ebook img

A simplified binary harmony search algorithm for large scale 0–1 knapsack problems PDF

19 Pages·2015·1.388 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A simplified binary harmony search algorithm for large scale 0–1 knapsack problems

ExpertSystemswithApplicationsxxx(2015)xxx–xxx ContentslistsavailableatScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa A simplified binary harmony search algorithm for large scale 0–1 knapsack problems Xiangyong Konga,⇑, Liqun Gaoa, Haibin Ouyanga, Steven Lib aSchoolofInformationScienceandEngineering,NortheasternUniversity,Shenyang110004,China bGraduateSchoolofBusinessandLaw,RMITUniversity,Melbourne3000,Australia a r t i c l e i n f o a b s t r a c t Articlehistory: As an important subset of combinatorial optimization, 0–1 knapsack problems, especially the high- Availableonlinexxxx dimensionalones,areoftendifficulttosolve.Thisstudyaimstoprovideanewsimplifiedbinaryharmony search(SBHS)algorithmtotacklesuchNP-hardproblemsarisingindiverseresearchfields.Thekeydif- Keywords: ferencebetweenSBHSandotherHSmethodsisintheprocessofimprovisation.Thedifferencesamong Harmonysearch harmoniesstoredinharmonymemoryratherthanthepitchadjustmentrate(PAR)andstepbandwidth Simplifiedbinaryharmonysearch (bw)areemployedtoproducenewsolutionsandthiscangreatlyalleviatetheburdenofsettingthese 0–1knapsackproblems importantfactorsmanually.Moreover,theharmonymemoryconsideringrate(HMCR)isdynamically Largescale adjustedintermsofthedimensionsizetoimproveconvergenceofthealgorithm.Therefore,theproposed Ingeniousimprovisationscheme method does not require any tedious process of proper parameter setting. To further enhance the populationdiversity,aspecificheuristicbasedlocalsearcharoundinfeasiblesolutionsiscarriedoutto obtainbetterqualitysolutions.Asetof10lowdimensionalknapsackproblemsaswellaslargescale instances with up to 10,000 items are used to test the effectiveness of the proposed algorithm. Extensive comparisons are made with the most well-known state-of-the-art HS methods including 9 continuous versions and 5 binary-coded variants. The results reveal that the proposed algorithm can obtain better solutions in almost all cases and outperforms the other considered HS methods with statisticalsignificance,especiallyforthelargescaleproblems. (cid:2)2015ElsevierLtd.Allrightsreserved. 1.Introduction wherenisthenumberofitems.Eachitemipossessesaprofitvalue p andavolumevaluev.V denotesthevolumecapacityofthe i i max Combinatorial optimizationis a mathematical optimization or knapsack. x represents the state of the item i and is restricted to i feasibility program to find an optimal object from a finite set of either 0 or 1. If the item i is put into the knapsack, x is set to 1, i objects.Amongthem,0–1knapsackproblemisthemostrepresen- otherwise, 0. Each item may be chosen at most once and cannot tative subset and it involves important applications in various beplacedintheknapsackpartly. fields, including factory location problem, production scheduling Ingeneral,the0–1knapsackproblemisaselectionprocessof problem,assignmentproblemandreliabilityproblem.Thusithas items to fulfill a knapsack with some limits. The objective is to attracted a great deal of attention and been extensively studied maximizethecumulativeprofitsoftheitemspackedintheknap- inthelastfewdecades.Mathematically,the0–1knapsackproblem sack under the condition that the corresponding total volume is initsstandardformcanbeexpressedas: less than or equal to a given volume capacity. The 0–1 knapsack problemsareusuallynon-differentiable,discontinuous,unsmooth Xn Max fðxÞ¼ p (cid:2)x andhighlynonlinearNP-hardproblemswithplentyoflocaloptima i i i¼1 andcomplexconstraints.Sincethedecisionvariablesarerestricted s:t: Xn v (cid:2)x 6V tobeeither0or1,thevariablespaceiscomposedofasetoffinite i i max discrete points in which the global optimal solution is located. i¼1 Therefore the most direct method is to exhaustively enumerate x 2f0;1g; i¼1;2;...n i allthesolutionsandselectafeasibleonewiththegreatestprofit as the global optimum. However, it is not feasible in reality as ⇑ Correspondingauthor.Tel.:+8602483678562. the number of items becomes larger and larger. Meanwhile, the E-mail addresses: [email protected] (X. Kong), [email protected] traditional methods, such as dynamic programming approach (L.Gao),[email protected](H.Ouyang),[email protected](S.Li). http://dx.doi.org/10.1016/j.eswa.2015.02.015 0957-4174/(cid:2)2015ElsevierLtd.Allrightsreserved. Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 2 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx (Brotcorne,Hanafi,&Mansi,2009)andbranchandboundapproach He,&Zhang,2014a)dynamicallyincreasedHMCRwithincreasing (Fukunaga, 2011), suffer from the same problem as well. To generations while Kumar, Chhabra, and Kumar (2014) entailed circumventtheaboveproblem,moreandmoreresearchersfocus exponential changes during the process of improvisation for their attention on meta-heuristic algorithms that imitate specific HMCRtogettheglobaloptimalsolution.Thepitchadjustingrate naturalphenomenon. (PAR) determines whether the pitch adjustment is employed on Inthelastfewdecades,avarietyofmeta-heuristicoptimization thenewcandidateharmonyandthishassubstantialinfluenceon algorithms have been developed, such as genetic algorithm (GA), thequalityoffinalsolution.TheoptimizationabilityofHSpartly antcolonyoptimization(ACO),simulatedannealing(SA),particle reliesontheparametersettingofPARanditisimportanttochoose swarm optimization (PSO), differential evolution (DE) etc. They anappropriatevalueforPAR.Unfortunately,thereisnoagreement can randomly search in the variable space under certain rules reached on the best choice of PAR. Several studies are even con- regardless of the characteristic of the problems to be solved. flicting with each other on the best choice of PAR, for example, Unlike numerical methods, the objective function is not required the linear increment (Contreras et al., 2014; Xiang et al., 2014a; to be differentiable or even continuous. Thus the meta-heuristic Yuan, Zhao, Yang, & Wang, 2014), the linear decrease (Mahdavi, algorithms may be applied to solve all kinds of optimization Fesanghary, & Damangir, 2007; Yadav, Kumar, Panda, & Chang, problems. 2012),exponentialincrement(Chen,Pan,&Li,2012)andexponen- Among these meta-heuristic algorithms, the harmony search tialdecrease(Kumaretal.,2014)etc.Moreover,thepitchadjust- (HS) algorithm (Geem, Kim, & Loganathan, 2001), a simple but ment step (bw) has a direct impact on the performance of HS as powerful stochastic search technique inspired by the musician it controls the balance between the capabilities of exploration attuning,isworthmentioning.HSimitatestheimprovisationpro- andexploitation.Theadjustmentofbwisverydifficultsinceitis cesssuchasrockmusictofindaperfectpleasingharmonyfroman closely related to not only the search process, but the problem aestheticpointofview.Itissimilartothesearchprocessoftheglo- beingresolvedaswell.bwshouldbelargeatearlierstageinfavor baloptimuminoptimizationevaluatedbyanobjectivefunction.In of the global search throughout the entire space and smaller bw particular, a musical harmony in HS can be viewed as a variable valuesarebeneficialtothelocalsearcharoundthepromisingarea vectorandthebestharmonyachievedintheendisanalogousto to improve the accuracy as the search proceeds. IHS (Mahdavi theglobaloptimalsolution. et al., 2007), PCOAHS (Yuan et al., 2014) and GDHS (Khalili, ThecharacteristicsandadvantagesofHSwithrespecttoother Kharrat, Salahshoor, & Sefat, 2014) decreased bw exponentially well-known meta-heuristics, such as GA, PSO and DE, have been with increasing generations. Similarly, Pan, Suganthan, discussed in Geem et al. (2001); Hasançebi, Erdal, and Saka Tasgetiren, and Liang (2010) followed a linear decrease form of (2009); Kulluk, Ozbakir, and Baykasoglu (2012). They can be bwinthefirsthalfofgenerationsandkeptitconstantintherest summarized in following 4 aspects: (1) Each harmony vector in of generations. As known, bw is problem-dependent and should harmonymemorymayparticipateinproducingnewsolutionvec- beupdateddynamicallyfordifferentproblemswithdifferentfea- tors in HS, which enhances the flexibility and helps to generate tures. However, the above mentioned adaptive schemes ignored higher quality solutions. While only two selected individuals are this key point. To overcome it, Das, Mukhopadhyay, Roy, consideredastheparentvectors inGA, PSOupdatestheposition Abraham, and Panigrahi (2011) analyzed firstly the evolution of ofeachparticlebysimplymovingtowarditspersonalbestlocation theexplorative searchbehavior ofHS and recomputedthe band- andthefittestpositionvisitedbytheentireswarmbynow.Asfor widthbwforeachiterationproportionallytothestandarddevia- anoffspringvector,themostrespectivemutationoperatorforDEis tion of current harmonies. Based on the above theoretical carriedoutwiththreedistinctindividualsrandomlyselectedinthe analysis, Kattan and Abdullah (2013) employed another dynamic wholepopulation.(2)UnlikePSOandDEwhichadjustthevariable bandwidth adjustment method for the pitch adjustment process. vectorinonefixedrule,eachdecisionvariablevalueisdetermined Thebandwidthvalueswerealsocomputedbycalculatingthestan- independentlyintheimprovisationofHS.(3)GA,PSOandDEpro- dard deviation of the respective HM column whereas the ducemultiplesolutionssimultaneouslyinoneevolutioniteration, improvisation acceptance rate percentage was introduced to fine whereasHSonlyobtainsonesinglesolutionvectordependingon tune the proportionality factor which was fixed in Das et al. all the harmonies. (4) Most of other meta-heuristics including (2011).Meanwhile,Chenetal.(2012)computedthebwvaluepro- GA, PSO and DE compare the offspring solutions with their portionaltothevariationofthecurrentdecisionvariabledynami- corresponding parent individuals. However, the newly generated callytoobtainthebestvaluebasedontheevolutionofthesearch harmonyjustcompareswiththeworst harmonyin theharmony processandthepropertiesoftheproblem. memoryandreplacesitwhenithasworsefitness. Furthermore, various complicated parameter tuning methods Sinceitsintroduction,HShasbeensuccessfullyappliedtosolve arealsoraisedduringthelastdecade.Panetal.(2010)restricted variouscomplexreal-worldoptimizationproblemssuchasclassi- HCMR(PAR) in a normal distribution and updated the meanand fication problem, structural optimization, stability analysis, standard deviation values by learning from their historic values environmental/economic dispatch, parameter identification, net- corresponding to generated harmonies entering the HM. work reconfiguration, unit commitment and scheduling problem Meantime, the best-to-worst ratio was introduced in Kattan and (Manjarres et al., 2013). Many studies are also conducted to Abdullah (2013) to evaluate the quality of current HM solutions enhance the accuracy and convergence speed of HS (Moh’d Alia and helped to dynamically adjust PAR values as the search pro- & Mandava, 2011). Like other meta-heuristic algorithms, the gresses. Based on previous improvements on parameter setting, optimizationcapacityofHSstronglyreliesontheparametersset- El-Abd (2013) linearly decreased PAR as proposed in Wang and tings,includingharmonymemoryconsideringrate(HMCR),pitch Huang(2010)andexponentiallydecreasedbwaspreviouslypro- adjusting rate (PAR) and pitch adjustment step (bw). Therefore, posed in Mahdavi et al. (2007) for getting a better performance. manyresearchershavefocusedontheparametercontrol. Furthermore,Kumaretal.(2014)exploredfourdifferentcasesof HMCR is the probability of each component generating from linearandexponentialchangesduringtheprocessofimprovisation previous values stored in the harmony memory (HM) and varies forHMCRandPARtogettheglobaloptimalsolution.Anintelligent between0and1.ToguaranteetheconvergenceofHS,HMCRfavors tuned harmony search algorithm (ITHS, Yadav et al. (2012)), in large values and generally locates in the interval [0.9, 1]. To which there is no need to tune the parameters, was put forward eliminate the drawbacks associated with fixed HMCR values, tomaintainaproperbalancebetweendiversificationandintensifi- ABHS(Contreras,Amaya,&Correa,2014)andIGHS(Xiang,An,Li, cation throughout the search process by automatically selecting Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx 3 theproperpitchadjustmentstrategybasedonitsharmonymem- defectonthesearchabilitydegradedbythismodificationwasana- ory. To receive spur-in-time responses, Enayatifar, Yousefi, lyzed by Greblicki and Kotowski (2009) from the theoretical and Abdullah, and Darus (2013) employed a learning automaton (LA) experimentalresults.Toovercometheaboveshortage,Wang,Xu, to immediately tune the HS parameters regarding the harmony Mao,andFei(2010)presentedanewpitchadjustmentoperation feedback. This learning-based adjustment mechanism solves the and then developed anovel discrete binaryHS algorithm(DBHS) difficulties in parameter setting and enhances the local search to solve the discrete problems more effectively. However, BHS abilitiesof the algorithm.It shouldbementioned thatGeem and and DBHS can only solve low-dimensional problems and can be Sim(2010)focusedontheparameter-setting-free(PSF)technique hardly applied to high-dimensional problems. Moreover, Wang toalleviatetheburdenofmanuallyfindingthebestparameterset- et al. (2013a) proposed an improved adaptive binary harmony ting.ArehearsalbasedtechniquewasintroducedtoadjustHMCR search (ABHS) algorithm with a scalable adaptive strategy to andPAR,buttherewassomethingunreasonableinthecalculation enhance the search ability and robustness. ABHS was evaluated ofthesetwoparameterseventhoughtheauthorsdeclaredthatthe on the benchmark functions and 0–1 knapsack problems and PSFtechniquecanfindgoodsolutionsrobustly. numerical results have demonstrated that it was more effective Ascanbeseenfromabove,alargenumberofadaptivemecha- to solve the binary-coded problems. Thereafter ABHS was nisms have been proposed to tune the parameters in HS. extended (ABHS1,Wang, Yang, Pardalos, Qian, & Fei (2013b)) to Althoughbetterperformanceshavebeengivenanddemonstrated, findtheoptimalfuzzycontrollerparameterstoimprovethecon- extraburdenforadditionalparametersettingsarealsointroduced trolperformanceowingtoitsoutstandingperformance.Basedon inthesecases.Tolessentheparametersettingeffort,somespecific theresultstestedon10largescale0–1knapsackproblems,ABHS medicationsofHSarepresented,especiallyfortheparameterbw. andABHS1demonstrateanoverwhelmingperformance,butthere BorrowingtheconceptsofswarmintelligencefromPSO,thenew aretoomanyadditionalparameterstodetermine.Morerecently,a harmonyinGHS(Omran&Mahdavi,2008)wasmodifiedtomimic novel global-best harmony search algorithm called DGHS (Xiang, thebestharmonyintheHMandthustheparameterbwusedforthe An, Li, He, & Zhang, 2014b) was proposed to solve discrete 0–1 pitch adjustment was removed from the classical HS. Moreover, knapsack problems with binary coding. A best harmony based WangandHuang(2010)replacedtheparameterbwbyupdating improvisation and two-phase repair operator were employed to the new harmony according to the maximal and minimal values generatenewsolutionsafteragreedyinitialization.However,too intheHM.UnlikemostHSvariants,tworatherthanonerandomly muchconsiderationonthebestharmonyintheHMmakesiteasy selected harmonies were considered in GSHS (Castelli, Silva, tobetrappedinlocaloptima. Manzoni,&Vanneschi,2014)fortheimprovisationphaseandthe Expectforthestatedbinarycodingmethods,manyreal-coded newharmonywasobtainedmakinguseofalinearrecombination HSvariantsarealsoconsideredtosolvethediscreteproblemswith operator that combines the information of two harmonies. Thus specific conversion of actual discrete decision values from real there is no need to tune the PAR and bw parameters. Similar to variables.Amongthem,replacementofrealnumberwiththenear- GSHS, Zou, Gao, Li, and Wu (2011) developed a different variant estintegeristhemostdirectandcommonlyusedstrategytoreach ofHSnamedNovelGlobalHarmonySearch(NGHS).Twospecific a permissible discrete decision value. Considering this fact, Zou, harmoniesintheHM,thatistheglobalbestharmonyandtheworst Gao,Wu,andLi(2010)developedanovelglobalharmonysearch harmony,wereemployedtogeneratenewharmoniesandthenew algorithm (NGHS1) to solve the 0–1 knapsack problems. NGHS1 proposed variable updating technique excluded the PAR and bw was derived from the swarm intelligence of particle swarm and parameters. More specifically, the new harmony always replaced replacedtheharmonymemoryconsiderationandpitchadjustment the worst harmony in the HM even if it was far worse than the withanewpositionupdatingschemeandgeneticmutationstrat- worst harmony. Furthermore, Valian, Tavakoli, and Mohanna egy. Similar to NGHS1, a social harmony search algorithmmodel (2014)modifiedthe improvisationstep ofNGHSinspiringbythe was presented by Kaveh and Ahangaran (2012) for the cost swarmintelligenceandmadethenewharmonyimitateonedimen- optimization of composite floor system with discrete variables. sionofthebestharmonyintheHMasthatinvestigatedinGHS. TheroundingoperatorsarealsointegratedwithHStosolveother Except for various adaptive parameter mechanisms and discrete problems, including epileptic seizure detection (Gandhi, improvisation schemes, a series of powerful evolution strategies Chakraborty, Roy, & Panigrahi, 2012), size optimization were introduced to ameliorate the optimization performance of (Askarzadeh, 2013) and steel frame optimization (Murren & HS as well. These include low discrepancy sequences (Wang & Khandelwal, 2014). Besides the conversion approach, the Huang,2010),chaosmaps(Alatas,2010),learnableevolutionmod- practitionershavedesignedafewspecialimprovisationoperators els(Cobos,Estupinˆán,&Pérez,2011),mutationoperator(Pandi& toenablethesearchexecuteddirectlyinthediscretedomain.For Panigrahi, 2011), dynamic subpopulations topology (Turky & example, Lee, Geem, Lee, and Bae (2005) presented a new pitch Abdullah, 2014), and island model (Al-Betar, Awadallah, Khader, adjustmentwithneighboringvalueswhichcanhelpHStooptimize &Abdalkareem,2015).Thankstoitsrelativeeaseandflexiblestruc- thestructureswithdiscrete-sizedmembers.Withtheassistanceof ture,HShasbeenintegratedwithothermetaheuristiccomponents job-permutation-basedrepresentation,severalnovelpitchadjust- orconceptstoenhancethesearchabilities,suchasdifferentialevo- ment rules have been employed to produce feasible solutions so lution (Chakraborty, Roy, Das, Jain, & Abraham, 2009), particle thatHSiseffectiveforsolvingvariousschedulingproblems,such swarm optimization (Pandi & Panigrahi, 2011) and genetic algo- as blocking permutation flow shop scheduling problem (Wang, rithm(Zouetal.,2011).MoredetailedsummaryofresearchinHS Pan,&Tasgetiren,2010;Wang,Pan,&Tasgetiren,2011), no-wait variantscanbefoundinMoh’dAliaandMandava(2011). flow shop scheduling problem (Gao, Pan, & Li, 2011), flexible job As discussed above, a lot of attention has been given to the shop scheduling problem (Yuan, Xu, & Yang, 2013; Gao et al., research of HS for optimization problems in continuous space. 2014a;Gaoetal.,2014b),single-machineschedulingproblemwith However,thereislittleworkconcentratingondiscreteproblems, planned maintenance (Zammori, Braglia, & Castellano, 2014). especially the 0–1 optimization problems. A lot more attention Moreover, some quantum inspired operators were successfully shouldbegiventothisareaandthisstudythusaimstocontribute combined with HS for 0–1 optimization problems (Layeb, 2013). inthisarea. In addition, HS was mixed with ant colony optimization to solve ThefirstbinarycodedHS(BHS)wasintroducedbyGeem(2005) the traveling salesman problem (Yun, Jeong, & Kim, 2013). It to tackle the discrete water pump switching problem. BHS dis- should be mentioned that Geem (2008) defined a novel partial cardedthepitchadjustmentoperatorfromclassicalHS.Thenthe stochasticderivativefordiscrete-valuedfunctionsanditcanhelp Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 4 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx HS to solve various discrete science and engineering problems the variable space and stored in the harmony memory. HS has moreefficientlyandeffectively. three main procedures to improvise a new candidate harmony, Although good results have been reported by the aforemen- that is, harmony memory consideration, pitch adjustment and tionedHSvariantsfordiscreteproblems,theirperformanceisstill random search. The new harmony will replace the worst har- notsatisfactoryandmanydrawbacksneedtobeimproved,espe- monyvectorinthewholeHMonlyifitisbetter(withhigherfit- ciallyfor0–1optimizationproblems.Inotherwords,theresearch ness). Continue the improvisation process until a predefined onHSfordiscreteproblemsisstillatitsinfancy. accuracy is achieved or certain number of improvisations has Thispaperaimstofillthegapintheliteraturebyproposinga been accomplished. simplified binary harmony search (SBHS) algorithm for solving Various steps consisted in HS is presented as follows (Geem the 0–1 optimization problems. An ingenious improvisation etal.,2001): schemewithoutanyparameterisintroducedbycombingharmony memoryconsiderationwithpitchadjustment.SBHSalsodynami- Step1: Initializationofthealgorithmparameters. callyadaptstheHMCRvaluesinaccordancewiththedimensions Thereare 5 parameters required to be set in classical HS for problems with different properties. Furthermore, a two-stage forvariousproblems.Theyare:theharmonymemorysize greedy procedure is embedded to repair the infeasible solutions (HMS);harmonymemoryconsideringrate(HMCR);pitch emerged in the search process. A set of various large scale 0–1 adjusting rate (PAR); pitch adjustment step (bw); and knapsack problems is selected to evaluate the effectiveness and maximalnumberofimprovisations(NI)orcertainsolution superiority of SBHS. The experimental results indicate that SBHS accuracy. issuperiortotheexistingHSvariantsinalmostallsituationsand Step2: Initializationoftheharmonymemory. offersafasterconvergenceandhigheraccuracy. Initially,theharmonymemoryisfulfilledwithHMShar- Themaincontributionsofthisstudyarethusasfollows.First,it moniesrandomlygeneratedinthevariablespace. introduces a parameter-free improvisation scheme that depends 2 x1 x1 ... x1 fðx1Þ 3 on the difference between the best harmony and one randomly 1 2 n 6 x2 x2 ... x2 fðx2Þ 7 chosen harmony stored in the HM. More specifically, the pitch HM¼6 1 2 n 7 ð2Þ adjustment parameters PAR and bw are excluded from the algo- 64 ... ... ... ... ... 75 rithmwithoutrequiringanyadditionalparameter.Thatistosay, xHMS xHMS ... xHMS fðxHMSÞ 1 2 n SBHS has the least parameters comparedto the existing HSvari- Step3: Improvisationofanewcandidateharmony. ants. Second, it employs a simple but useful varying method to Theimprovisationisconductedtogenerateanewcandi- adapttheHMCRvalues,whichcaneffectivelyenhancetheconver- date harmony xnew with three rules. The detailed proce- genceandimprovetheoptimizationabilityofSBHStosuitvarious dureworksasfollows: problems with different dimensions. Third, it conducts a greedy localsearch around these newinfeasible harmoniestoguarantee the feasibility of the solutions and maintain population diversity fori=1tondo simultaneously. The local search is accomplished in two stages ifUð0;1Þ6HMCR relying on the specific heuristic derived form the 0–1 knapsack xniew¼xri;r2f1;2;...;HMSg problems. Finally, it alleviates the burden of manually choosing %memoryconsideration thebestparametersettingbecausethereareonlytwoparameters ifUð0;1Þ6PARthen leftanddynamicadaptiveschemesaregiven. xnew¼xnew(cid:3)Uð0;1Þ(cid:4)bw i i The rest of this paper is organized as follows. In Section 2, a %pitchadjustment basic process of how the HS works is laid out. Section 3 sum- endif marizes four recent variants of HS proposed for solving discrete else problems, including BHS, DBHS, NGHS1 and ABHS. In Section 4, xniew¼xi;minþUð0;1Þ(cid:4)ðxi;max(cid:5)xi;minÞ the proposed simplified binary harmony search algorithm is %randomsearch described particularly. Numerical experiments and comparisons endif are conducted in Section 5 to evaluate the optimization perfor- endfor mance of SBHS on large scale 0–1 knapsack problems. Section 6 givestheconcludingremarksanddirectionsforfurtherresearch. 2.Theharmonysearchalgorithm whereUð0;1Þareuniformrandomnumbersbetween0and1 independently. Theresearchframeworkissetupinthissectionandthenota- Step4: Updateoftheharmonymemory. tionandterminologiesusedthroughoutthepaperareclarifiedas TheworstharmonyintheHMwillbereplacedbythenew well. In general, an optimization problem can be represented as improvised harmony when the candidate vector xnew is follows(inthemaximizationsense): better than the worst harmony evaluated by the fitness function. Max fðxÞ;x¼ðx1;x2;...;xnÞ Step5: Terminationchecking. s:t: gðxÞ<0;i¼1;2;...;p If NI harmonies have been produced or predefined accu- i ð1Þ hðxÞ¼0;j¼1;2;...;q racy is reached, terminate the algorithm and output the j x 6x 6x ;i¼1;2;...;n best harmony vector in the HM as the optimal solution. i;min i i;max Otherwise,returntoStep3andrepeattheimprovisation wherenrepresentsthedimensionsize.pandqarethenumberof process. inequalityconstraintsandequalityconstraints,respectively. The harmony search algorithm is inspired from the music 3.RecentHSvariantsfor0–1optimizationproblems improvisationprocess and a solutionvectoris analogy to a‘‘har- mony’’ here. Similar to other population based heuristic meth- Inordertofindsatisfactorysolutionsforthe0–1optimization ods, a set of harmony vectors are firstly generated randomly in problems,severalvariantsofHShavebeendevelopedtoimprove Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx 5 itsperformance.Thissectionbrieflyreviewsfourrecentextensions 3.3.Novelglobalharmonysearch(NGHS1)algorithm oftheHSalgorithm. Unlike the above binary coded HS variants, Zou et al. (2011) employed a novel global harmony search algorithm (NGHS1) 3.1.Binary-codingharmonysearch(BHS)algorithm inspiredbytheswarmintelligenceofparticleswarmtosolvethe 0–1 knapsack problems. The search process is conducted in con- Geem(2005)firstlyutilizedadiscreteversionofHStosolvea tinuous space and the real values are replaced with the nearest water pump switching problem. In this study, the float encoding integers as the binary solutions. In fact, the genetic mutation method in classical HS is replaced by the binary coded scheme probabilityp introducedinNGHS1isthesameto1-HMCRwhich becausecandidatevaluesforeachvariablearerestrictedto0and m denotestheprobabilityofrandomlychoosingafeasiblevaluenot 1. The improvisation process of BHS is the same as the classical related to the HM. Simultaneously, the position updating is a HS except that the pitch adjustment operator is abolished. Each fusionofmemoryconsiderationandpitchadjustmentinclassical variable of the new candidate harmony is picked up from either HS with PAR=1. The modified improvisation process in NGHS1 acorrespondinghistoricalvaluestoredintheHMorarandomfea- worksasfollows: siblevalueof0or1dependingonHMCR. The detailed process of improvisation in BHS is carried out as fori=1tondo follows: step ¼jxbest(cid:5)xworstj%calculationoftheadaptivestep ( i i i xnew2fx1;x2;...;xHMSg; if Uð0;1Þ6HMCR xnew¼xbest(cid:3)Uð0;1Þ(cid:4)step %positionupdating xnew i i i i ð3Þ i i i i xniew2f0;1g; otherwise ifUð0;1Þ6pm xnew¼x þUð0;1Þ(cid:4)ðx (cid:5)x Þ i i;min i;max i;min where xnew is the ith element of the new harmony candidate and %geneticmutation i eachvariableischoseninthesamemannerasEq.(3).Thecandidate endif valueischosenfromtheexistingvaluescontainingincurrentHM endfor withtheprobabilityofHMCRandfromthevariablespacerandomly withtheprobability1-HMCR. Furthermore,GreblickiandKotowski(2009)analyzedtheprop- wherexbestandxworstdenotetheglobalbestharmonyandtheworst ertiesofHSbasedontheone-dimensionalbinaryknapsackprob- one in current HM, respectively. It is worth mentioning that the lemandfoundtheperformanceofBHSunsatisfactory. worstharmonyisalwaysreplacedbythenewgeneratedharmony regardless of the quality of the new generated harmony, even if 3.2.Discretebinaryharmonysearch(DBHS)algorithm xnew isworsethanxworst. Inthepositionupdatingprocess,thebestandworstharmonies Tocompensatethedegradationcausedbydiscardingthepitch are the only two harmonies considered in current HM and the adjustment rule in BHS, Wang et al. (2010) redesigned the pitch information used in improvisation is so little that NGHS1 easily adjustment operation in the DBHS algorithm. In contrast to BHS leadstoprematureconvergenceandstagnation. in whicheachvariableofthenew harmonymaybechosenfrom differentharmonies,DBHSselectsonlyoneharmonyfromcurrent 3.4.Adaptivebinaryharmonysearch(ABHS)algorithm HM to form the new harmony. That is, the individual strategy operationcanbedefinedinEqs.(4)and(5)below. To tackle the 0–1 optimization problems more effectively, Wang et al. (2013a) gave an improved adaptive binary harmony xnew¼(cid:2)xti; if Uð0;1Þ6HMCR; t2f1;2;...;HMSg ð4Þ search(ABHS)algorithmfollowinganalyzingdrawbacksofHSfor i R; otherwise binary-valued problems. In addition to the individual selection strategy shown as Eqs. (4) and (5) in DBHS, ABHS employs a bit (cid:2)0; if Uð0;1Þ60:5 selection strategy to implement harmony memory consideration R¼ ð5Þ operation in which each element of the new harmony vector is 1; otherwise independentlychosenfromtheHM.Thepitchadjustmentruleuti- lized in ABHS is the same as that in DBHS. The authors focused wheretisonespecificrandomintegerselectedfromtheinterval[1, mainly on various former adaptive mechanisms of HMCR and HMS].xt representstheithelementofthechosenharmonyinthe i PAR and defined a scalable adaptive strategy of HMCR based on HM. theoverallresultsoftheparameteranalysistoenhanceitssearch Forthe0–1optimizationproblems,thereareonlytwovalues, abilityandrobustness.HMCRfinallyusedinABHSisadaptiveand i.e.,0and1,tobeselectedforthevariablesandthereforethepitch linearlyincreasingasEq.(7). adjustmentstepmustbe 1in alldimensions. Tofacilitateimple- mentation, DBHS defines the corresponding element value of the (cid:3) c(cid:4) blnnc lnn k HMCR¼ 1(cid:5) þ þ (cid:4) ð7Þ global optimal harmony vector in the HM as the adjusted value n n n K forachosenelementinsteadoftheNOTgatetorealizethepitch where c is a constant; k and K denote the current and maximal adjustmentoperator. iterations,respectively;bmcistheoperatortakingthelargestinte- ( gerlessthanm.Theaboveadaptivefactordynamicallyandlinearly xbest; if Uð0;1Þ6PAR xnew¼ i ð6Þ adjusts HMCR based on the dimension and current iteration i xniew; otherwise number. Basedontheexperimentalresultsonbenchmarkfunctionsand wherexbestistheithcorrespondingelementvalueoftheglobalopti- 0–1 knapsack problems, ABHS outperforms other algorithms in i mal harmony vector xbest. The pitch adjustment utilized can termsofsearchaccuracyandconvergencespeed.However,ABHS enhancethelocalsearchabilitytofindbettersolutionsforbinary suffers from two parameters c and NGC which are vital but hard problems.Thenumberofnewlygeneratedcandidates(NGC)isalso tochoosetoguaranteegoodperformanceforproblemswithdiffer- studiedtocheckitseffectontheperformanceofDBHS. entproperties. Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 6 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx 4.Simplifiedbinaryharmonysearchalgorithm distinctfromxbest,theswappingprocesscanspeeduptheconver- i gence of the HM to the real global optimum. Thus the ingenious Thissectionpresentsasimplifiedbinaryharmonysearchalgo- improvisationschemeproposedinSBHScanappropriatelybalance rithm(SBHS)tocircumventthedrawbacksincurrentHSvariants theexplorationabilityandexploitationability,thatis,thecapabili- forthe0–1optimizationproblems.InSBHS,onlytwoparameters, tiesoftheglobalsearchandthelocalsearchgivefullplaytothe i.e.,HMSandHMCR,needtobesetandaningeniousimprovisation optimization. Compared to previous HS variants mentioned in rule is introduced based on the difference between the best har- Section3,SBHSnotonlyutilizesmoreinformationforoneelement mony and one randomly chosen harmony stored in the HM to fromtheHM,i.e., tworandomlyselectedvariablevaluesand the implementpitchadjustmentwithoutanyparametersuchasPAR. best realized harmonies, but also considers the internal property HMCR is linearly increasing with the dimension to improve the ofthoseharmonies,i.e.,thedifferenceofelementvaluesbetween optimization ability on different problems. To guarantee the thebestharmonyandotherharmonies.Furthermore,SBHSavoids feasibility of the solutions, a two-stage greedy procedure is the selection of both PAR and bw parameter values and the employedtorepairtheinfeasiblesolutionvectorsemergedinthe improvisation process in Eq. (8) can be determined according to HM.ThedetailsoftheSBHSalgorithmarepresentedbelow. not only the evolution of the search process, but also different search spaces for different problems. In summary, SBHS is easy 4.1.Aningeniousimprovisationscheme toimplementandsuitableforthe0–1optimizationproblemswith differentcharacteristics. ComparedtothefloatcodingmethodusedinNGHS1,itismore appropriateforthevariablestobecodedinbinaryschemefor0–1 4.2.Two-stagegreedyproceduretorepairtheinfeasiblesolution optimizationproblems.Therefore,abinarycodingschemesimilar tothatusedinBHS,DBHSandABHSisemployed.Notethatdiscard- Sinceonlythefeasiblesolutionscandelegatethefeasibleregion ingofthepitchadjustmentoperatorinBHSleadstoanunsatisfac- inthedefinedvariablespaceforconstrainedproblemsandinfeasi- toryperformanceforbinaryoptimizationproblems.Thusthepitch ble solutions would mislead the search to be stagnated in the adjustment operator is important and must be contained in the infeasibleregion,wemustmakesurethatalltheharmoniescon- improvisation process. The memory consideration in DBHS and tainedintheHMarefeasible.Thesimplestwaytoachievethisis ABHS are not ideal as the corresponding value is selected from byremovingsomeitemsfromtheknapsackandsettingthevari- eitheronespecificharmonyordifferentharmoniesintheharmony ablevalueofcorrespondingitemfrom1to0.Intuitively,theitem memory.DBHSmodifiesthepitchadjustmentoperatorbyreplac- withgreaterprofitandsmallervolumehasmorepossibilitytobe ing the chosen element with the corresponding element value of packedintotheknapsackformaximizingthetotalprofits.Therela- theglobaloptimalharmonyvectorincurrentHM.Theinformation tiveprofitdensityproposedbyDantzig(1957)canbeusedasarule keptinthebestharmonyvectorisutilizedtoomuchandmayresult forchoosinganitemanditiscalculatedas inprematureconvergenceandstagnation.Besides,thepitchadjust- ment operator depends on the probability PAR which is decided u ¼p=v ð9Þ regardless of the informationcontaining in the HM.To avoid the i i i disadvantages associated with these binary-coded algorithms, an wheretherelativeprofitdensityoftheithitemisdenotedbyu and ingeniousimprovisationschemeisintroducedasbelow. the other two values p and v represent the profit and voluime, i i xnew¼xr1þð(cid:5)1Þ^ðxr1Þ(cid:4)jxbest(cid:5)xr2j; i¼1;2;...;n ð8Þ respectively. i i i i i A profit density based two-stage greedy procedure is used to where r1 and r2are two distinctrandomintegers between 1 and repair the infeasible solutions emerged in initialization and HMSforeachelement. improvisation process to ensure the availability of harmonies in Eq. (8) combines the memory consideration and pitch adjust- theHM.Theusedrepairprocedureisaccomplishedintwostages. ment to improvise a new harmony in each bit. The first term on Inthefirststage,afeasiblesolutionisachievedbytakingoutthe therighthandsideofEq.(8)denotesthememoryconsideringpart items with lower profit density under the constraint condition. and the second is the pitch adjusting part of improvisation. The After that, there may be some small space left in the knapsack memoryconsideringpartisthesameasthatinBHSbutthepitch whichislargerthanthevolumesofotheritemsunpacked.Tofill adjustmentdependsonthedifferencebetweenthebestharmony theknapsackasmuchaspossible,thesecondgreedyphasewhich andrandomlyselectedharmonyintheHMratherthanaspecific isalmostoppositetothefirststageisapplied.Inthesecondstage, valuePAR.Thelargeristheproportionofdifferencebetweenthe theitemswhichcanbepackedintotheknapsackindividuallyare bestharmonyandotherharmonies,themorepossibilitythepitch found out and then added to the knapsackone by one according adjustmenthappens.Iftheelementinthebestharmonyisdiffer- totheirprofitdensitylevelsindecreasingorderuntilthetotalvol- ent from the corresponding value of the randomly selected har- umeofthechosenitemsexceedstheknapsackvolume. mony, the considered value from the HM is changed, for Specifically, the profit density based two-stage greedy proce- example,from 0 to 1, or from 1 to 0, and this change isupdated dureinSBHSconsistsofthefollowingsteps: with a power function of the considered value. If the considered value is 0, its power function of (cid:5)1 is 1 and otherwise, (cid:5)1. At Step1: Givenaninfeasibleharmonydenotedasx¼ðx ;x ;...;x Þ. 1 2 n the same time, the differencemust be0 and 1. Values generated Step2: Calculatethe total volume V of the items chosen by the t byimprovisationarealsocontainedinthevariablespaceandthere infeasibleharmonyxandthevalueofconstraintviolation isnoneedtomodifythemastheydonotviolatetheboundarycon- V : c straintofvariables.Therefore,Eq.(8)candirectlyrealizethebinary opeFroartoarcwhoitsheonuxtr1a,nifythloegdiciaffleorepnecraeteoxri.sts,i.e.,xbestisdifferentfrom Vt¼Xn vi(cid:2)xi;Vc¼Vt(cid:5)Vmax ð10Þ i i xr2;xr1isswappedtoanothervalueinthedefineddomain{0,1}.If i¼1 i i the chosen xri1 is identical to xbiest, the swapping process would Step3: GetthecorrespondingitemsequenceS1basedontherela- enhance the diversity of the HM to effectively avoid it stopping tiveprofitdensityofeachitemcalculatedusingEq.(9)in at very poor quality local optima. However, if the chosen xr1 is ascendingorder. i Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx 7 Step4: RemovetheitemsassequenceS1untilthetotalvolumeis Thus it is not necessary to choose a large value for HMS. In this smallerthantheknapsackvolume,i.e.,V <0.Thepseudo paper,itissettobe5inallsituationsforSBHS. c codeisshownasbelow. DuetotheeliminationofparametersPARandbwinSBHS,the HMCRvalueplaysthemostimportantroleforthealgorithmper- j¼1; formanceasitcontrolsthebalancebetweenthecapabilitiesofglo- whileV >0 bal searchand localsearch.Note thatevery componentobtained c ifx =1 by the memory consideration comes from the previous values S1ðjÞ x =0; storedintheHManditisfurtherdeterminedtobepitchadjusted S1ðjÞ Vc¼Vc(cid:5)vS1ðjÞ; or not. HMCR can take any value between 0 and 1. HMCR=0 meanseverycandidatevalueischosenfromtherangeofthevari- endif able space randomly. HMCR=1 deprives the chance to choose a j¼jþ1; valuefromoutsidetheHMtoimprovetheharmony. endwhile Generally speaking, a large HMCR favors the local search. To enhance the exploration ability, HMCR value should be small in order to lead the search proceeding in the whole variable space. Step5: Calculate the remaining volume of the knapsack Vl, The best choice of HMCR value is normally in the interval Vl¼(cid:5)Vc,andjudgewhetherthesmallestitemvolumeis [0.95,1]. Moreover, various HMCR adaptive methods appear to largerthanitornot.Ifso,terminatetherepairingstrategy; ameliorate the performance and flexibility of the HS variants, otherwise,turntoStep6. including the linear increment, linear decrease, nonlinear incre- Step6: Receive the corresponding item sequence S2 based on ment, random increment etc. Most of them focus on the search theirvolumesinascendingorder. process and base the HMCR value on the maximum and current Step7: StoretheitemtabsinasequenceS3,thevolumeofwhich iterationnumbersregardlessoftheproblemdimension. issmallerthantheremainingvolumeoftheknapsackVl. Givenann-dimensionalproblem,theexpectednumberofele- Thepseudocodeisshownasbelow. ments chosen from the HM in the new candidate harmony is n(cid:2)HMCR,whiletheexpectednumberofcomponentsreinitialized j=1; randomlyfromthepossiblerangeofvaluesrelyingonthecomple- whilej<¼nandVl>vS2ðjÞ mentationis n(cid:2) (1-HMCR). For alow-dimensional problem,n(cid:2) (1- j¼jþ1; HMCR) is small. However, for a large scale problem with endwhile nP100, the value n(cid:2) (1-HMCR) would be so significant that too j¼j(cid:5)1; manyrandomlyselectedelementswoulddestroytheoptimization S3=S2(1:j); abilityofthealgorithm.Inthiscase,itisnotthesearchprocessbut theproblemdimensionwhichhas thebiggesteffecton thealgo- rithm performance. Based on this observation, SBHS updates the Step8: GetthecorrespondingtabsequenceS4ofthoseitemscon- HMCRvaluedynamicallyaccordingtoEq.(11)andremainsitcon- tained in S3 based on their relative profit density in stantintheentiresearchprocess. ascendingorder. HMCR¼1(cid:5)10=n; nP100 ð11Þ Step9: Insert the items into the knapsack following the tab sequence S4 until there is no space in the knapsack. The TheproposedHMCRtuningschemeiscapableofavoidingthe pseudocodeisshownasbelow. number of variables randomly reinitialized being too large and ensures the convergence of the algorithm. Moreover, reinitializa- tion with a small probability can diversify the HM and thus to whilej>0andV >0 ifx ¼0landV >v avoid premature stagnation and ill-convergence. This simplifica- S3ðS4ðjÞÞ l S3ðS4ðjÞÞ tiononparametersettingalsomakesimplementationeasy. x ¼1; S3ðS4ðjÞÞ V ¼V (cid:5)v ; l l S3ðS4ðjÞÞ 4.4.ComputationalprocedureofSBHS endif j¼j(cid:5)1; In summary, the computational procedure of the SBHS algo- endwhile rithmcanbeillustratedasfollows. After the repair work through this mechanism, it is clear that the Table1 ParametersettingfortheHSvariants. infeasibleharmoniesnolongerviolatetheconstraint.Becausethe repairoperationsintheabovetwostagesincludingremovingand Variant Parametersetting inserting are all carried out greedily based on the relative profit IHS HMCR=0.95;PARmax=0.99;PARmin=0.35;bwmax=0.05; density,theknapsackcanbefilledupaccordingtotheitemprofit bwmin=0.0001 asmuchaspossible. GHS HMCR=0.99;PARmax=0.99;PARmin=0.01 SAHS HMCR=0.99;PARmax=1;PARmin=0 EHS HMCR=0.99;PAR=0.33;bw=1.17(cid:2)pffiVffiffiaffiffiffirffiffiðffiffixffiffiÞffiffi 4.3.Adaptiveparametertuningmechanism NGHS Pm¼2=n NDHS HMCR=0.99;PARmax=0.99;PARmin=0.01;ts=2 Itshouldbenotedthatnoextra parameters areintroducedin SGHS HMCRmax=1;HMCRmin=0.9;PARmax=1;PARmin=0;LP=100; SBHS.Owingtotheingeniousimprovisationscheme,theparame- bwmax=1/10;bwmin=0.0005;HMCRm=0.98;PARm=0.9; tersPARandbwinclassicalHSarenolongerneededinSBHSand ITHS PARmax=1;PARmin=0;HMCR=0.99 BHS HMCR=0.971;NGC=1 there are only two parameters including HMS and HMCR to be DBHS NGC=20,HMCR=0.7,PAR=0.1 tuned. HMS is the number of harmonies preserved in the HM NGHS1 Pm¼2=n andhaslittleeffectontheperformanceofthealgorithm.Ingen- ABHS PAR=0.2;C=15;NGC=20 eral, the larger the HMS is, the lower the convergence speed is. ABHS1 PARmax=0.25;PARmin=0.15;HMCRmax=0.97;HMCRmin=0.95 Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 8 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx Table2 5.Experimentalresultsanddiscussions Descriptionof10low-dimensional0–1knapsackproblems. Problem n Optimum Parameters Alargenumberofexperimentalstudieson0–1knapsackprob- KP1 10 295 v=(95,4,60,32,23,72,80,62,65,46),Vmax lemsareextensivelyinvestigatedand10low-dimensionaland16 =269,p=(55,10,47,5,4,50,8,61,85,87) largescaleinstancesareconsideredtotesttheoptimizationability KP2 20 1024 v=(92,4,43,83,84,68,92,82,6,44,32,18,56, in this section. To evaluate the effectiveness of SBHS, its perfor- 83,25,96,70,48,14,58),Vmax=878,p=(44,46, manceiscomparedwiththestate-of-the-artHSvariantsconsisting 90,72,91,40,75,35,8,54,78,40,77,15,61,17, 75,29,75,63) of 9 continuous and 5 binary variants. The continuous variants KP3 4 35 v=(6,5,9,7),Vmax=20,p=(9,11,13,15) includes IHS (Mahdavi et al., 2007), GHS (Omran & Mahdavi, KP4 4 23 v=(2,4,6,7),Vmax=11,p=(6,10,12,13) 2008), SGHS (Pan et al., 2010), SAHS (Wang & Huang, 2010), KP5 15 481.0694 v=(56.358531,80.874050,47.987304, PSFHS (Geem & Sim, 2010), NGHS (Zou et al., 2011), EHS (Das 89.596240,74.660482,85.894345,51.353496, 1.498459,36.445204,16.589862,44.569231, et al., 2011), NDHS (Chen et al., 2012) and ITHS (Yadav et al., 0.466933,37.788018,57.118442,60.716575), 2012).ThebinaryonesareBHS(Geem,2005),DBHS(Wangetal., Vmax =375,p=(0.125126,19.330424, 2010), NGHS1 (Zou et al., 2010), ABHS (Wang et al., 2013a) and 58.500931,35.029145,82.284005,17.410810, ABHS1 (Wang et al., 2013b). All the computational experiments 71.050142,30.399487,9.140294,14.731285, are conducted in Matlab 7.7 using a PC with Intel(R) Core(TM) 2 98.852504,11.908322,0.891140,53.166295, 60.176397) Quad CPU Q9400 @ 2.66GHz, 3.50GB RAM and Windows XP KP6 10 52 v=(30,25,20,18,17,11,5,2,1,1),Vmax=60, operatingsystem. p=(20,18,17,15,15,10,5,3,1,1) KP7 7 107 v=(31,10,20,19,4,3,6),Vmax=50,p=(70,20, 39,37,7,5,10) 5.1.Experimentalresultsanddiscussions KP8 23 9767 v=(983,982,981,980,979,978,488,976,972, 486,486,972,972,485,485,969,966,483,964, Tomakethecomparisonasfairaspossible,thesettingsforthe 963,961,958,959),Vmax=10000, comparison HS variants follow the original referencesmentioned p=(981,980,979,978,977,976,487,974,970, in previous paragraph. HMSis set to be19 for BHS,50 for SAHS, 485,485,970,970,484,484,976,974,482,962, 961,959,958,857) 10forITHS,30forbothABHSandABHS1,and5forallothercom- KP9 5 130 v=(15,20,17,8,31),Vmax=80,p=(33,24,36, parisonalgorithms.Otherparametersutilizedinourexperiments 37,12) aregiveninTable1. KP10 20 1025 v=(84,83,43,4,44,6,82,92,25,83,56,18,58, It should be noted that the pseudo-random number is used 14,48,70,96,32,68,92),Vmax=879,p=(91,72, 90,46,55,8,35,75,61,15,77,40,63,75,29,75, instead of the low-discrepancy sequences to initialize the HM in 17,78,40,44) SAHS.Theamountofrehearsaliscarriedoutforone-tenthofthe totalgenerationsandthereisnoneedtosetotherparametersin PSFHS.TheHMCR(PAR)valueinSGHSisdistributedwithstandard deviation0.01(0.05)duringthewholeperiod.ABHSusesanadap- Step1: Set parameters HMS and HMCR according to the dimen- tive linearly increasing HMCR defined as Eq. (23) in Wang et al. sionofaparticularproblem. (2013b). Step2: Initialize the HM using Bernoulli stochastic process and For continuous HS variants, the variable space is restricted in repairtheinfeasibleharmoniesthroughtheprofitdensity [0,1]n and the nearest integers from the real numbers emerged based two-stage greedy procedure as discussed in in searching process are served as the binary variables without Section 4.2. Total profits of each harmony are evaluated anychangeontheoriginalrealnumbers.Binarycodingisapplied accordingtotheitemsselected. inotherbinaryHSvariants.Sincethemaximalvolumeoftheknap- Step3: DeterminethemaximaliterationnumberNIandsetcur- sackislimitedin0–1knapsackproblemsandsometimesthetotal rentiterationk=1. volumeoftheitemspackedintheknapsackmayexceedthecon- Step4: Improvise a new harmony xnewðxnew;xnew;...;xnewÞ as 1 2 n straint,theviolationisunacceptableandmustbechecked.Abal- belowandrepairitifinfeasible. ance between the constraint and the objective function value needtobefoundandmaintained.Themostdirectwaytohandle fori=1tondo the constraint is the penalty function method in which feasible ifUð0;1Þ6 HMCR pointsarefavoredoverinfeasiblepointsandthepenaltyoninfea- xniew¼xri1þð(cid:5)1Þ^ðxri1Þ(cid:4)jxbiest(cid:5)xir2j, siblesolutionsisassessedbasedonthedistanceawayfromthefea- %improvisation sible region. This approach utilizes penalty functions to form a else second function to be minimized. For the 0–1 knapsack problem (cid:2)0; if Uð0;1Þ60:5 defined in the introduction, the corresponding penalty function xniew¼ 1; otherwise canbeformedanddescribedasfollows. ! %reinitialization Max FðxÞ¼Xn p (cid:2)x (cid:5)b(cid:2)max 0;Xn v (cid:2)x (cid:5)V endif i i i i max ð12Þ endfor i¼1 i¼1 s:t: x 2f0;1g; i¼1;2;...;n i wherebrepresentsthepenaltycoefficientandissetto1020 forall experimentsinthispaper. Step5: Replace the worst harmony in the HM with xnew, if and onlyifxnew isbetterthantheworstharmony.k¼kþ1. 5.2.Comparisonsonlow-dimensional0–1knapsackproblems Step6: Repeatsteps4–5intheimprovisationprocessuntilNInew candidateharmonieshavebeengenerated. In this section, 10 low-dimensional 0–1 knapsack problems Step7: Output the best harmony vector xbest in the HM as the takenfromZouetal.(2010)andWangetal.(2013a)areadopted optimalsolution. to investigate the performance of our proposed algorithm. The Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx 9 Table3 ResultsofcontinuousHSvariantsonKP1-KP10. IHS GHS SAHS EHS NGHS NDHS SGHS ITHS PSFHS KP1 SR 0.7 1 1 0.1 1 0.52 0.4 0.6 0.12 Best 295 295 295 295 295 295 295 295 295 Median 295 295 295 279 295 295 293 295 246 Worst 246 295 295 173 295 288 241 246 155 Mean 292.4 295 295 267.1 295 293.36 276.92 292.46 240.06 Std 9.14 0 0 30.06 0 2.36 22.3 8.4 39.88 KP2 SR 1 1 1 0.3 1 0.38 0.6 0.78 0.12 Best 1024 1024 1024 1024 1024 1024 1024 1024 1024 Median 1024 1024 1024 1013 1024 1018 1024 1024 987 Worst 1024 1024 1024 855 1024 945 990 995 847 Mean 1024 1024 1024 998.2 1024 1011.68 1017.44 1020.84 975.46 Std 0 0 0 34.36 0 16.98 10.29 7.53 43.57 KP3 SR 0.82 1 1 0.76 1 0.92 0.76 0.86 1 Best 35 35 35 35 35 35 35 35 35 Median 35 35 35 35 35 35 35 35 35 Worst 28 35 35 28 35 28 28 28 35 Mean 33.74 35 35 33.82 35 34.54 33.72 34.52 35 Std 2.72 0 0 2.45 0 1.7 2.58 1.47 0 KP4 SR 1 1 1 0.76 1 1 0.8 0.94 0.38 Best 23 23 23 23 23 23 23 23 23 Median 23 23 23 23 23 23 23 23 22 Worst 23 23 23 18 23 23 19 19 12 Mean 23 23 23 22.14 23 23 22.38 22.88 21.08 Std 0 0 0 1.65 0 0 1.4 0.59 2.52 KP5 SR 0.68 1 1 0.18 1 0.7 0.2 0.88 0.08 Best 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07 Median 481.07 481.07 481.07 431.71 481.07 481.07 437.93 481.07 410.79 Worst 437.95 481.07 481.07 348.94 481.07 432.5 367.97 437.95 278.3 Mean 468.77 481.07 481.07 430.36 481.07 474.37 442.77 478.15 398.7 Std 19.45 0 0 32.23 0 13.69 25.17 10.35 47.15 KP6 SR 0.6 1 1 0.52 1 0.46 0.48 0.68 0.58 Best 52 52 52 52 52 52 52 52 52 Median 52 52 52 52 52 51 51 52 52 Worst 47 52 52 43 52 43 46 45 47 Mean 50.86 52 52 50.18 52 50.5 49.92 50.94 51.02 Std 1.65 0 0 2.42 0 1.95 2.29 1.92 1.46 KP7 SR 0.14 1 1 0.1 1 0.68 0.02 0.22 0.32 Best 107 107 107 107 107 107 107 107 107 Median 105 107 107 93 107 107 93 105 100 Worst 93 107 107 81 107 93 79 93 69 Mean 100.66 107 107 95.26 107 105.34 93.36 102.68 98.12 Std 5.84 0 0 9.19 0 3.67 9.65 5.3 9.76 KP8 SR 0.8 0.92 1 0.06 1 0.34 0.2 0.76 0 Best 9767 9767 9767 9767 9767 9767 9767 9767 9765 Median 9767 9767 9767 9759 9767 9765 9762 9767 9748 Worst 9762 9762 9767 9630 9767 9755 9748 9761 9611 Mean 9766.32 9766.84 9767 9754.16 9767 9764.5 9761.44 9766.1 9723 Std 1.52 0.74 0 19.35 0 2.98 4.25 1.73 51.83 KP9 SR 1 1 1 0.68 1 1 0.92 0.96 0.66 Best 130 130 130 130 130 130 130 130 130 Median 130 130 130 130 130 130 130 130 130 Worst 130 130 130 106 130 130 109 118 93 Mean 130 130 130 125.2 130 130 128.86 129.52 123.66 Std 0 0 0 7.52 0 0 4.06 2.38 10.07 KP10 SR 0.98 1 1 0.22 1 0.44 0.58 0.68 0.02 Best 1025 1025 1025 1025 1025 1025 1025 1025 1025 Median 1025 1025 1025 1005 1025 1019 1025 1025 956 Worst 1019 1025 1025 953 1025 930 987 1005 800 Mean 1024.88 1025 1025 999.52 1025 1013.46 1018.12 1021.86 946.82 Std 0.85 0 0 22.23 0 20.96 10.39 5.43 56.44 NS 10 10 10 10 10 10 10 10 9 MSR 3 9 10 0 10 2 0 0 1 dimension and parameters of these test problems are listed in measures,i.e.,‘‘SR’’,‘‘Best’’,‘‘Median’’,‘‘Worst’’,‘‘Mean’’and‘‘Std’’, Table2. areusedtoevaluateeachHSalgorithm.Sincetheoptimumvalues Themaximumnumberofiterationsissetto10,000forallbut ofthose10problemsareknown,itispossibletocalculatethesuc- ABHSandDBHSforwhich500istaken.50independentrunsare cessrate(SR)among50runsinreachingtheappointedoptima.The conducted to collect the statistical results. In this paper, 6 best, median and worst values are chosen from the total results Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015 10 X.Kongetal./ExpertSystemswithApplicationsxxx(2015)xxx–xxx Table4 ResultsofbinaryHSvariantsonKP1-KP10. KP1 KP2 KP3 KP4 KP5 KP6 KP7 KP8 KP9 KP10 MSR BHS SR 0.78 0.92 0.98 1 0.96 0.9 0.56 0.82 0.98 0.94 1 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 107 9767 130 1025 Worst 293 1018 28 23 437.94 50 93 9762 118 1019 Mean 294.58 1023.52 34.86 23 479.55 51.84 104.34 9766.34 129.76 1024.64 Std 0.81 1.64 0.99 0 7.59 0.51 4.5 1.52 1.7 1.44 DBHS SR 1 1 1 1 1 1 1 1 1 1 10 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 107 9767 130 1025 Worst 295 1024 35 23 481.07 52 107 9767 130 1025 Mean 295 1024 35 23 481.07 52 107 9767 130 1025 Std 0 0 0 0 0 0 0 0 0 0 NGHS1 SR 1 1 1 1 1 0.96 1 0.94 1 1 8 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 107 9767 130 1025 Worst 295 1024 35 23 481.07 51 107 9765 130 1025 Mean 295 1024 35 23 481.07 51.96 107 9766.88 130 1025 Std 0 0 0 0 0 0.2 0 0.48 0 0 ABHS SR 1 1 1 1 1 1 1 1 1 1 10 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 107 9767 130 1025 Worst 295 1024 35 23 481.07 52 107 9767 130 1025 Mean 295 1024 35 23 481.07 52 107 9767 130 1025 Std 0 0 0 0 0 0 0 0 0 0 ABHS1 SR 0.86 0.96 1 0.98 0.98 0.84 0.48 0.82 1 1 3 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 105 9767 130 1025 Worst 293 1018 35 22 475.48 49 96 9762 130 1025 Mean 294.72 1023.76 35 22.98 480.96 51.68 105.18 9766.44 130 1025 Std 0.7 1.19 0 0.14 0.8 0.82 2.95 1.33 0 0 SBHS SR 1 1 1 1 1 1 1 1 1 1 10 Best 295 1024 35 23 481.07 52 107 9767 130 1025 Median 295 1024 35 23 481.07 52 107 9767 130 1025 Worst 295 1024 35 23 481.07 52 107 9767 130 1025 Mean 295 1024 35 23 481.07 52 107 9767 130 1025 Std 0 0 0 0 0 0 0 0 0 0 Table5 ResultsofranksumtestsforSBHSwithotherHSvariants. SBHS IHS GHS SAHS EHS NGHS NDHS SGHS ITHS PSFHS BHS DBHS NGHS1 ABHS ABHS1 KP1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 KP2 0 0 0 1 0 1 1 1 1 1 0 0 0 0 KP3 1 0 0 1 0 0 1 1 0 0 0 0 0 0 KP4 0 0 0 1 0 0 1 0 1 0 0 0 0 0 KP5 1 0 0 1 0 1 1 1 1 0 0 0 0 0 KP6 1 0 0 1 0 1 1 1 1 1 0 0 0 1 KP7 1 0 0 1 0 1 1 1 1 1 0 0 0 1 KP8 1 0 0 1 0 1 1 1 1 1 0 0 0 1 KP9 0 0 0 1 0 0 1 0 1 0 0 0 0 0 KP10 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 6 0 0 10 0 7 10 8 9 5 0 0 0 4 0 4 10 10 0 10 3 0 2 1 5 10 10 10 6 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 obtained in 50 independent runs and the mean values and stan- 9,767.LookingattheSRfigures,onlySAHSandNGHShave100% darddeviationsofthemareintroducedtoestimatetherobustness successratesforallproblems,i.e.,theoptimumsolutionforeach ofthealgorithms. instance is reached in each run. EHS, SGHS and ITHS have 100% Theresultsobtainedbythese9continuousHSvariantsarepre- successratesfor8outof10problems.Moreover,thesuccessrates sentedinTable3whiletheresultsobtainedbyanother6binaryHS ofthese3algorithmsareverylow,forexample,SGHSachievesthe variants including SBHS proposed in this paper are presented in optimumforKP7onlyoncein50runs.GHShas100%successrates Table 4. It should be noted that HMCR in SBHS is set to 0.95 for for9outof10instancesexceptKP8forwhichithasasuccessrate thelow-dimensional0–1knapsackproblems. of92%.IHS,NDHSandPSFHShave100%successratesfornomore As shownin Table 3, all continuousHS variantsexcept PSFHS than3problems. achievetheoptimumforanylow-dimensional0–1knapsackprob- From the above analysis, 9 continuous HS variants can be lems.PSFHSonlyachievesanoptimumvalueof9,765forKP8in50 roughly divided into 3 groups: the first group consisting of GHS, independent runs. This is different from the optimum value of SAHS and NGHS, the second group consisting of IHS, NDHS and Pleasecitethisarticleinpressas:Kong,X.,etal.Asimplifiedbinaryharmonysearchalgorithmforlargescale0–1knapsackproblems.ExpertSystemswith Applications(2015),http://dx.doi.org/10.1016/j.eswa.2015.02.015

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.