ebook img

A Simple Scheme for Quantum Non Demolition of Phonons Number of the Nanoelectromechanics Systems PDF

3.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Simple Scheme for Quantum Non Demolition of Phonons Number of the Nanoelectromechanics Systems

ASIMPLESCHEMEFORQUANTUMNONDEMOLITIONOFPHONONSNUMBEROFTHE NANOELECTOMECHANICSSYSTEMS F. R. de S. Nunes1, J. J. I. de Souza1, D. A. Souza1, R. C. Viana2, e O. P. de Sá Neto1 1 CoordenaçãodeCiênciadaComputação,UniversidadeEstadualdoPiauí,CEP:64202220,Parnaíba,Piauí,Brazil.and 2 Centro Cirúrgico do Hospital Dirceu Arcoverde, Parnaíba, Piauí, Brazil. (Dated:18deJaneirode2016) Inthisworkwedescribeaschemetoperformacontinuousovertimequantumnondemolition(QND)mea- surementofthenumberofphononsofananoelectromechanicalsystem(NEMS).Ourschemealsoallowsusto describethestatisticsofthenumberofphonons. PACSnumbers: 6 I. QUANTUMMECHANICSMEASUREMENTPROBLEM system*CITAR*variesdependingontheeigenvectors 1 oftheobservablebeingmeasured; 0 2 In general, the measurement of an observable in a given 2. TheoperatoroftheobservableO mustcommutewith quantum system disturbs its state, such that the observable S n H . Thisobservablecannotbechangedduringtheme- a variance is greater in a future measurement [1]. This is ea- I asurementprocess; J sily illustrated by a simple system, a harmonic oscillator of 4 massmandmomentumoperatorpandinathermalstate, as 3. ∂HS (cid:54)= 0. This is the main feature of QND measu- 1 previously considered by references [2]-[3]. It’s possible to ∂OC S initially make a precise measurement in the x position, the rement: after the interaction of S with A the conju- h] canonically conjugate operator to moment p. However, due gateobservableOSC ischangeduncontrollably. Sothat p to Heisenberg’s uncertainty principle, δp ≥ (cid:126)/(2δx), and p this increase in variance does not affect the observa- ble being measured, we have to demand that the Ha- - is disturbed. However, in an evolution following this mea- nt surement, p induces a variation in x: x˙ = [x,p2/2m]/i(cid:126), miltonianofthesystemdoesnotdependontheconju- gateobservable. Soamorerestrictivewayistorequire a resulting in, x(t) = x(0)+p(0)t/m. Therefore, using the u uncertaintyrelationtocalculatetheuncertaintyinxforfuture [HS,OS]= 0,becausethentheobservablebeingmea- q measurements (δx(t))2 ≥ (δx(0))2 +((cid:126)/2mδx(0))2t2, we suredisaconstantofmovement. [ concludethatpositionandmomentumareuncorrelated. The 1 measurementapparatusactedrandomlydisruptingtheobser- v vablebeingmeasured. III. MODEL 0 5 ThecapacitivecouplingbetweenQuantumBit(Qubit)and 7 II. PROTOCOLTOMEASUREGENERALQND nanoelectromechanical system (NEMS) [6]-[7] is illustrated 3 0 in the figure 1. In quantum bit notation, the Hamiltonian of . The Quantum non demotion (QND) measurement is cha- theBoxofCooperPairs(??)iswrittenas 1 0 racterizedasonethatcanbeperformedwithoutdisturbingthe E 16 oobfstherevsaybslteemstaSte.isIinnfaeQrreNdDbymmeaesausruerminegnta,nthoebsoebrsvearbvlaebOleOoSf Hqb =(E1−E0)σz− 2Jσx, (2) A : an auxiliary system A, without disturbing the next evolution v whereσx =|1(cid:105)(cid:104)0|+|0(cid:105)(cid:104)1|,σz =|0(cid:105)(cid:104)0|−|1(cid:105)(cid:104)1|,andeisthe Xi oSfrOemS.aiAnsftearnaeifigneintestnautemobfeOrof.successivestepsthefinalstate eletroncharge.En =2EC(n−ng)2isthechargingenergyof r Formally,ifwehavethetoStalHamiltonian: ncooperpairs,withEC =e2/2C(cid:80),C(cid:80) =CN+Ccpb+CJ. a Also,n =n +n ,wheren =C V /2eisthegate g N cpb cpb cpb cpb charge, C is the capacitance and V the potential diffe- H = H +H +H , (1) cpb cpb S A I rence of the Cooper pair box. n = C V /2e, is the gate N N N charge, C is the capacitance and V is the potential diffe- with H being the system Hamiltonian, H being the ap- N N S A renceofNEMS.E isthecapacitiveenergyofQubitJoseph- paratus Hamiltonian, and H being the Hamiltonian of the J I sonjunction.Therefore,thenecessarychargingenergyforthe apparatus-system interaction. The QND measurement O S transitionofoneCooperpairwillbe: mustsatisfythefollowingproperties: 1. ∂∂OHSI (cid:54)= 0and[OA,HI] (cid:54)= 0. Thisconditionisbecause En+1−En = 2EC(cid:2)(n+1−ng)2−(n−ng)2(cid:3), wewanttomeasureO throughO . Thisimpliesthe S A interactionHamiltonianshouldbeafunctionofO and forn=0 S thatO variesaccordingly,tointeractwiththesystem. A E −E = 2E (1−2n ) Infact,thisconditionmustbeobservedforanytypeof 1 0 C g measurement, since it simply requires that the pointer =2E (1−2n −2n ) C N cpb 2 AssumingsmallNEMSoscillationamplitude,wegettheex- whereλ=g/∆,∆=ω−ν ,ν =E /(cid:126)andX =b†σ + a a J − pressionCN = CN(0)+(∂∂CxN)x,withxbeingtheNEMS’s bσ+resultsintheefectiveHamiltonian flexionaxisdeformationposition.Thusthecapacitiveinterac- tionbetweentheQubitandNEMSmodeis: (cid:20) g2 (cid:21) (cid:126)(cid:20) g2(cid:21) H ≈ (cid:126) ω+ σ b†b+ ν + σ . (8) H = (cid:126)gσz(b+b†), (3) eff ∆ z 2 a ∆ z Q−N (cid:113) Now,withtheequationsofdynamicsofthedensityoperator, where, g = 2m(cid:126)ω ×[4nN(0)EC(∂∂CxN)]/((cid:126)CN), and (cid:126) is thePlanckconstantdividedby2π. −i γ TheCompleteHamiltonianforthismodelis: ρ˙ = (cid:126) [Heff,ρ]+κD[b]+γD[σ−]+ 2ϕD[σz] H = −EJσx+(cid:126)ωb†b+(cid:126)gσz(cid:0)b+b†(cid:1). (4) = Lρ (9) |0(cid:105),|1(cid:105) 2 whereD[α]=(2αρα†−α†αρ−ρα†α)/2. IV. RESULTS Withthiswecancalculethecorrelation (cid:104)σ (t)σ (0)(cid:105) = Tr(cid:2)σ eLt(|+(cid:105)(cid:104)−|)(cid:3), (10) − + s − andfinallytheQubitabsorptionspectrum. 1 (cid:90) S(ω) = dteiωt(cid:104)σ (t)σ (0)(cid:105) . (11) 2π − + s − WeusedtheQutip[?]packagetoobtainnumericalresultsfor thecorrelation(fig. 2.a), spectrum(fig. 2.b), anditsstatistic distribution(fig. 2.c). Forourpresentcalculationweusedthe Qubitintheexcitedstate,andtheNEMSinthevacuumstate, with the number of thermal occupation of its reservoir being equaltoone. Figura1:SchematicModel. However, in this measurement protocol QND that measu- resthenumberofphonos,cantoconducetheQubitStarkfre- TheHamiltonianH iswrittenintheCooperpairbasis. |0(cid:105),|1(cid:105) quence displacement in ν = ν +ng2/∆, followed by the However,changingtheatomicbasistothenewrepresentation, n a independentmeasureofQubitstate, oncethatthenumberof σz →σx,σx →−σz, (5) phonosisnotchangedinthisprocess. theHamiltoniantermsH become: |0(cid:105),|1(cid:105) H = EJσz+(cid:126)ωb†b+(cid:126)gσx(cid:0)b+b†(cid:1) (6) V. DISCUSSION |−(cid:105),|+(cid:105) 2 withσx =|+(cid:105)(cid:104)−|+|−(cid:105)(cid:104)+|andσz =|−(cid:105)(cid:104)−|−|+(cid:105)(cid:104)+|. Motivatedbyaseteofdiscovery[4]-[5]-[6]-[7]-[8],weex- ploredanelectromechanicalinteractioninahighlydispersive Making the rotation wave approximation to the Hamilto- regimeinpromotingforQNDmeasurementscheme.Wehave nian(6),wehave demonstrated that the spectrum of the phonons of NEMS in H˜ =(cid:126)ωb†b+ EJσz+(cid:126)g(cid:0)σ b†+σ b(cid:1), (7) the Qubit state resolution, thereby have access to each num- 2 − + berofstateandstatisticsofBosen-Einsteisthisressoandor. where, σ+ = |+(cid:105)(cid:104)−|, σ = σ†, |−(cid:105) is the fundamental − + atomicstate,|+(cid:105)istheexcitedatomicstate. For our case, considering a tightly dispersive regime, VI. ACKNOWLEDGEMENTS we can to expand the Hamiltonian with a Baker-Campbell- Hausdorasfollows, PartofthecalculationswereperformedwiththeQuantum OpticsToolbox.O.P.deSáNetoisgratefultoLeonardoDan- (cid:104) (cid:105) λ2 (cid:104)(cid:104) (cid:105) (cid:105) e−λXH˜eλX = H˜+λ H˜,X + H˜,X ,X +... tasMachadoforhelpfuldiscussions. 2! 3 (a) (b) (c) Figura 2: (a) Excited states correlation in time function, for χ = g2/∆ >> κ,γ; (b) Qubit absorption spectrum given resolution numberstatesofNEMSintermalstate;(c)Visualizationofthequan- tumstates. [1] D.F.WallseGerardJ.Milburn.Quantumoptics,2oedição,Edi- (2006). toraSpringer(2007). [6] MD LaHaye, O Buu, B Camarota, KC Schwab, Approaching [2] NETO, O. P. DE SÁ ; DEOLIVEIRA, M. C. ; MILBURN, G. the quantum limit of a nanomechanical resonator, Science 304 J.,Temperaturemeasurementandphononnumberstatisticsofa (5667),74-77(2004). nanoelectromechanicalresonator.NewJournalofPhysics,v.17, [7] MDLaHaye,JSuh,PMEchternach,KCSchwab,MLRoukes, p.093010,2015. Nanomechanicalmeasurementsofasuperconductingqubit,Na- [3] G.J.MilburnandD.F.Walls,Quantumnondemolitionmeasu- ture459(7249),960-964(2009). rementsviaquadraticcoupling,Phys.Rev.A28,2065,1983. [8] Jay Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin, and R. [4] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. J. Schoelkopf, Protocols for optimal readout of qubits using a Gambetta,A.Blais,L.Frunzio,J.Majer,B.Johnson,M.H.De- continuousquantumnondemolitionmeasurement,Phys.Rev.A voret,S.M.GirvineR.J.Schoelkopf.Resolvingphotonnumber 76,012325(2007). statesinasuperconductingcircuit,Nature445,515(2007). [9] J. R. Johansson, P. D. Nation, and F. Nori: "QuTiP: An open- [5] Jay Gambetta, Alexandre Blais, D. I. Schuster, A. Wallraff, L. sourcePythonframeworkforthedynamicsofopenquantumsys- Frunzio,J.Majer,M.H.Devoret,S.M.Girvin,andR.J.Scho- tems.",Comp.Phys.Comm.183,1760?1772(2012). elkopf, Qubit-photoninteractionsinacavity: Measurementin- duceddephasingandnumbersplitting,Phys.Rev.A74,042318

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.