ebook img

A study on partial dynamic equation on time scales involving derivatives of polynomials PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A study on partial dynamic equation on time scales involving derivatives of polynomials

A STUDY ON PARTIAL DYNAMIC EQUATION ON TIME SCALES INVOLVING DERIVATIVES OF POLYNOMIALS PETRO KOLOSOV 2 Abstract. Let Pm(x) be a 2m+1−degree integer-valued polynomial in x,b. Let be a b 2 two-dimensional time scale Λ2 =T ×T ={t= (x,b): x ∈T , b ∈T }. Let be T =T . 0 1 2 1 2 1 2 2 In this manuscript we derive and discuss the following partial dynamic equation on time n scales. For every t∈T , x,b∈Λ2, m=const, m∈N 1 a J (t2m+1)∆ = ∂Pmb (x) + ∂Pmb (x) , 9 ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t 1 (cid:12) (cid:12) whereσ(t)>tisforwardjumpoperator.(cid:12)(cid:12)Inaddition,wediscuss(cid:12)(cid:12)variousderivativeoperators ] in context of partial cases of above equation, we show finite difference, classical derivative, A q−derivative, q−power derivative on behalf of it. C . h t a m [ Contents 7 v 1 1. Definitions 2 0 8 2. Introduction 3 0 3. Main results 3 0 . 8 4. Discussion and examples 4 0 4.1. Time scale of integers T = Z×Z 4 6 1 4.2. Time scale of real numbers T = R×R 5 : v 4.3. Quantum time scale T = qR ×qR 6 i X 4.4. Quantum power time scale T = Rq ×Rq 8 r a 4.5. Pure quantum power time scale T = qRn ×qRn 9 5. Proof of main theorem 10 Proof of theorem 3.1 11 6. Mathematica scripts 12 7. Conclusion and future research 15 References 16 Date: January 20, 2022. 2010 Mathematics Subject Classification. 26E70,05A30. Key words and phrases. Dynamic equations on time scales,Partialdifferential equations on time scales, Partial dynamic equations on time scales, Partial differentiation on time scales, Dynamical systems . 1 A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 2 1. Definitions We now set the following notation, which remains fixed for the remainder of this paper: • Let be a function f: T → R and t ∈ Tκ then f∆(t) is delta time-scale deriva- tive [BP01] of f f(σ(t))−f(t) f(σ(t))−f(t) f∆(t) = = , µ(t) σ(t)−t where µ(t) = σ(t)−t, µ(t) 6= 0 and σ(t) > t is forward jump operator. ∂f(t ,...,t ) • 1 n , f∆i(t) is delta partial derivative of f: Λn → R on n−dimensional ∆ t ti i i time scale Λn [BG04, AM02, Jac06], defined as a limit f(t ,...,t ,σ (t ),t ,...,t )−f(t ,...,t ,s ,t ,...,t ) f∆i(t) = lim 1 i−1 i i t+1 n 1 i−1 i t+1 n , ti si→ti σi(ti)−si si6=σi(ti) where σ (t ) > t and σ (t )−s 6= 0. i i i i i i • D f(x) is q−derivative [Jac09, Ern00, Ern08, KC01] q f(qx)−f(x) D f(x) = , q qx−x where x 6= 0, x ∈ R, q ∈ R. • D f(t) is q−power derivative [AMT11] n,q f(qtn)−f(t) D f(t) = , n,q qtn −t where qtn −t 6= 0 and n is odd positive integer and 0 < q < 1. • D f(x) is q−power derivative q f(xq)−f(x) D f(x) = , q xq −x where xq 6= x, x ∈ R, q ∈ R. • Pm(x), x,b ∈ R, m ∈ N is 2m+1−degree integer-valued polynomial [Kol16] b b−1 m Pm(x) = A kr(x−k)r, (1.1) b m,r k=0 r=0 XX A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 3 where A , m ∈ N is a real coefficient defined recursively m,r (2r +1) 2r , if r = m, r Am,r = (2r +1)(cid:0)2rr(cid:1) md=2r+1Am,d 2rd+1 (−d1−)dr−1B2d−2r, if 0 ≤ r < m,   0, (cid:0) (cid:1)P (cid:0) (cid:1) if r < 0 or r > m,  where Bare Bernoulli numbers [Wei]. It is assumed that B = 1. t 1 2 • Z is an integer time scale such that σ(t) = t+1 and µ(t) = 1. • R is a real time scale such that σ(t) = t+∆t and µ(t) = ∆t, ∆t → 0. • qR is a quantum time scale such that σ(t) = qt and µ(t) = qt−t, [page 18 [BP01]]. • Rq is a quantum power time scale such that σ(t) = tq and µ(t) = tq −t. • qRn is a pure quantum power time scale such that σ(t) = qtn > t, 0 < q < 1, µ(t) = qtn −t and n is positive odd integer [AMT11]. 2. Introduction Time-scale calculus is quite graceful generalization and unification of the theory of dif- ferential equations. Firstly being introduced by Hilger [Hil88] in his Ph.D thesis in 1988 and thereafter greatly extended by Bohner and Peterson [BP01] in 2001, the calculus on time scales became a sharp tool in the world on differential equations. Various derivative operators like classical derivative d f(x), q−derivative D f(x), q−power derivative D f(x), dx q q finite difference ∆f(x) etc, may be simply expressed in terms of time-scale derivative over particular time scale T. For instance, f′(x) = f∆(x), x ∈ T = R ∆f(x) = f∆(x), x ∈ T = Z D f(x) = f∆(x), x ∈ T = qRn n,q D f(x) = f∆(x), x ∈ T = qR q D f(x) = f∆(x), x ∈ T = Rq q In context of Computer Science, namely object oriented programming paradigm, the time scale calculus may be thought as unified interface of derivative operator. Furthermore, the idea of time-scale calculus was slightly extended in [BHT17, BHT16, Cap09, MT09]. 3. Main results Time scale derivative of the polynomial t2m+1 may be expressed as follows A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 4 Theorem 3.1. Let Pm(x) be a 2m + 1−degree integer-valued polynomial defined by (1.1). b Let be a two-dimensional time scale Λ2 = T × T = {t = (x,b): x ∈ T , b ∈ T }. Let be 1 2 1 2 T = T . For every t ∈ T , x,b ∈ Λ2, m ∈ N, m = const 1 2 1 ∂Pm(x) ∂Pm(x) (t2m+1)∆ = b + b , ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) where (cid:12) (cid:12) (cid:12) (cid:12) • σ(t) > t is forward jump operator, • ∂Pmb (x) is the value of the partial derivative on time scales of Pm(x) with ∆x b (cid:12)x=t,b=σ(t) respect(cid:12)to the variable x, evaluated at x = t, b = σ(t), (cid:12) (cid:12) • ∂Pmb (x) is the value of the partial derivative on time scalesof Pm(x) with respect ∆b b (cid:12)x=t,b=t to the (cid:12)variable b, evaluated at x = t, b = t. (cid:12) (cid:12) In other words, theorem 3.1 says For every odd-exponent polynomial t2m+1, its derivative on time scales equals to the sum of the value of the partial derivative on time scales of Pm(x) with b respect to the variable x, evaluated at x = t, b = σ(t) and the value of the partial derivative on time scales of Pm(x) with respect to the variable b, b evaluated at x = t, b = t. In extended form theorem 3.1 may be written as b−1 m b−1 m ∂ ∂ (t2m+1)∆ = A kr(x−k)r + A kr(x−k)r t ∆x m,r ∆b m,r !(cid:12) !(cid:12) Xk=0Xr=0 (cid:12)x=t,b=σ(t) Xk=0Xr=0 (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) 4. Discussio(cid:12)n and examples (cid:12) To understand the nature of theorem 3.1, let’s discuss an example of some popular time scales, like integer time scale Z, real time scale R, quantum time scale qR, quantum-power timescale Rq. Weuse theprinciple Divide et Impera ! inorder tounderstand entire behavior of theorem 3.1. 4.1. Time scale of integers T = Z×Z. Corollary 4.1. (Finite difference.) Let be a two-dimensional time scale Λ2 = Z×Z := {t = (x,b): x ∈ Z, b ∈ Z}. For every t ∈ Z, x,b ∈ Λ2 = Z×Z, m ∈ N ∂Pm(x) ∂Pm(x) ∆t2m+1 = b + b (t,t) , ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 5 where the forward jump operator σ(t) is defined as σ(t) = t+1. Example 4.2. Let be t ∈ Z, x,b ∈ Λ2 = Z×Z, m ∈ N and let m = 1, then ∂P1(x) b = −3b+3b2 ∆x ∂P1(x) b = 3t+3t2 ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P1(x)(cid:12) b (cid:12)= 1−6b2 +6bx ∆b ∂P1(x) b = 1 ∆b (cid:12)x=t,b=t (cid:12) Summing up previously obtained partia(cid:12)l time-scale derivatives, we get the ordinary finite (cid:12) difference of odd polynomial t2m+1, t ∈ Z, x,b ∈ Λ2 = Z×Z, m ∈ N ∂P1(x) ∂P1(x) ∆t3 = b + b = 3t2 +3t+1. ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) Example 4.3. Let be t ∈ Z, x,(cid:12)b ∈ Λ2 = Z×Z, m (cid:12)∈ N and let m = 2, then ∂P2(x) b = 5b−30b2 +40b3 −15b4 +10bx−30b2x+20b3x ∆x ∂P2(x) b = 1+30b4 −60b3x+30b2x2 ∆b ∂P2(x) b = 5t+10t2 +10t3 +5t4 ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P2(x)(cid:12) b (cid:12) = 1 ∆b (cid:12)x=t,b=t (cid:12) Summing up previously (cid:12)obtained partial time-scale derivatives, we get time ordinary finite (cid:12) difference of odd polynomial t2m+1, t ∈ Z, x,b ∈ Λ2 = Z×Z, m ∈ N ∂P2(x) ∂P2(x) ∆t5 = b + b = 1+5t+10t2 +10t3 +5t4. ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) Corollary 4.4. For ever(cid:12)y t ∈ Z, x,b ∈ Λ2 =(cid:12)Z×Z, m ∈ N ∂Pm(x) 2m 2m+1 b = tr ∆x r (cid:12)x=t,b=σ(t) r=1 (cid:18) (cid:19) (cid:12) X (cid:12) Corollary 4.5. For every t ∈ Z, x,(cid:12)b ∈ Λ2 = Z×Z, m ∈ N ∂Pm(x) b = 1 ∆b (cid:12)x=t,b=t (cid:12) 4.2. Time scale of real numbers T = R×(cid:12)(cid:12) R. A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 6 Corollary 4.6. (Classical derivative.) Let be a two-dimensional time scale Λ2 = R×R := {t = (x,b): x ∈ R, b ∈ R}. For every t ∈ R, x,b ∈ Λ2 = R×R, m ∈ N d ∂Pm(x) ∂Pm(x) t2m+1 = b + b , dt ∂x ∂b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) where σ(t) = t+∆t, ∆t → 0. (cid:12) (cid:12) (cid:12) (cid:12) Example 4.7. Let be t ∈ R, x,b ∈ Λ2 = R×R, m ∈ N and let m = 1, then ∂P1(x) b = −3b+3b2 ∂x ∂P1(x) b = 6b−6b2 −3x+6bx ∂b ∂P1(x) b = −3t+3t2 ∂x (cid:12)x=t,b=σ(t) (cid:12) ∂P1(x)(cid:12) b (cid:12) = 3t ∂b (cid:12)x=t,b=t (cid:12) Summing up previously obtained partia(cid:12)l time-scale derivatives, we get classical derivative of (cid:12) odd polynomial t2m+1,t ∈ R, x ∈ Λ2 = R×R, m ∈ N d ∂P1(x) ∂P1(x) t3 = b + b = 3t2. dt ∂x ∂b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Example 4.8. Let be t ∈ R, x,b ∈ Λ2 = R×R, m ∈ N and let m = 2, then ∂P2(x) b = −15b2 +30b3 −15b4 +10bx−30b2x+20b3x, ∂x ∂P2(x) b = 30b2 −60b3 +30b4 −30bx+90b2x−60b3x+5x2 −30bx2 +30b2x2 ∂b ∂P2(x) b = −5t2 +5t4 ∂x (cid:12)x=t,b=σ(t) (cid:12) ∂P2(x)(cid:12) b (cid:12) = 5t2 ∂b (cid:12)x=t,b=t (cid:12) Summing up pr(cid:12)eviously obtained partial time-scale derivatives, we get classical derivative of (cid:12) an odd polynomial t2m+1, t ∈ R, x ∈ Λ2 = R×R, m ∈ N d ∂P2(x) ∂P2(x) t5 = b + b = 5t4. dt ∂x ∂b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4.3. Quantum time scale T = qR ×qR. A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 7 Corollary 4.9. (Q-derivative [Jac09].) Let be a two-dimensional time scale Λ2 = qR×qR := {t = (x,b): x ∈ qR, b ∈ qR}. For every t ∈ qR, x,b ∈ Λ2 = qR ×qR, m ∈ N ∂Pm(x) ∂Pm(x) D t2m+1 = b + b , q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) where σ(t) = qt, q > 1. (cid:12) (cid:12) (cid:12) (cid:12) Example 4.10. Let be t ∈ qR, x,b ∈ Λ2 = qR ×qR, m ∈ N and let m = 1, then ∂P1(x) b = −3b+3b2 ∆x ∂P1(x) b = 3b−2b2 +3bq −2b2q −2b2q2 −3x+3bx+3bqx ∆b ∂P1(x) b = −3qt+3q2t2 ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P1(x)(cid:12) b (cid:12) = 3qt+t2 +qt2 −2q2t2 ∆b (cid:12)x=t,b=t (cid:12) Summing up previously(cid:12)obtained partial time-scale derivatives, we get q−derivative of odd (cid:12) polynomial t2m+1, t ∈ qR, x,b ∈ Λ2 = qR ×qR, m ∈ N ∂P1(x) ∂P1(x) D t3 = b + b = t2 +qt2 +q2t2. q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) For every t ∈ qR, x,b ∈ Λ2 =(cid:12) qR ×qR the follow(cid:12)ing polynomial identity holds as q tends to zero ∂P1(x) lim b = t2 q→0 ∆b (cid:12)x=t,b=t (cid:12) However, it would be generalized as follows (cid:12) (cid:12) Corollary 4.11. For every t ∈ qR, x,b ∈ Λ2 = qR ×qR, m ∈ N ∂Pm(x) lim b = t2m. q→0 ∆b (cid:12)x=t,b=t (cid:12) (cid:12) Example 4.12. Let be t ∈ qR, x,b ∈ Λ2 = qR(cid:12) ×qR, m ∈ N and let m = 2, then ∂P2(x) b = −15b2 +30b3 −15b4 +5bx−15b2x+10b3x+5bqx−15b2qx+10b3qx ∆x ∂P2(x) b = 10b2 −15b3 +6b4 +10b2q −15b3q +6b4q +10b2q2 −15b3q2 +6b4q2 −15b3q3 ∆b +6b4q3 +6b4q4 −15bx+30b2x−15b3x−15bqx+30b2qx−15b3qx+30b2q2x −15b3q2x−15b3q3x+5x2 −15bx2 +10b2x2 −15bqx2 +10b2qx2 +10b2q2x2 A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 8 ∂P2(x) b = 5qt2 −10q2t2 −15q2t3 +15q3t3 +10q3t4 −5q4t4 ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P2(x)(cid:12) b (cid:12) = −5qt2 +10q2t2 +15q2t3 −15q3t3 +t4 +qt4 +q2t4 −9q3t4 +6q4t4 ∆b (cid:12)x=t,b=t (cid:12) Summing up(cid:12) previously obtained partial time-scale derivatives, we get the q−derivative of (cid:12) odd polynomial t2m+1, t ∈ qR, x,b ∈ Λ2 = qR ×qR, m ∈ N ∂P2(x) ∂P2(x) D t5 = b + b = t4 +qt4 +q2t4 +q3t4 +q4t4. q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) 4.4. Quantum power t(cid:12)ime scale T = Rq ×(cid:12) Rq. (cid:12) (cid:12) Corollary 4.13. (Q-power derivative [AMT11].) Let be a two-dimensional time scale Λ2 = Rq ×Rq := {t = (x,b): b ∈ Rq, x ∈ Rq}. For every t ∈ Rq, x,b ∈ Λ2 = Rq ×Rq, m ∈ N ∂Pm(x) ∂Pm(x) D t2m+1 = b (t,σ(t))+ b (t,t), q ∆x ∆b where the forward jump operator is defined as σ(t) = tq, q > 1. Example 4.14. Let be t ∈ Rq, x,b ∈ Λ2 = Rq ×Rq, m ∈ N and let m = 1, then ∂P1(x) b = −3b+3b2 ∆x ∂P1(x) b = 3b−2b2 +3bq −2b2q −2b1+q −3x+3bx+3bqx ∆b ∂P1(x) b = −3tq +3t2q ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P1(x)(cid:12) b (cid:12) = t2 +3tq −2t2q +t1+q ∆b (cid:12)x=t,b=t (cid:12) Summing up previously o(cid:12)btained partial time-scale derivatives, we get q−power derivative of (cid:12) odd polynomial t2m+1, t ∈ Rq, x,b ∈ Λ2 = Rq ×Rq, m ∈ N ∂P1(x) ∂P1(x) D t3 = b + b = t2 +t2q +t1+q. q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) Example 4.15. Let be t ∈ Rq,(cid:12)x,b ∈ Λ2 = Rq ×Rq(cid:12), m ∈ N and let m = 2, then (cid:12) (cid:12) ∂P2(x) b = −15b2 +30b3 −15b4 +5bx−15b2x+10b3x+5bxq −15b2xq +10b3xq ∆x ∂P2(x) b = 10b2 −15b3 +6b4 +10b2q −15b3q +6b4q +10b1+q −15b2+q +6b3+q ∆b −15b1+2q +6b2+2q +6b1+3q −15bx+30b2x−15b3x−15bqx+30b2qx −15b3qx+30b1+qx−15b2+qx−15b1+2qx+5x2 −15bx2 +10b2x2 −15bqx2 +10b2qx2 +10b1+qx2 A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 9 ∂P2(x) b = −10t2q +15t3q −5t4q +5t1+q −15t1+2q +10t1+3q ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P2(x)(cid:12) b (cid:12) = t4 +10t2q −15t3q +6t4q −5t1+q +t3+q +15t1+2q +t2+2q −9t1+3q ∆b (cid:12)x=t,b=t (cid:12) Summing up(cid:12)previously obtained partial time-scale derivatives, we get q−power derivative of (cid:12) odd polynomial t2m+1, t ∈ Rq, x,b ∈ Λ2 = Rq ×Rq, m ∈ N ∂P2(x) ∂P2(x) D t5 = b + b = t4 +t4q +t3+q +t2+2q +t1+3q. q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) Another polynomial i(cid:12)dentity, that is expo(cid:12)nential sum holds Corollary 4.16. For every t ∈ Rq, x,b ∈ Λ2 = Rq ×Rq, t ∈ R, m ∈ N ∂Pm(x) 2m lim b = tk q→0 ∆b (cid:12)x=t,b=t k=0 (cid:12) X (cid:12) 4.5. Pure quantum power time scale T =(cid:12) qRn×qRn. In this subsection we discuss a pure quantum power time scale qRj provided by Aldwoah, Malinowska and Torres in [AMT11], among with the q−power derivative operator D f(t) defined by n,q f(qtn)−f(t) D f(t) = , n,q qtn −t where n is odd positive integer and 0 < q < 1. Corollary 4.17. (Quantum power derivative [AMT11].) Let be a two-dimensional time scale Λ2 = qRj × qRj := {t = (x,b): b ∈ qRj, x ∈ qRj}. For every t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, m ∈ N ∂Pm(x) ∂Pm(x) D t2m+1 = b + b , n,q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) where σ(t) = qtn, σ(t) > t. (cid:12) (cid:12) (cid:12) (cid:12) Example 4.18. Let be t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, m ∈ N and let m = 1, then ∂P1(x) b = −3b+3b2 ∆x ∂P1(x) b = 3b−2b2 +3bjq −2b1+jq −2b2jq2 −3x+3bx+3bjqx ∆b ∂P1(x) b (t,σ(t)) = −3qtj +3q2t2j ∆x ∂P1(x) b (t,t) = t2 +3qtj −2q2t2j +qt1+j ∆b A STUDY ON PARTIAL DYN. EQ. ON TIME SCALES INVOLV. DERIVATIVES OF POLYNOMIALS 10 Summing up previously obtained partial time-scale derivatives, we get q−power derivative of odd polynomial t2m+1, t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, m ∈ N ∂P1(x) ∂P1(x) D t3 = b + b = t2 +q2t2j +qt1+j. n,q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) Another polynomial identity(cid:12), that is exponential(cid:12)sum holds Corollary 4.19. For every t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, t ∈ R, m ∈ N ∂Pm(x) 2m limlim b = tk j→0q→1 ∆b (cid:12)x=t,b=t k=0 (cid:12) X (cid:12) An identity in even polynomials holds too (cid:12) Corollary 4.20. For every t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, t ∈ R, m ∈ N ∂Pm(x) limlim b = t2m j→0q→0 ∆b (cid:12)x=t,b=t (cid:12) (cid:12) Example 4.21. Let be t ∈ qRj, x,b ∈ Λ2 = qRj(cid:12)×qRj, m ∈ N and let m = 2, then ∂P2(x) b = −15b2 +30b3 −15b4 +5bx−15b2x+10b3x+5bqxj −15b2qxj +10b3qxj ∆x ∂P2(x) b = 10b2 −15b3 +6b4 +10b1+jq −15b2+jq +6b3+jq +10b2jq2 −15b1+2jq2 ∆b +6b2+2jq2 −15b3jq3 +6b1+3jq3 +6b4jq4 −15bx+30b2x−15b3x−15bjqx +30b1+jqx−15b2+jqx+30b2jq2x−15b1+2jq2x−15b3jq3x+5x2 −15bx2 +10b2x2 −15bjqx2 +10b1+jqx2 +10b2jq2x2 ∂P2(x) b = −10q2t2j +15q3t3j −5q4t4j +5qt1+j −15q2t1+2j +10q3t1+3j ∆x (cid:12)x=t,b=σ(t) (cid:12) ∂P2(x)(cid:12) b (cid:12) = t4 +10q2t2j −15q3t3j +6q4t4j −5qt1+j +qt3+j +15q2t1+2j +q2t2+2j −9q3t1+3j ∆b (cid:12)x=t,b=t (cid:12) Summin(cid:12)g up previously obtained partial time-scale derivatives, we q−power derivative of odd (cid:12) polynomial t2m+1, t ∈ qRj, x,b ∈ Λ2 = qRj ×qRj, m ∈ N ∂P1(x) ∂P1(x) D t5 = b + b = t4 +q4t4j +qt3+j +q2t2+2j +q3t1+3j. n,q ∆x ∆b (cid:12)x=t,b=σ(t) (cid:12)x=t,b=t (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 5. Proof(cid:12)of main theorem By [Lemma 3.1 [Kol16]], for every x ∈ R, m ∈ N it is true that Pm(x) = x2m+1 (5.1) x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.