ebook img

A Survey of Cell Biology [Vol 195] - K. Jeon (AP, 2000) WW PDF

345 Pages·2000·6.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Survey of Cell Biology [Vol 195] - K. Jeon (AP, 2000) WW

International Review of A Survey of Cytology Cell Biology VOLUME 195 SERIES EDITORS Geoffrey H. Bourne 1949–1988 James F. Danielli 1949–1984 Kwang W. Jeon 1967– Martin Friedlander 1984–1992 Jonathan Jarvik 1993–1995 EDITORIAL ADVISORY BOARD Eve Ida Barak M. Melkonian Rosa Beddington Keith E. Mostov Howard A. Bern Andreas Oksche Robert A. Bloodgood Vladimir R. Pantic´ Dean Bok Jozef St. Schell Stanley Cohen Manfred Schliwa Rene Couteaux Robert A. Smith Marie A. DiBerardino Wilfred D. Stein Laurence Etkin Ralph M. Steinman Hiroo Fukuda M. Tazawa Elizabeth D. Hay Donald P. Weeks P. Mark Hogarth Robin Wright Anthony P. Mahowald Alexander L. Yudin Bruce D. McKee International Review of A Survey of Cytology Cell Biology Edited by Kwang W. Jeon Department of Zoology The University of Tennessee Knoxville, Tennessee VOLUME 195 ACADEMIC PRESS San Diego San Francisco New York Boston London Sydney Tokyo CONTENTS Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Paternal Contributions to the Mammalian Zygote: Fertilization after Sperm–Egg Fusion Peter Sutovsky and Gerald Schatten I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 II. Sperm–Oocyte Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 III. The Centrosome, Sperm Nucleus, and Pronucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 IV. Other Potential Paternal Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 V. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Coat Proteins Regulating Membrane Traffic Suzie J. Scales, Marie Gomez, and Thomas E. Kreis I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 II. Clathrin and Adaptor Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 III. Coat Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 IV. Models for Membrane Traffic in Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 V. Regulation of Membrane Traffic through Coat Proteins . . . . . . . . . . . . . . . . . . . . . . . . . 111 VI. Emerging Families of Coat Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 VII. Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 v vi CONTENTS Regulation of Monoamine Receptors in the Brain: Dynamic Changes during Stress Gabriele Flu¨gge I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 II. Monoamines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 III. Monoamine Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 IV. Stress and the Tree Shrew Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 V. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Rhodopsin Trafficking and Its Role in Retinal Dystrophies Ching-Hwa Sung and Andrew W. A. Tai I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 II. The Rod Photoreceptor: A Highly Polarized Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 III. Rapid Turnover of Rod Disk Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 IV. Rhodopsin Trafficking at the Subcellular Level in Normal Rod Photoreceptors . . . . . . . 226 V. Rhodopsin Trafficking in Pathological Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 VI. Molecular Mechanisms of Rhodopsin Trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 VII. Rhodopsin Trafficking and Photoreceptor Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 VIII. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Calcium Signaling during Abiotic Stress in Plants Heather Knight I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 II. Low Temperature Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 III. Osmotic Stress, Drought, and Salinity Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 IV. Oxidative Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 V. Anoxia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 VI. Heat Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 VII. Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 VIII. Interactions between Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 IX. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. Gabriele Flu¨gge (145), Division of Neurobiology, German Primate Center, 37077 Go¨t- tingen, Germany Marie Gomez (67), Howard Hughes Medical Institute, Beckman Center, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Heather Knight (269), Department of Plant Sciences, University of Oxford, Oxford OXI 3RB, United Kingdom Thomas E. Kreis (67), Howard Hughes Medical Institute, Beckman Center, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Suzie J. Scales (67), Howard Hughes Medical Institute, Beckman Center, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Gerald Schatten(1), Departments ofObstetrics andGynecology, and Celland Develop- mental Biology, Oregon Health Sciences University, Oregon Regional Primate Research Center, Beaverton, Oregon 97006 Ching-Hwa Sung (215), Departments of Cell Biology and Anatomy and Ophthalmology, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021 Peter Sutovsky (1), Departments of Obstetrics and Gynecology, and Cell and Develop- mental Biology, Oregon Health Sciences University, Oregon Regional Primate Research Center, Beaverton, Oregon 97006 Andrew W. Tai (215), Department of Cell Biology and Anatomy, The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021 vii This Page Intentionally Left Blank Paternal Contributions to the Mammalian Zygote: Fertilization after Sperm–Egg Fusion Peter Sutovsky and Gerald Schatten Departments of Obstetrics and Gynecology, and Cell and Developmental Biology, Oregon Health Science University, and the Oregon Regional Primate Research Center, Beaverton, Oregon 97006 Mammalian fertilization has traditionally been regarded as a simple blending of two gametes, during which the haploid genome of the fertilizing spermatozoon constitutes the primary paternal contribution to the resulting embryo. In contrast to this view, new research provides evidence of important cytoplasmic contributions made by the fertilizing spermatozoon to the zygotic makeup, to the organization of preimplantation development, and even reproductive success of new forms of assisted fertilization. The central role of the sperm-contributed centriole in the reconstitution of zygotic centrosome has been established in most mammalian species and is put in contrast with strictly maternal centrosomal inheritance in rodents. The complementary reduction or multiplication of sperm and oocyte organelles during gametogenesis, exemplified by the differences in the biogenesis of centrosome in sperm and oocytes, represents an intriguing mechanism for avoiding their redundancy during early embryogenesis. New studies on perinuclear theca of sperm revealed its importance for both spermatogenesis and fertilization. Remodeling of the sperm chromatin into a male pronucleus is guided by oocyte-produced, reducing peptide glutathione and a number of molecules required for the reconstitution of the functional nuclear envelope and nuclear skeleton. Although some of the sperm structures are transformed into zygotic components, the elimination of others is vital to early stages of embryonic development. Sperm mitochondria, carrying potentially harmful paternal mtDNA, appear to be eliminated by a ubiquitin-dependent mechanism. Other accessory structures of the sperm axoneme, including fibrous sheath, microtubule doublets, outer dense fibers, and the striated columns of connecting piece, are discarded in an orderly fashion. The new methods of assisted fertilization, represented by intracytoplasmic sperm injection and round spermatid injection, bypass multiple steps of natural fertilization by introducing an intact spermatozoon or spermatogenic cell into oocyte cytoplasm. International Review of Cytology, Vol. 195 Copyright � 2000 by Academic Press. 1 0074-7696/00 $30.00 All rights of reproduction in any form reserved.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.