:36)(n)= p +p +···+p . For any 1 2 k 1 2 k real x≥2 we have (cid:88) x3 (cid:18) x3 (cid:19) S(n)(cid:36)(n)=B +O , lnx ln2x n≤x where B is computable constant. (cid:88) G. Chen [3]. Define H(n) = S(r)S(s). Let k ≥ 1 be any fixed positive integer. [r,s]=n For any real x>1 we have (cid:88)H(n)=(cid:88)k di·x3 +O(cid:18) x3 (cid:19), lnix lnk+1x n≤x i=1 1 ζ3(3) where d (i=1,2,··· ,k) are computable constants, and d = · . i 1 3 ζ(6) Q. Yang [47]. For any real δ ≤1, the series ∞ (cid:88) 1 S(n)δ n=1 diverges. For any real (cid:15)>0, the series ∞ (cid:88) 1 S(n)(cid:15)S(n) n=1 converges. §3. Mean values of the Smarandache function over sequences W. Zhang and Z. Xu [50]. Let a(n) denote the square complements of n. For any real x≥3 we have the asymptotic formula (cid:88) π2 x2 (cid:18) x2 (cid:19) S(a(n))= · +O . 12 lnx ln2x n≤x H. Li and X. Zhao [21]. Let r (n) denote the integer part of k-th root of n. For any k real x≥3 we have (cid:32) (cid:33) (cid:88) π2 x1+k1 x1+k1 S(r (n))= · +O . k 6(k+1) lnx ln2x n≤x J. Ma [30]. Define L(n)=[1,2,··· ,n]. For any real x≥1 we have (cid:88)S(L(n))= 1x2+O(cid:16)x2138+(cid:15)(cid:17). 2 n≤x Vol. 12 AsurveyonSmarandachenotionsinnumbertheoryI:Smarandachefunction 139 (cid:26) (cid:27) k(k+1) Q. Wu [41]. Define Z(n) = min k :n≤ . Let k ≥ 2 be any fixed positive 2 integer. For any real x>1 we have (cid:88)S(Z(n))= π2 · (2x)32 +(cid:88)k ci(2x)23 +O(cid:32) x32 (cid:33), 18 ln2x lni2x lnk+1x n≤x i=2 where c (i=2,3,··· ,k) are computable constants. i H. Zhao [51]. Let a (n) denote the k-th power complements of n. For any real x ≥ 3 k we have (cid:88)(S(a (n))−(k−1)P(n))2 = 2ζ(cid:0)23(cid:1) · x32 +O(cid:32) x32 (cid:33). k 3 lnx ln2x n≤x W. Huang [10]. Define u(n)=min{k :n≤k(2k−1)}. Let k ≥2 be any fixed positive integer. For any real x>1 we have (cid:88)S(u(n))= π2 · (2√x)32 +(cid:88)k ci(2√x)23 +O(cid:32) x32 (cid:33), 144 ln 2x lni 2x lnk+1x n≤x i=2 where c (i=2,3,··· ,k) are computable constants. i Q. Zhao and L. Gao [52]. Define W(n) = min{k :n≤k(3k+1)}. Let k ≥ 2 be any fixed positive integer. For any real x>1 we have (cid:88)S(W(n))= π2 · (3√x)32 +(cid:88)k bi(3√x)23 +O(cid:32) x32 (cid:33), 486 ln 3x lni 3x lnk+1x n≤x i=2 where b (i=2,3,··· ,k) are computable constants. i W. Huang and J. Zhao [14]. Define (cid:26) (cid:27) 1 1 u (n) = min m+ m(m−1)(r−2):n≤m+ m(m−1)(r−2),r ∈N,r ≥3 , r 2 2 (cid:26) (cid:27) 1 1 v (n) = max m+ m(m−1)(r−2):n≥m+ m(m−1)(r−2),r ∈N,r ≥3 . r 2 2 Let k ≥2 be any fixed positive integer. For any real x>1 we have (cid:88)S(u (n)) = π2 · (2(r−2)x)32 +(cid:88)k ci(2(r−2)x)23 +O(cid:32) x32 (cid:33), r 18(r−2)3 ln(cid:112)2(r−2)x lni(cid:112)2(r−2)x lnk+1x n≤x i=2 (cid:88)S(v (n)) = π2 · (2(r−2)x)32 +(cid:88)k ci(2(r−2)x)23 +O(cid:32) x32 (cid:33), r 18(r−2)3 ln(cid:112)2(r−2)x lni(cid:112)2(r−2)x lnk+1x n≤x i=2 where c (i=2,3,··· ,k) are computable constants. i W. Huang [13]. Define a(n)=n−u (n) and b(n)=v (n)−n. Let k ≥1 be any fixed r r positive integer. For any real x>1 we have √ (cid:32) (cid:33) (cid:88) 842π2 x74 x74 S(n)a(n) = · +O , 63(r−2)54 ln2x ln22x n≤x 140 H.Liu No. 1 √ (cid:32) (cid:33) (cid:88) 842π2 x74 x74 S(n)b(n) = · +O . 63(r−2)54 ln2x ln22x n≤x (cid:89) R. Xie, L. Gao and Q. Zhao [42]. Define q (n)= . Let k ≥1 be any fixed positive d d|n d<n integer. For any real x>1 we have (cid:88)(cid:18) (cid:18)1 (cid:19) (cid:19)2 (cid:88)k x23 (cid:32) x32 (cid:33) S(q (n))− d(n)−1 P(n) = c +O , d 2 ilnix lnk+1x n≤x i=1 where c (i=1,2,··· ,k) are computable constants, and i 3 ζ4(cid:0)3(cid:1) (cid:18)3(cid:19) 2 (cid:18)3(cid:19) c = · 2 −2ζ2 + ζ . 1 2 ζ(3) 2 3 2 B. Li, J. Guo and H. Dong [18]. Define 1, if n=1, U(n)= max{α1p1,α2p2,··· ,αrpr}, if n=pα11pα22···pαrr. 1≤i≤r Let k ≥2 be any fixed positive integer. For any real x≥3 we have (cid:88)(S(a (n))−(k−1)U(n))2 = 2ζ(cid:18)3(cid:19)k2· x32 +O(cid:32) x161 (cid:33). k 3 2 lnx ln2x n≤x J. Bai and W. Huang [1]. Let A denote the set of the simple numbers. Let k ≥ 2 be any fixed positive integer. For any real x≥2 we have (cid:88)Sk(n)= Bxk+1 +(cid:88)k Cixk+1 +O(cid:18) xk+1 (cid:19), (k+1)lnx lnix lnk+1x n≤x i=2 n∈A √ √ (cid:18) (cid:19) (cid:88) 1 E xlnlnx x =Dlnlnx+ +O , S(n) lnx lnx n≤x n∈A where B,D,E, C (i=2,3,··· ,k) are computable constants. i References [1] JiazhiBaiandWeiHuang.Onthemeanvaluepropertiesofthesequenceofsimplenumbers fortheSmarandachefunctionS(n).HenanScience35(2017), no.4, 521-525.(InChinese with English abstract). [2] MihalyBencze.AninequalityfortheSmarandachefunction.SmarandacheNotionsJournal 10 (1999), 160. Vol. 12 AsurveyonSmarandachenotionsinnumbertheoryI:Smarandachefunction 141 [3] Guohui Chen. On the least common multiple product of Smarandache function. Journal of Southwest University (Natural Science Edition) 35 (2013), no. 10, 63 - 66. (In Chinese with English abstract). [4] FengyingDu.OnaconjectureoftheSmarandachefunctionS(n).PureandAppliedMath- ematics 23 (2007), no. 2, 205 - 213. (In Chinese with English abstract). [5] Xuhui Fan and Chunxiang Zhao. On the hybrid mean value of the Smarandache function and the Dirichlet divisor function. Pure and Applied Mathematics 24 (2008), no. 4, 662 - 665. (In Chinese with English abstract). [6] Li Gao, Hongfei Hao and Weiyang Lu. A lower bound estimate for Smarandache function on sequence ap−bp. Journal of Yanan University (Natural Science Edition) 33 (2014), no. 3, 1 - 3. (In Chinese with English abstract). [7] Jian Ge. Mean value of F. Smarandache LCM function. Scientia Magna 3 (2007), no. 2, 109 - 112. [8] Yanchun Guo. A new additive function and the F. Smarandache function. Scientia Magna 5 (2009), no. 1, 128 - 132. [9] Le Huan. On the properties of Smarandache function and its related functions. Journal of Southwest University (Natural Science Edition) 35 (2013), no. 4, 67 - 70. (In Chinese with English abstract). [10] WeiHuang.OnehybridmeanvalueformulainvolingSmarandachefunction.ScienceTech- nology and Engineering 9 (2009), no. 16, 4750 - 4752. (In Chinese with English abstract). [11] WeiHuang.Smarandacheinvolvingfunctionanditsasymptoticformula.JournalofJishou University (Natural Science Edition) 32 (2011), no. 5, 9 - 10. (In Chinese with English abstract). [12] WeiHuang.HybridmeanvalueofF.Smarandachefunctionandtheprimefactorsumfunc- tion. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) 24 (2012), no. 6, 804 - 806. (In Chinese with English abstract). [13] WeiHuang.Mean-valueestimatefortwoSmarandachehybridfunctions.JournalofJishou University (Natural Science Edition) 37 (2016), no. 3, 1 - 3. (In Chinese with English abstract). [14] WeiHuangandJiaolianZhao.Mean-valueestimatefortwoSmarandachehybridfunctions. Pure and Applied Mathematics 26 (2010), no. 6, 890 - 894. (In Chinese with English abstract). [15] Maohua Le. The integral values of log S(cid:0)nk(cid:1). Smarandache Notions Journal 11 (2000), kn 71 - 72. [16] MaohuaLe.AlowerboundforS(cid:0)2p−1(2p−1)(cid:1).SmarandacheNotionsJournal12(2001), 217 - 218.