ebook img

A statistical study of the properties of large amplitude whistler waves and their association with few eV to 30 keV electron distributions observed in the magnetosphere by Wind PDF

3.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A statistical study of the properties of large amplitude whistler waves and their association with few eV to 30 keV electron distributions observed in the magnetosphere by Wind

A statistical study of the properties of large amplitude whistler waves and their association with few eV to 30 1 keV electron distributions observed in the magnetosphere 1 0 by Wind 2 n a J L.B.WilsonIII∗†,C.A.Cattell∗,P.J.Kellogg∗,J.R.Wygant∗,K.Goetz∗, 7 A.Breneman∗,andK.Kersten∗ 1 January18,2011 ] h p - e c Abstract a p Wepresentastatisticalstudyofthecharacteristicsofverylargeamplitudewhistlerwaves s . inside the terrestrial magnetosphere using waveform capture data from the Wind spacecraft as s c an addition of the study by Kellogg et al. [2010]. We observed 244(65) whistler waves using i electric(magnetic)fielddatafromtheWindspacecraftfinding∼40%(∼62%)ofthewaveshave s y peak-to-peakamplitudesof≥50mV/m(≥0.5nT).Wepresentanexamplewaveformcaptureof h thelargestmagneticfieldamplitude((cid:38)8nTpeak-to-peak)whistlerwaveeverreportedinthera- p diationbelts.TheestimatedPoyntingfluxmagnitudeassociatedwiththiswaveis(cid:38)300µW/m2, [ roughlyfourordersofmagnitudeabovepreviousestimates. SuchlargePoyntingfluxvaluesare consistentwithrapidenergizationofelectrons. Themajorityofthelargestamplitudewhistlers 1 occurduringmagneticallyactiveperiods(AE>200nT).Thewaveswereobservedtoexhibit v abroadrangeofpropagationangleswithrespecttothemagneticfield,0◦ ≤θ <90◦,which 3 kB 0 showednoconsistentvariationwithmagneticlatitude.Theseresultsareinconsistentwiththeidea 3 thatthewhistlersareallgeneratedattheequator,propagatingalongthemagneticfield,andthat 3 theobservedobliquenessisduetopropagationeffects.Wealsoidentifiedthreetypesofelectron . distributionsobservedsimultaneouslywiththewhistlerwavesincludingbeam-like,beam/flattop, 1 andanisotropicdistributions. Thewhistlersexhibiteddifferentcharacteristicsdependingonthe 0 1 observed electron distributions. For instance, the whistlers observed with anisotropic distribu- 1 tions in the radiation belts had larger ∆f/f than the rest of the whistlers. The majority of the v: waveformsobservedinourstudyhavef/fce≤0.5andareobservedprimarilyintheradiationbelts simultaneouslywithanisotropicelectrondistributions. i X r 1 Introduction a Whistlerwavesareoneofthemostubiquitouswavemodesinplasmas. Theyhavebeenobservedin themagnetosphere[BurtisandHelliwell,1969;Cattelletal.,2008;Cullyetal.,2008;Parrotetal., 2003;Russelletal.,1969;Santol´ıketal.,2003],inthesolarwind[Brenemanetal.,2010;Neubauer ∗DepartmentofPhysicsandAstronomy,UniversityofMinnesota,Minneapolis,MN †NASAGoddardSpaceFlightCenter,Greenbelt,Maryland,USA. 1 andMusmann,1977],upstreamofinterplanetaryshocks[WilsonIIIetal.,2009],upstreamofplan- etarybowshocks[Bertuccietal.,2005;Hoppeetal.,1981],andincometaryforeshocks[Tsurutani et al., 1987]. Whistler waves are a right-hand polarized electromagnetic mode that can propagate alongthemagneticfieldorathighlyobliqueanglesasaquasi-electrostaticmodeneartheresonance coneinteractingwithbothionsandelectrons. Whistlerscanbedrivenunstablebyelectrontemper- ature anisotropies [Hashimoto and Kimura, 1981; Kennel and Petscheck, 1966], electron heat flux [Garyetal.,1994],andelectronbeams[SauerandSydora,2010;Tokaretal.,1984;Zhangetal., 1993]. Forsimplicity,weincludechorus,plasmaspherichiss,andobliquewhistler-modesinouruse ofthetermwhistlerwave. Becausewhistlersinteractstronglywithenergeticparticles[Kenneland Petscheck, 1966; Lyons et al., 1972], it has been well accepted that they play an important role in globalradiationbeltdynamics. Thus,whistlerwaveshavebeenatopicofextremeinterestforover 40yearsinmagnetosphericphysics. Time-averagedspectralintensitieshavebeenusedtoestimatewhistlerwaveamplitudesforover 30years[Gurnettetal.,1976],butaveragingcanunderestimatetheinstantaneouswaveamplitudes. Typical whistler time-averaged amplitudes are ∼0.5 mV/m for the electric field [Meredith et al., 2001]and∼0.01-0.1nTforthemagneticfield[Horneetal.,2003,2005]. Theunderestimatedwave amplitudes may mask important wave-particle interactions which require larger amplitude waves. RecentobservationsbySantol´ıketal.[2003],Cattelletal.[2008],Cullyetal.[2008],andLeContel etal.[2009]showedthatprevioustimeaveragedspectralintensitymeasurementsmayoftenunder- estimate the wave amplitude of terrestrial whistler waves by more than two orders of magnitude. TestparticlesimulationshavefoundthatelectronscanbeacceleratedtoMeVenergiesinrelatively shorttimesbytheseverylargeamplitudewhistlerwaves[Bortniketal.,2008;Cattelletal.,2008; Omuraetal.,2007]. Theseobservationshaveraisednewquestionsregardingtheenergizationand lifetimeofradiationbeltparticles. During an eight year period, the Wind spacecraft went through a number of petal orbits into the terrestrial magnetosphere. We report on whistler wave statistics for 13 of those petal orbits, buildingonthestudybyKelloggetal.[2010],whousedanautomatedsearchalgorithmtofindlarge amplitudewhistlers.AsearchbyeyeyieldedsignificantlymorewhistlerwavesthanreportedinKel- loggetal.[2010]. Thisisthefirststudytoexaminethestatisticsoftherelationshipbetweenwave propagationangleandmagneticlatitudefortheseverylargeamplitudewhistlers,findingnocorre- lationbetweenpropagationangleandmagneticlatitude. Thisisthefirstobservationofveryintense whistlerPoyntingflux. Wealsopresentthefirststatisticalstudyofthecharacteristicsoftheelectron distributionsovertheenergyrangeofafeweVto30keVassociatedwithlargeamplitudewhistler wavesinsidetheterrestrialmagnetosphereusingwaveformcapturedatasimultaneouslywiththree differenttypesofelectrondistributions. Thepaperisorganizedasfollows:Section2introducesand outlines the data sets and analysis techniques, Section 3 describes the observations, and Section 4 discussestheresultsandconclusionsofourstudy. 2 Data Sets and Analysis WaveformcaptureswereobtainedfromtheWind/WAVESinstrument[Bougeretetal.,1995],using the time domain sampler (TDS) receiver, which provides a waveform capture (herein called TDS sample) of 2048 points with timespans ranging from ∼17 ms to ∼1000 ms, depending on sample rate. TDS samples are utilized from the fast (TDSF) and slow (TDSS) TDS receivers. The TDS receivershavealowfrequencycutoffofroughly3.3HzforTDSSand130HzforTDSF.TheTDS bufferstoresandevaluateswaveformsbasedupontheiramplitude,keepingonlythelargestevents. TDSFsamplesarecomposedoftwoelectricfieldvectorsintheXY-GSEplane,definedasE .TDSS j 2 samplesarecomposedoffourvectors,eitherthreeelectric(E )andonemagnetic(B )orthreemag- j j neticandoneelectricfieldcomponents. TheTDSSsamplesarerotatedintomagneticfield-aligned coordinates (FACs), determined with magnetic field measurements from the Wind magnetic field instrument(MFI)[Leppingetal.,1995],wherethesubscript(cid:107)(⊥)refertoparallel(perpendicular)to the magnetic field. We define the wave amplitude as |E | for electric fields and |B | for magnetic w w fields. TheWind/WAVESinstrumentalsocontainsanonboardtime-averagedspectralintensityin- strument,thethermalnoisereceiver(TNR),usedtoanalyzelowamplitudesignalsanddeterminethe localplasmadensityusingtheplasmalinewhenpossible. NotethatweonlyusetheTNRreceiver fordeterminationofthelocalplasmaline,notforwhistlerwaveidentification. The wave vector, k, and propagation angle with respect to the magnetic field, θ , were de- kB termined using Minimum Variance Analysis (MVA) [Khrabrov and Sonnerup, 1998] on bandpass filteredTDSSsampleswiththreemagneticfieldcomponents. Thefrequencyrangesforeachband- passfilter,determinedfromspectralanalysis,werechosenindependentlyforeachTDSsample. We requiredintermediatetominimumeigenvaluesofthespectralmatrix,λ /λ ,tosatisfythecondi- int min tion≥10.0iflessthan50fieldvectorswereusedintheanalysis[KhrabrovandSonnerup,1998]. Full4π steradianparticledistributionsforelectronsandionswereobtainedfromtheWind/3DP EESAandPESAparticledetectorsforlowenergies(<30keV)andthesolidstatetelescopes(SSTs) forhighenergy(∼30-500keV)electrons(SSTFoil)and(∼70-6000keV)protons(SSTOpen)[Lin et al., 1995]. Electron distribution functions, from a few eV to 30 keV, were examined for pitch- angle anisotropies as a possible free energy source. Higher energy particle distributions using the 3DPsolidstatetelescope(SST)detectorswereusedtoidentifytheperiodswhenWindenteredthe radiationbelts. However,sincethedetectorswerebuiltforsolarwinduse,theyoftensaturateinthe radiationbelts. Thus,theycouldnotbeusedtolookforpotentialfreeenergysourcesorforcorre- lationsbetweenfluxenhancements/lossesandstrongwaves. WeusetheMFIdata,combinedwith PESAdata, todefinetheregionwecalltheoutermagnetosphereastheregionbetweentheterres- trialmagnetopauseandtheradiationbelts. Themagnetopausewasdefinedbythesharpgradientin flowspeed,density,B-GSM,andmagneticfieldturbulence. Wedefinedtheradiationbeltregionby z thesharpincrease(decrease)inomni-directionalfluxofthehighenergyelectrons(>100keV)and protons(>1MeV)asWindapproached(departedfrom)perigeeinitspetalorbits. Toallowforthe possibilityofdifferentsourcesoffreeenergyand/ordamping, outermagnetosphericandradiation beltwhistlerswereexaminedseparately. Wealsoexaminedelectrontemperatureanisotropies(T /T (cid:54)=1)forboththeEesaLow(j=c) ⊥j (cid:107)j andEesaHigh(j=h)separatelytocomparetothethresholdcriteriaforwhistleranisotropyinsta- bility[KennelandPetscheck,1966]. ThetwoEESAdetectorshaveenergyranges((cid:46)30keV)well below the typical >100 keV radiation belt particles. Thus, using these detectors limits our ability to accurately describe the full particle distributions in the radiation belts. However, we will show that many of the observed whistlers are in resonance with electrons below 30 keV. Recall that we mentioned that the SST detectors often saturate in the radiation belts, thus we are limited to (cid:46)30 keVelectrondistributionsinthisstudy. 3 Observations Figure 1 shows an example of a Wind perigee pass from 1998-11-13/13:00:00 UT to 1998-11- 14/02:00:00UT.ThetoppanelshowsoneminuteaveragedspectraldatafromtheTNRreceiverin √ µV/ Hz. Overplotted is the upper hybrid frequency (f ) line. Due to the large amounts of noise uh intheTNRdata,thedensityforthef linewasestimatedfromPESAHighdensitymeasurements. uh 3 However,thePESAmomentsgiveanunderestimateofdensityatlowL-shells,soourdensityesti- matesarelikelytoolow. ItcanbeseenthatthewhistlersgenerallyoccurbetweenL∼3-5(locations markedbyverticallinesinallpanels),intheradiationbelts. Alsonotethatthelowestenergybins oftheSSTdetectorssaturatebetweenroughly16:00and20:00UTon1998-11-13. Thisisthemost obvious in the SST Foil panel for the 40 keV line which drops in flux just after 16:00 UT. This saturationlimitedourabilitytousetheSSTdetectorswhenexaminingthewhistlerwaves. Figure2plotstwowhistlerwavesobservedneartheequatorialplane,postmidnightnearL∼4. ThesewhistlerswereobtainedfromtheTDSSinstrument(withthreeelectricandonemagneticfield sampledat7.5kHz); thewaveformsshownwerefiltered(frequencyrangeshownintoppanels)to removesuperposedlowandhighfrequencysignals. TheL-shell,MLT,GSMlatitude,lowerhybrid √ frequency(f = f f ),andf foreachcorrespondingwhistlerarelabeledinthefigure. Notethat lh ce ci ce the8nTpeak-to-peakamplitudewereporthereisonlyonecomponentofthemagneticfield. The total magnetic amplitude for both waveforms shown in Figure 2 is larger. The polarization of the electricfieldsisellipticalforbothexamples. The1998-11-13exampleismuchmoreoblique(θ ∼ kB 73◦)andelliptical(λ /λ ∼10.7)thanthe2000-04-10example(θ ∼39◦andλ /λ ∼1.9). max min kB max min Omuraetal.[2007]gavearelationshipforthemaximumchangeinkineticenergygivenby: 5.6×104 δB (∆KE) ≈ [MeV] (1) max L2(cid:112)1+ξo2 Bo where L is the L-shell, ξ 2 = ω (Ω - ω)/ω 2, Ω is the equitorial cyclotron frequency, and o EQ pe EQ δB/B istheratioofwaveamplitudetobackgroundmagneticfield. ForthewavesshowninFigure o 2, (∆KE) ∼ 61 MeV(28 MeV) for the wave on 1998-11-13(2000-04-10). The examples show max that: (1) large amplitude whistler waves in the radiation belts are bursty; (2) electric fields are in excessoftwoordersofmagnitudeabovepreviousestimates;(3)thefirstobservationsofthesevery large amplitude whistler waves with search coil magnetic fields shows amplitudes exceeding two ordersofmagnitudeabovepreviousestimates;and(4)thewavesarecapableofproducingelectrons withenergiesgreateraMeV. To illustrate the occurrence rate of these large amplitude whistlers we will discuss two Wind perigeepassesindetail. Duringtheperigeepassesof1998-11-13and2000-04-10,Windobserved some of the largest whistler events ever recorded in the magnetosphere. On 1998-11-13 between 18:15:08.170UTand18:21:17.884UT,orroughly6minutes,Windobserved11TDSFand3TDSS samples. All 14 TDS samples had |E | ≥ 100 mV/m and all 3 TDSS samples had |B | ≥ 4 nT. w w Thelargenumberofwhistlersobservedduringsuchashortdurationandspatialregionisconsistent with STEREO observations [Cattell et al., 2008]. On 2000-04-10 between 02:45:39.736 UT and 04:32:44.807UT,orroughly1.75hours, thespacecraftmovedthrough∼3.48hr(∼52.2◦)ofMLT and∼0.55L-shell. Duringthisinterval,Windobserved34TDSsamples,27TDSFand7TDSS.Of those34samples,31had|E |≥80mV/mandall7TDSSsampleshad|B |≥1nT. w w SinceweonlyhavefourfieldcomponentsforeachTDSSsample,wecannotfullydescribethe wavePoyntingflux.However,wecancalculatepartoftwocomponentstoestimatethemagnitudeof thePoyntingfluxforthesewaves. The1998-11-13(2000-04-10)whistlerinFigure2hasPoynting flux magnitude of (cid:38)300 µW/m2((cid:38)30 µW/m2), which is roughly four(three) orders of magnitude largerthantheestimatesfoundbySantol´ıketal.[2010].Toestimatethepossibleimpactofthelarge Poyntingfluxes,weperformthecalculationofSantol´ıketal.[2010]assumingthesameestimatesof (cid:38)1MeVelectronfluxes,backgrounddensities,andfield-alignedcolumnarea(ofafluxtube). We findthatitwouldtakeroughly5ms(50ms)forthewhistlersseeninFigure2todeposittheneces- sary energy density (∼10−4 J/m2) to accelerate plasma sheet electrons to 1 MeV, assuming 100% efficiency, in the outer radiation belt. If we now assume a 1% efficiency, we find a time scale of 0.5seconds(5.5seconds)necessaryforthesewhistlerstoproducethesameeffect. Theseestimates 4 are five to six orders of magnitude shorter than the typical estimates. However, as one can see in Figure2,thesewhistlersareveryburstyandtheiramplitudesarenotsustainedforlongerthan10’s of milliseconds. We should also note that the larger amplitude waves we observe will likely not interactwithelectronsinthesamequasi-linearfashionasdescribedbySantol´ıketal.[2010]. Figure 3 shows the relationship between peak whistler wave amplitudes and one minute AE- Indexforthewhistlers. Theplotsshowaslighttrendofincreasingpeakamplitudeswithincreasing AE,consistentwithincreasedsubstormactivityprovidingmorefreeenergyforwhistlergrowth. A cursoryexaminationofLANLgeosynchronouslowenergy(30-300keV)electrondatashowslarge injectionsonthenightsidejustpriortothetwowhistlersobservedinFigure2, consistentwiththe AE-indexanalysis. Figure4illustratesthedifferenttypesofelectrondistributionfunctionsobservedattimesclose to and/or concurrently with the whistlers. Each plot represents the parallel and perpendicular cuts of the electron distribution function seen as the solid red and dashed blue lines, respectively. The firstpanel,TypeA,showsbeam-likeand/orflattopfeaturesintheparallelcut,calledabeam/flattop electrondistributionfunction. Thesecondpanel,TypeB,doesnotshowaflattopfeature,butdoes showbeam-likefeatures. Finally,thethirdpanel,TypeC,isanexampleofanelectrondistribution functionthathasT /T >1.0for∼400eVto≥30keV,calledananisotropicelectrondistribution ⊥ (cid:107) function. TheanisotropyseeninTypeCextendedwellbeyond1keV,whilethecharacteristicfea- turesofTypesAandBoccurredprimarilybelow1keV.WewillrefertowhistlersseennearTypes A and B as beam/flattop-related whistlers and whistlers seen near Type C as anisotropy-related whistlers. Notethatduetothedifferencesinsamplingtimes(∼3secondsforelectrondistribution functionsversus∼17-250msforwhistlers)theremaybeshort-livedfeaturesintheelectrondistri- bution functions that are not observed. Table 1 shows that most of the whistlers were observed in theradiationbeltsandwereassociatedwithanisotropicelectrondistributionfunctions. Figure 5 summarizes the whistler wave location and wave vector direction statistics. The fig- ure shows the twelve Wind orbits in the top four panels projected onto the XY-GSM plane with color-codedlinesandthedateforeachlineislabeledinthecorrespondingpanel(e.g. redlinefor 1998-11-13petalorbitintopleftpanel). Theplotsofthepetalorbitsillustratethelimitedcoverage ofthemagnetospherebyWind. Overplottedoneachorbitarecolor-codedsymbols,∗’s,wherethe colorsgreen,orange,andpurplerespectivelycorrespondtothefollowingelectrondistributionfunc- tions:(1)outermagnetosphericbeam/flattop,(2)outermagnetosphericanisotropic,and(3)radiation beltanisotropicelectrondistributionfunctions. Forreference,thecumulativenumberofeachtype ofwhistlerseenineachpanelarelabeledforcorrespondingcolor-coded∗’s(e.g. 5whistlersseen withanisotropicelectrondistributionfunctionsintheoutermagnetosphereintopleftpanel). The bottom part of Figure 5 shows two sets of histograms of GSM-Latitude of Wind, λ , GSM on the left and θ , the whistler wave vector angle, on the right. The histogram for λ includes kB GSM 239TDSFandTDSSsamplesandshowsthecorrespondingrangeoflatitudeduringthefourpetal orbits. Sinceθ couldonlybedeterminedforTDSSeventswiththreemagneticfieldcomponents kB andwerequiredthatλ /λ ≥10.0besatisfied,wedeterminedθ foronly45whistlers. Roughly int min kB 95%(65%) of the whistlers were observed within 2 R (10◦) of the XY-GSM plane largely due to E the Wind spacecraft’s orbits. All of the outer magnetospheric whistlers for both electron distribu- tionfunctiontypesareobservedbetween4.5≤L≤12andallradiationbeltwhistlersareobserved between 3 ≤ L ≤ 7.5. Also, 92% of the radiation belt whistlers and all the beam/flattop-related whistlersareobservedwithin±6hoursofmidnight,whileonly44%oftheanisotropicoutermag- netospheric whistlers occurred in this range. Most whistlers observed in the outer magnetosphere hadwavevectorsclosetoparallel(∼60%hadθ ≤30◦),whilethewhistlersintheradiationbelts kB hadawiderrangeofwavevectors(0◦≤θ <90◦). kB Table1showsthestatisticsofalltheidentifiedwhistlerwavesamplesinsideL=15. Twohun- 5 dredfifty-sevenwhistlerswereobservedinsidethemagnetosphere;ofthese,244whistlersoccurred between3<L<12. Thetoppartofthetableseparatesthewhistlersintothreecolumnsbyregion and into two rows defined by the type of electron distribution function. The middle part of Table 1 shows the statistics for the whistler wave amplitudes. The values in each column represent the fractional number of events with values satisfying the criteria for each column with at least one electric (top row) or magnetic (bottom row) field component. There were 244 whistlers observed withatleastoneelectricfieldcomponentand65withatleastonemagneticfieldcomponent. Below theseratiosaretheL-shellrangesoverwhichthewhistlerswiththecorrespondingamplitudeswere observed. Note that a significant fraction, ∼40%(∼62%), of the electric(magnetic) field whistlers have≥50mV/m(≥0.5nT)amplitudes. The bottom part of Table 1 shows the wave amplitudes versus AE index statistics as the mean ± the standard deviation of the mean. The electric(magnetic) field whistlers have large wave am- plitudes ((cid:38)110 mV/m or (cid:38)1.6 nT) for moderately strong AE (200-400 nT), suggesting substorm injections may provide some of the free energy for the observed whistlers. The mean amplitudes appeartodecreaseinthebottompartofTable1duetothelimitednumberofsamplesforAE(cid:38)600 nT,asseenbythetrendinFigure3. Notethatfor10≤AE≤200nT(seeFigure3), theaverage waveamplitudesare∼0.40±0.04nT(∼31.54±1.39mV/m),muchsmallerthanforAE>200nT. Although, much of the literature focuses on the relationship between whistlers and higher en- ergyelectrons[Lietal.,2010],comparisontoelectrondistributionswithenergies≤30keVindicate thatthepropertiesofthewavesvarywiththeshapeofthedistributionsinthisenergyrange. Also, previousworkhasshownthataCerenkovresonancecanexcitewhistlerwaves[Kelloggetal.,2010; Kumagaietal.,1980;Singh,1972;Starodubtsevetal.,1999],whichhasmuchlowerenergiesthan the typical cyclotron resonance invoked. Note that the effect of Landau damping by electrons in thisenergyrangeonpropagationanglesofthewhistlershasalsobeenstudied[Bortniketal.,2006]. Belowwewilldiscussestimatesofelectron/whistlerparallelresonanceenergiesforarangeofelec- tronpitchangles. Thetotalelectronenergyisataminimumforelectronswithzeropitch-angle. For instance,ifaparticlehasapitch-angleof45◦,thetotalparticleenergyistwicetheparallelenergy. Wewilldiscussthoseconsequencesbelowaswell,butfirstwewilldiscussjustparallelresonance energies. Although there are some uncertainties in our density estimates, as explained above, we found that most of the whistlers were observed under conditions where they were resonant with electrons within the energy range of the EESA detectors. The well known nonrelativistic parallel resonanceenergy[KennelandEngelmann,1966]ofaparticleisgivenby: (cid:16) B 2 (cid:17)(cid:16) Ω (cid:17)(cid:104) ω (cid:105)(cid:104) ω (cid:105)2 E = o ce cosθ − m+ (2) (cid:107)res 2µ n ωcos2θ kB Ω Ω o e kB ce ce whereB isthemagnitudeofthemagneticfield,n istheambientplasmadensity,Ω istheelectron o e ce cyclotronfrequency,θ isthewavepropagationanglewithrespecttothemagneticfield,andm= kB 0(Landau),−1(normalcyclotron),or+1(anomalouscyclotron)forthedifferentresonances. ForthetwoexamplesshowninFigure2thenecessaryparametersneededtocalculateresonant energies are the following: f ∼ 900-2200 Hz(800-2100 Hz), θ ∼ 73◦(39◦), N ∼ 168 cm−3(71 kB i cm−3),and|B|∼452nT(168nT)forthewaveformontheleft(right). Giventheaboveparameters, theLandauresonantenergiesfromthecoldplasmadispersionrelationare∼560-720eV(170-240 eV)andthenormalcyclotronresonantenergiesare∼16.2-96.2keV(0.37-4.02keV)forthewave- form on the left(right). Of course if our estimates of either the density or propagation angle are wrongwereceiveslightlydifferentresults. WeknowthatthePESAHighdetectorsaturatesinthe radiationbeltsandunderestimatesthedensities. Thus,increasingthedensitylowersboththeLan- dauandnormalcyclotronresonanceenergiesforboththewhistlerat1998-11-13/18:20:59.590UT andtheoneat2000-04-10/03:10:43.077UT.Loweringthepropagationanglehasthesameeffect,in 6 thecoldplasmalimitwithallotherparametersinEquation2beingconstant,sinceE isroughly (cid:107)res proportionalto1/cosθ . kB Particleswithanonzeropitch-anglehaveahighertotalenergythangivenbyEquation2. Thisis importantbecausethedetectorsmeasurethetotalenergyofaparticleinaspecificangularbin,not justtheparallelenergy.Thus,iftheparticleshavelargepitch-anglesandE (cid:46)30keV,itispossible (cid:107)res thatthedetectorwouldnotmeasuretheparticle. Thisbecomesanissueathighpitch-angles((cid:38)45◦) which encompasses a significant fraction of the total distribution when anisotropic. However, the wavesweobservearehighlyoblique(asseenbelow)andthushavelargelongitudinalelectricfields. TheconsequenceisthattheLandauresonanceenergiesmaybemoreimportantthanthecyclotron resonanceenergies[Kelloggetal.,2010;KennelandPetscheck,1966;Kumagaietal.,1980;Staro- dubtsevetal.,1999]. Thus,wearguethatthedistributionsproducedbytheEESAdetectorscanbe relevanttotheobservedwhistlerwaves. RecentsimulationworkbySauerandSydora[2010]foundthatobliquewhistlerwavescanbe excitedbyelectron beamsifthebeamspeed, V , isatleast greaterthantwicetheelectronAlfve´n √ b speed,V =B / µ n m ,whereB istheambientmagneticfieldmagnitude, µ thepermeability Ae o o o e o o of free space, n the background plasma number density, and m the electron mass. However, the o e beams rarelyexceed 6000km/s andthe correspondingV is typically (cid:38) 50,000 km/s. Thus, itis Ae unlikelythattheobservedbeam/flattop-relatedwhistlersaredrivenunstablebythemechanismpro- posed by Sauer and Sydora [2010]. We also note that the electron distributions used in this study have energies almost entirely below the energies expected by Sauer and Sydora [2010]. Thus, a beammayexistabove50,000km/sbutweareunabletoobserveitintheEESAdistributions. 4 Results and Discussion Wepresentastatisticalstudyofthepropertiesoflargeamplitudewhistlersandcomparisonofwave amplitudes to AE-index to further characterize the waves described by Kellogg et al. [2010]. We havealsopresentedthelargestamplitude((cid:38)8nTpeak-to-peak)whistlerwavemeasuredbyasearch coilintheradiationbelts. Thehighestoccurrenceprobabilitywaswithin±6hoursofmidnightin theradiationbeltsbetween3≤L≤6. Inaddition,wedescribethedependenceofwhistlercharac- teristicsontheshapeoftheelectrondistributionsforenergiesbelow∼30keV.However,oneshould notethatbecausetheWindmissionwasnotfocusedonthemagnetosphere,thecoverageislimited. Wealsoshowthatverylargeamplitudewhistlersarecommonintheradiationbelts,consistent withrecentresults[Cattelletal.,2008;Cullyetal.,2008;Kelloggetal.,2010]usinghightimeres- olutionfielddetectors. Manypreviousstudiesthatfocusedontime-averagedspectralintensityplots underestimated the amplitude of these bursty whistlers while the satellites with waveform capture capacities have only recently made measurements in the radiation belts. In addition to their com- monoccurrence,simulationshaveshownthatthesewavescouldbecapableofproducingsignificant changes in the relativistic electron fluxes of the radiation belts [Bortnik et al., 2008; Cattell et al., 2008]. Themajorityofthewaveformsobservedinourstudyhavef/f ≤0.5, occurredwithinL=6, ce simultaneously with anisotropic electron distribution functions below 30 keV, and the majority of thelargestamplitudewhistlersobservedoccurduringmagneticallyactiveperiods(AE>200nT), consistentwithrecentobservations[Lietal.,2010]. ThecorrelationwithAEsuggeststhesourceof freeenergymaybeduetoplasmainjectionsfromthegeomagnetictail. ExaminationofLANLlow energy (30-300 keV) electron summary data (not shown) showed large injections on the nightside atgeosynchronousorbitshortlybeforeWindobservedthetwowhistlersinFigure2,supportingthe ideathatplasmainjectionsmayprovidesomeofthefreeenergyforlargeamplitudewhistlergener- 7 ation. BecausetheSSTdetectorsweredesignedforthesolarwind, wecouldnotidentifyfeatures inthehighenergy(>70keV)electronsassociatedwiththeobservedwhistlers. Regardlessofwhat thesourceoffreeenergymaybefortheobservedwaves,weobservedifferencesinwaveproperties dependingonthetypeofelectrondistributionfunctionstheyareobservedwith. The whistlers associated with anisotropic electron distribution functions in the radiation belts exhibited broader frequency peaks than the whistlers associated with beam/flattop distributions in the outer magnetosphere. For the 45 TDSS samples in which we were able to determine θ , we kB found that the waves are often very oblique with θ ’s ranging from 0◦ ≤ θ < 90◦, occasion- kB kB ally more oblique than the whistlers reported by Cattell et al. [2008] and Kellogg et al. [2010]. The anisotropy-related whistlers in both regions were more oblique than the beam/flattop-related whistlersobservedintheoutermagnetosphere. Thedifferencesinpropagationangleandwidthof frequencypeakmaybeduetodifferencesinthesourcesoffreeenergy. Sometheoriessuggestthat whistlersaregeneratedwithparallelwavevectorsnearthemagneticequatorandtheybecomemore oblique as they propagate to higher latitudes. So we examined the relationship between θ and kB λ . Wefoundnocorrelationbetweenθ andλ , sothewavesdonotappeartobeproduced GSM kB GSM asparallelwaveswhichpropagatetothesatelliteandbecomemoreobliqueastheypropagatedue todispersiveeffects. Theanisotropy-relatedwhistlersinboththeradiationbeltsandoutermagne- tosphere are highly oblique, which results in a large longitudinal electric field. When this electric fieldbecomessufficientlylarge,thetypicalcyclotronresonancescanbecomelessimportantthana Cerenkovresonance[Kelloggetal.,2010;KennelandPetscheck,1966]. Recentstudieshavefound thatanisotropicbi-Maxwellianelectrondistributionscanproducewhistlerswithpeakgrowthrates forθ ∼50◦,suggestingthatobliquewhistlersmaybedrivenbytheanisotropicelectrondistribu- kB tionsobserved[HashimotoandKimura,1981;Kelloggetal.,2010;Schriveretal.,2010]. Thoughweobservedistinctdifferencesinthewhistlercharacteristicsfordifferentelectrondis- tribution functions, we cannot definitively state that the observed features are the source of free energyforthesewaves. Kelloggetal.[2010]presentedawarmplasmainstabilityanalysisforone anisotropic electron distribution function measured by EESA Low near the whistler observed in Figure 4 on the right finding the distribution to be unstable. The analysis showed that maximum growthoccurredatrealfrequenciescorrespondingtotheobservedwavefrequency,butthegrowth rate(0.08s)andpropagationangle(∼10◦)weretoolow.TheinstabilitywasfoundtobeaCerenkov resonance[KennelandPetscheck,1966]near150eV,notthetypicalcyclotronresonance,duetothe highlyobliquenatureofthewaves. OwingtothelongdurationnecessaryfortheEESALowinstru- menttocollectafull4π steradiandistribution,onecanassumethattheinstantaneousdistributions arelessisotropic. Thus, Kelloggetal.[2010]performedasecondinstabilityanalysiswithamore anisotropic hot electron component finding the growth rate (1.5 ms) and propagation angle (up to ∼60◦)tobeapproximatelythesameasthemeasuredvalues(theymeasuredθ ∼61◦). Although, kB therealfrequencyproducedbytheanalysisdidnotmatchtheobservedfrequency. Theydefinitively showedthatthedistributionwasunstabletowhistlerwavesthroughaCerenkovresonance. Mean- ing,theparallelLandauresonantenergiesestimatedbyEquation2fallwellwithintheenergyrange oftheEESAdetectors. 5 Conclusions Tosummarize,weobserved244(65)whistlersinsideL=15usingelectric(magnetic)fielddatafrom theWindspacecraft;∼40%(∼62%)ofthewaveshavepeak-to-peakamplitudesof≥50mV/m(≥0.5 nT).Themajorityofthewhistlershadf/f ≤0.5andwereobservedwithin±6hoursofmidnight ce between3≤L≤6. Thewaveshadabroadrangeofpropagationangles,0◦ ≤θ <90◦,andθ kB kB 8 wasnotcorrelatedwithλ . Thus,assuminganequatorialsource,thewavepropagationanglesare GSM notaconsequenceofpropagationeffects. OnewhistlerobservedbytheWindsearchcoilhadawaveamplitudeovertwoordersofmag- nitudeabovepreviousobservations,largeenoughtosaturatethedetector. Also,weonlymeasured onecomponentofthemagneticfieldmagnitudeforthiswave. Thus,thewaveamplitudeof∼8nT peak-to-peakandourPoyntingfluxestimateof∼300µW/m2areunderestimatesofthetruevalues. Aquasi-linearcalculationofthetimescalesnecessaryforawavewiththisamplitudetoaccelerate plasmasheetelectronsto∼1MeV,assuming1%efficiency,yieldsatimescaleofroughly0.5sec- onds,muchshorterthanpreviousestimatesbasedonsmallamplitudewhistlerswhichwereonthe orderofdays. UsingtheestimatesofmaximumchangeinkineticenergyfromOmuraetal.[2007], wefoundthe8nTwhistlertobecapableofproducing∼61MeVelectronsthroughrelativisticturn- ingacceleration. Although we were not able to determine a source of free energy for the observed waves there were physical differences in the whistlers associated with different electron distributions. In addi- tiontotheanisotropy-relatedwhistlershavinglarger∆f/fthantherestofthewhistlers,weobserved differencesinwavecharacteristicswiththefollowingelectronparameters: T /T ,T /T , ⊥,EL (cid:107),EL ⊥,EH (cid:107),EH T ,andT (whereEL=EESALowandEH=EESAHigh). Thewhistlersobservedintheradi- EL EH ationbeltssimultaneouslywithanisotropicelectrondistributionshadlarger∆f/fthantherestofthe whistlersobserved. WealsoexaminedtheLANLlowenergy(30-300keV)electronsummarydata andfoundthatourlargesteventswereassociatedwithlargesubstorminjections,consistentwiththe increase in wave amplitudes with increasing AE-index. Our study adds to the mounting evidence thatverylargeamplitudewhistlerwavesareanimportantphenomenainradiationbeltdynamics. 6 acknowledgments WethankR.Lin(3DP),K.Ogilvie(SWE),R.Lepping(MFI),andE.Dors(LANLdata)fortheuse ofdatafromtheirinstruments. WewouldalsoliketothankM.Pulupa,S.D.Bale,andP.Schroeder fortechnicalhelpwiththe3DPsoftwareandanalysis. WethankL.Wangforhelpincalibrationof theSSTFoildata. TheauthorsthankWorldDataCenterforGeomagnetism, Kyoto, forproviding theAEindex. ThisresearchwassupportedbyNESSFgrantNNX07AU72H,grantNNX07AI05G, the Dr. Leonard Burlaga/Arctowski Medal Fellowship, and a contract from APL for the develop- mentofRBSP/EFW. References Bertucci,C.,N.Achilleos,C.T.Russell,M.K.Dougherty,E.J.Smith,M.Burton,B.T.Tsurutani, and C. Mazelle (2005), Bow Shock and Upstream Waves at Jupiter and Saturn: Cassini Mag- netometerObservations,inThePhysicsofCollisionlessShocks: 4thAnnualIGPPInternational Astrophysics Conference, American Institute of Physics Conference Series, vol. 781, edited by G.Li,G.P.Zank,andC.T.Russell,pp.109–115,doi:10.1063/1.2032682. Bortnik,J.,U.S.Inan,andT.F.Bell(2006),Landaudampingandresultantunidirectionalpropaga- tionofchoruswaves,Geophys.Res.Lett.,33,3102–+,doi:10.1029/2005GL024553. Bortnik,J.,R.M.Thorne,andU.S.Inan(2008),Nonlinearinteractionofenergeticelectronswith largeamplitudechorus,Geophys.Res.Lett.,35,21,102–+,doi:10.1029/2008GL035500. 9 Bougeret, J.-L., M. L. Kaiser, P. J. Kellogg, R. Manning, K. Goetz, S. J. Monson, N. Monge, L. Friel, C. A. Meetre, C. Perche, L. Sitruk, and S. Hoang (1995), Waves: The Radio and Plasma Wave Investigation on the Wind Spacecraft, Space Science Reviews, 71, 231–263, doi: 10.1007/BF00751331. Breneman,A.W.,C.A.Cattell,S.Schreiner,K.Kersten,L.B.WilsonIII,P.J.Kellogg,K.Goetz, andL.K.Jian(2010),ObservationsofLargeAmplitude,NarrowbandWhistlersatStreamInter- actionRegions,J.Geophys.Res.,115,8104–+,doi:10.1029/2009JA014920. Burtis, W.J., andR.A.Helliwell(1969), Bandedchorus-AnewtypeofVLFradiationobserved in the magnetosphere by OGO 1 and OGO 3., J. Geophys. Res., 74, 3002–3010, doi:10.1029/ JA074i011p03002. Cattell, C., J. R. Wygant, K. Goetz, K. Kersten, P. J. Kellogg, T. von Rosenvinge, S. D. Bale, I.Roth,M.Temerin,M.K.Hudson,R.A.Mewaldt,M.Wiedenbeck,M.Maksimovic,R.Ergun, M.Acuna,andC.T.Russell(2008),Discoveryofverylargeamplitudewhistler-modewavesin Earth’sradiationbelts,Geophys.Res.Lett.,35,1105–+,doi:10.1029/2007GL032009. Cully, C. M., J. W. Bonnell, and R. E. Ergun (2008), THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere, Geophys. Res. Lett., 35, 17–+, doi:10.1029/2008GL033643. Gary,S.P.,E.E.Scime,J.L.Phillips,andW.C.Feldman(1994),Thewhistlerheatfluxinstability: Thresholdconditionsinthesolarwind,J.Geophys.Res.,99,23,391–+,doi:10.1029/94JA02067. Gurnett,D.A.,L.A.Frank,andR.P.Lepping(1976),Plasmawavesinthedistantmagnetotail,J. Geophys.Res.,81,6059–6071,doi:10.1029/JA081i034p06059. Hashimoto, K., and I. Kimura (1981), A generation mechanism of narrow band hiss emissions aboveonehalftheelectroncyclotronfrequencyintheoutermagnetosphere,J.Geophys.Res.,86, 11,148–11,152,doi:10.1029/JA086iA13p11148. Hoppe, M.M., C.T.Russell, L.A.Frank, T.E.Eastman, andE.W.Greenstadt(1981), Upstream hydromagnetic waves and their association with backstreaming ion populations - ISEE 1 and 2 observations,J.Geophys.Res.,86,4471–4492,doi:10.1029/JA086iA06p04471. Horne,R.B.,S.A.Glauert,andR.M.Thorne(2003),Resonantdiffusionofradiationbeltelectrons bywhistler-modechorus,Geophys.Res.Lett.,30,090,000–1,doi:10.1029/2003GL016963. Horne,R.B.,R.M.Thorne,S.A.Glauert,J.M.Albert,N.P.Meredith,andR.R.Anderson(2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res.,110,3225–+,doi:10.1029/2004JA010811. Kellogg,P.J.,C.A.Cattell,K.Goetz,S.J.Monson,andL.B.WilsonIII(2010),LargeAmplitude WhistlersintheMagnetosphereObservedwithWind-Waves,J.Geophys.Res.,submitted. Kennel,C.F.,andF.Engelmann(1966),VelocitySpaceDiffusionfromWeakPlasmaTurbulencein aMagneticField,Phys.Fluids,9,2377–2388,doi:10.1063/1.1761629. Kennel,C.F.,andH.E.Petscheck(1966),Limitonstablytrappedparticlefluxes,J.Geophys.Res., 71,1–28. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.