ebook img

A simple prescription for simulating and characterizing gravitational arcs PDF

0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A simple prescription for simulating and characterizing gravitational arcs

Astronomy&Astrophysicsmanuscriptno.furlanetto c ESO2013 (cid:13) January24,2013 A simple prescription for simulating and characterizing gravitational arcs CristinaFurlanetto1,2,Bas´ılioX.Santiago1,2,Mart´ınMakler3,2,Cle´ciodeBom3,2,CarlosH.Brandt4,3,AngeloFausti Neto2,PedroC.Ferreira5,LuizNicolacidaCosta6,2,andMarcioA.G.Maia6,2 1 DepartamentodeAstronomia,UniversidadeFederaldoRioGrandedoSul,Av.BentoGonc¸alves,9500,PortoAlegre,RS91501- 970,Brazil 2 Laborato´rioInterinstitucionaldee-Astronomia,RuaGen.Jose´Cristino,77,RiodeJaneiro,RJ20921-400,Brazil 3 3 CentroBrasileirodePesquisasF´ısicas,RuaDr.XavierSigaud150,RiodeJaneiro,RJ22290-180,Brazil 1 4 Laborato´rioNacionaldeComputac¸a˜oCient´ıfica,Av.Getu´lioVargas,333,Petro´polis,RJ25651-075,Brazil 0 5 DepartamentodeF´ısica,UniversidadeFederaldoRioGrandedoNorte,CampusUniversita´rio,Natal,RN59072-970,Brazil 2 6 Observato´rioNacional,RuaGen.Jose´Cristino,77,RiodeJaneiro,RJ20921-400,Brazil n Preprintonlineversion:January24,2013 a J ABSTRACT 3 2 Simplemodelsofgravitationalarcsarecrucialforsimulatinglargesamplesoftheseobjectswithfullcontroloftheinputparameters. These models also provide approximate and automated estimates of the shape and structure of the arcs, which are necessary for ] detecting and characterizing these objects on massive wide-area imaging surveys. We here present and explore the ArcEllipse, a O simpleprescriptionforcreatingobjectswithashape similartogravitational arcs.Wealsopresent PaintArcs,which isacodethat C couplesthisgeometricalformwithabrightnessdistributionandaddstheresultingobjecttoimages.Finally,weintroduceArcFitting, whichisatoolthatfitsArcEllipsestoimagesofrealgravitationalarcs.Wevalidatethisfittingtechniqueusingsimulatedarcsandapply . h ittoCFHTLSandHSTimagesoftangentialarcsaroundclustersofgalaxies.OursimpleArcEllipsemodelforthearc,associatedto p aSe´rsicprofileforthesource,recoversthetotalsignalinrealimagestypicallywithin10%-30%.TheArcEllipse+Se´rsicmodelsalso - automaticallyrecovervisualestimatesoflength-to-widthratiosofrealarcs.Residualmapsbetweendataandmodelimagesreveal o theincidence of arcsubstructure. Theymay thusbeused asadiagnosticforarcsformed bythemergingof multipleimages. The r t incidenceofthesesubstructuresisthemainfactorthatpreventsArcEllipsemodelsfromaccuratelydescribingreallensedsystems. s a Keywords.gravitationallensing:strong–methods:analytical [ 2 v 1. Introduction Survey (DES)1, will provide large samples of gravitational arc 1 systems that will enable numerous statistical studies. Because 7 of the large area, it will be virtually impossible to visually in- 7 Gravitational lensing is an important tool for a variety of as- spectthewholesurveytolookforgravitationallylensedsources. 2 trophysical applications. In particular, gravitationally lensed Therefore,automateddetectionmethodsareultimatelyneeded. 1. arcs produced by massive galaxy clusters can provide infor- There are a few proposals for automated detection al- 1 mation on their total inner mass distribution (Hattorietal. gorithms in the literature, although none of them is con- 2 1999; Guzik&Seljak 2002; Mandelbaum&Seljak 2006; Treu sidered as the default algorithm (e.g., Lenzenetal. 2004; 1 2010; Kneib&Natarajan 2011). Statistical analyses of grav- Horeshetal. 2005; Seidel&Bartelmann 2007; Cabanacetal. v: itational arcs provide constraints on the evolution of struc- 2007; Moreetal. 2012; Bometal. 2012). Moreover, most of i ture with cosmic time and on the cosmological parameters these algorithms are not fully characterized in the sense that X (Hilbertetal. 2007; Vuissozetal. 2007; Kochaneketal. 2006; they do not have a determined efficiency and contamination. r Meneghettietal. 2004; Golseetal. 2002; Bartelmannetal. These quantities could be quantified by using samples of im- a 1998; Estradaetal. 2007; Hennawietal. 2008; Kauschetal. ageswithsimulatedarcs,whichwouldactastruthtablesforthis 2010;Moreetal.2012).Becauseofthefluxamplificationasso- type of study. Furthermore, simulated arc images are useful to ciatedtogravitationallensing,thesearcsarealsoaprobeforthe testincontrolledstudiesarcmeasurementtoolsandimagepre- high-redshiftuniverse, which is unaccessible throughunlensed processingalgorithmsusedtoenhancetheirdetectability. sources. Currently,theliteraturelackssufficientlydetailedworksre- latedtothefastsimulationandcharacterizationofgravitational On the other hand, gravitational arcs are very rare objects, arcs. Arc simulations have mostly been based on ray-tracing since each square degree of the sky contains approximately techniquesgivenadistributionofsourceandlensproperties.The one galaxy cluster massive enough to produce arcs by grav- commonpracticeistomeasurethearc’slengthL,widthW,and itational lensing (Gladders&Yee 2005). So far an order of its distance to the center of the lens. Few authorshave tried to hundreds of these objects were detected (Luppinoetal. 1999; constrain their shapes and orientation. Miralda-Escude (1993) Zaritsky&Gonzalez 2003; Gladdersetal. 2003; Sandetal. introducedtheideaofmeasuringLbyfittingacirclearcthrough 2005;Cabanacetal.2007;Boltonetal.2008).Futurewide-field surveys with sub-arcsecond seeing, such as the Dark Energy 1 http://www.darkenergysurvey.org/ 1 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs thearccenteranditsextremes.Bartelmann&Weiss(1994)have thetwoextremepointswhere∆r =0.ThisleadstoL=2a.The pioneeredtheideaofapproximatinggravitationalarcsasanel- width at ∆θ = 0 is givenby W = 2b. Therefore,the length-to- lipse whose major axis is equal to L (the so-called ellipse fit- widthratiooftheArcEllipseissimplygivenasL/W =a/b. ting). However, we are not aware of any preceding study that In polar coordinates, if the origin of the coordinate system hasintroducedasurfacebrightnessdistributiontosimulateand correspondstothecenterofcurvatureoftheArcEllipse,wehave characterizegravitationalarcs. ∆r =r r and∆θ=θ θ ,whereθ isthepositionangleofthe c 0 0 − − Motivated by these questions, we developed a code called ArcEllipsecenter,suchthat PaintArcs which draws geometric figures that mimic arcs and adds them to images. It currently uses the prescription of an r (θ θ) 2 ArcEllipse,whichisananalyticalexpressionforthedeformation r =rc b 1 c 0− . (3) ± ± s − a ofanellipsesuchthatoneofitsmainaxisbecomesacircleseg- " # ment.Onlyahandfuloffullycontrollableparametersgointothis TheArcEllipse is thereforedefinedby fourparameters:the simple prescription.We use the ArcEllipse in conjunctionwith length2a,thewidth2b,thecurvatureradiusr ,andtheposition aSe´rsicprofiletotakeintoaccountthesurfacebrightnessdistri- c angleθ . bution of the simulated arc. We also present ArcFitting, which 0 Fromthesolutionabove,itissimpletoshowthattheareaof isacodethatusestheArcEllipse+Se´rsicmodeltoestimatethe theArcEllipseisgivenby morphologicalandstructuralparametersofrealarcs. The prescriptions that we adopt here for the shape and θ0+a/rc r+(θ) structure of arcs are certainly a simplification of real gravita- A = rdrdθ= ArcEll tional arcs, which are often formed by the merging of individ- Zθ0−a/rc Zr−(θ) ual multiple images of a source. One such situation are the gi- θ0+a/rc r+(θ)2 r (θ)2 ant arcs formed when a source is close to the cusp of a caus- = − − dθ= tic. Particularly when real arcs are imaged in high resolution, Zθ0−a/rc (cid:16) (cid:17)2(cid:16) (cid:17) theArcEllipseshapewithaSe´rsicprofilewillnotaccommodate πLW = πab= , (4) their substructures. Our goal here is to exactly to quantify the 4 observeddiscrepanciesfromasimplemodeland,asaresult,as- i.e.,identicaltothatofanellipsewithsemi-axesaandb. sesswhichimprovementsaremostpromisingandtowhatextent Inordertorepresentanarc,wemustimposesomelimitson these simple models can be used in controlled experimentsfor theArcEllipseparameterssuchasb<r ,toensurethearcshape, automaticarcdetectionalgorithms. c anda<2πr ,toavoidclosingtheArcEllipseintoaring. This paper is organized as follows. In 2 we present the c § ArcEllipse, including the addition of a surface brightness pro- file and asymmetry. In 3 we describe the PaintArcs code, ac- 2.1.SurfacebrightnessprofileforArcEllipses § countingforimagepixelation,andincludingseeingeffectsand To create a surface brightness map with ArcEllipse isophotes, Poisson noise in the simulated image. The ArcFitting methods fromagivenradialprofile,weneedtosimplyreplacetheargu- are presented in 4 and their application to fit real images are § mentinaradialprofilebythefunction presentedin 5.Finally,in 6,wediscusstheresultsandfuture § § work. r (θ θ ) 2 r r 2 R= c − 0 + − c , (5) s a b 2. ArcEllipse ! (cid:18) (cid:19) which is constantoverArcEllipses. Notice thatin this case the TheArcEllipseconsistsofasimpleideatoanalyticallyexpress ArcEllipsemustbe centeredat the origin(centerof curvature). arcshapesasthedistortionofanellipsesuchthatoneofitsmain Wecanrewritethisexpressionas axes is bent into an arc of a circle. The resulting geometrical figurecanbeusedtocreateasurfacebrightnessmapthatmimics 1 1 agravitationalarc. R= [rc(θ θ0)(1 e)]2+(r rc)2 = Rprof, (6) b − − − b Anordinaryellipseisformedbythesetofpointswhosedis- p tancestothexandyaxes,weightedbythesemi-axes,aandb, wheree=1 b/aistheellipticity. − satisfy x 2 y 2 2.2.AsymmetricArcEllipse + =1. (1) a b Sincethegravitationalarcsingeneralarenotsymmetric,wecan (cid:18) (cid:19) (cid:18) (cid:19) Followingthesameidea,wecandefinetheArcEllipseasthe alsoaddsomeasymmetrytotheArcEllipsemodel.Thesimplest setofpointswhosedistancesfromapointonthecircumference waytoimplementthatistoconsidertwodifferentvaluesforthe alongthetangentialdirection(rc∆θ)andalongtheradialdirec- semi-major axis, a1 and a2, preserving the semi-minor axis as tion(∆r)satisfy b; in other words, two ArcEllipses with different a matched at θ . Points whose angle θ are larger that θ will therefore have 0 0 r ∆θ 2 ∆r 2 ellipticity c + =1, (2) a b b ! ! e =1 , (7) 1 where rc is the radius of curvature of the circle (and thus the − a1 curvatureradiusofthearc). whereaspointswhoseangleθaresmallerthatθ willhave Thissimple expressionindeedgivesa shapethatresembles 0 an arc, as we can see in the left panel of Fig. 1. We define the b e =1 . (8) lengthofanArcEllipseasthelengthofthearcsegmentbetween 2 − a 2 2 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs Fig.1.GeometricalfiguresproducedbytheArcEllipse.Leftpanel:symmetricArcEllipsecreatedwithe = 1 b/a= 0.9,b = 1pixel,r = 15pixels,andθ = 45o.Rightpanel:asymmetricArcEllipsecreatedwith e = 0.9,e −= 0.75, c 0 1 2 withtheremainingparametersasintheleftpanel. 2194697 Nowthelengthisgivenby +O(n 5), − − 30690717750n4 1 1 L=a1+a2 =b 1 e + 1 e (9) whichis betterthanonepartin 10−4 forn > 0.36.Note that − 1 − 2! if r is defined in a differentway≈, the expressionfor b will be e n andEq.(4)stillholds. different. IntherightpanelofFig.1weshowanexampleofanasym- For an arc created with ArcEllipse we choose b = r . In e metricArcEllipse.Ithasthesamevaluesofr andθ asthesym- otherwords,wedistortthecircularprofileonlyinthetangential c 0 metricarcshownontheleftpanel.Butnowwesete =0.9and direction,preservingitseffectivesize(r )intheradialdirection. 1 e e =0.75. Inthiscase,theArcEllipsewithSe´rsicprofileisgivenby 2 I(r,θ) = I R (r,θ) = (11) S prof 3. PaintArcs:animplementationofArcEllipse (cid:16) (cid:17) [r (θ θ )(1 e)]2+(r r )2 1/n PaintArcsis a code written in Pythonthatimplementsa model = I exp b c − 0 − − c , 0 n bttorroignsihomtmnueilcasastelpiromobfiajeglecetsws.hwItoispteherrafaordcrimamlsaotrrhgpeuhmodlieogngittyailsaizgnaidtvieoandndbosyfttthhheeemEsuqtor.f(aa6cs)e-. whereI0 =Ieebn.− p re   Italsoperformspointspreadfunction(PSF)convolution,toadd We need to normalizethe intensity of the ArcEllipse I(r,θ) theeffectoftheatmosphereandinstrument,andaddstheeffect suchthatthetotalsignalofthearc,givenby of Poisson fluctuations on the image counts. The code makes use offunctionsfromSLtools2, a libraryforimage processing, = 2π ∞I(r ,θ)r dr dθ, (12) ′ ′ ′ ′ ′ catalogmanipulation,andstrong-lensingapplications. L Z0 Z0 PaintArcs is currently set to use the ArcEllipse model to isequaltothetotalsignalofthearcintheimage,whichisgiven mimicgravitationalarcshapes.Butitisbuiltinamodularway by that can accommodate other prescriptions. The surface bright- ness distribution currently uses the Se´rsic (1968) model, for Stotal =10−0.4(m−mzpt), (13) whichtheintensityprofileisgivenby where m and m are the totalmagnitudeof the arc to be sim- zpt r 1/n ulated and the zero point of the magnitude scale of the image. I (r)=I exp b 1 , (10) S e − n re! −  Therefore,theconstantI0canbefoundas where Ie is the intensity at theeffective radius re that encloses I0 = 10−0.4(m−mzpt) .(14) halfofthetotallightfromthemodel.Theconstantb isdefined 1/n pinrotfierlem.sThoefvthaeluepaorfabmectaenr bne, cwohmicphutdeedsncruimbeesritchaellyshnoarpoebtoafinthede 02π 0∞exp−bn"√[rc(θ′−θ0)(1re−e)]2+(r′−rc)2# r′dr′dθ′ using analytical exprenssions that approximate its value. In this R R   workweusetheapproximationofCiotti&Bertin(1999),given For asymmetric ArcEllipses, the denominator of Eq. 14 shouldbereplacedbya sum of two integrals,associated to the by twovaluesofellipticity(e ande ,see 2.2),eachoneoneither 1 2 § 1 4 46 131 sideofθ0. bn(n) ≈ 2n− 3 + 405n + 25515n2 + 1148175n3 − To illustrate the method presented above, we show an arc created followingthe processdescribed abovein the left panel 2 TheSLtoolslibraryisavailableathttp://che.cbpf.br/sltools/ ofFig.2. 3 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs Fig.2. Example of an ArcEllipse created by PaintArcs using a Se´rsic profile. The left panel shows the pure arc, created using r = 17 ,r = 0.6 ,θ = 40o,n = 1,e = 0.85,e = 0.75,m = 21,andm = 31.83.Thepixelscaleoftheimageis0.154 .The c ′′ e ′′ 0 1 2 zpt ′′ middlepanelshowstheapplicationofa Gaussianconvolution(FWHM=1.1 ) onthepurearcimage.Therightpanelshowsthe ′′ effectofaddingPoissonnoisetotheconvolvedarc. 3.1.Pixelation 3.2.Addingtheseeingeffect To create a digitizedimage froma continuousintensity model, To add the seeing effect to a simulated image created with weneedtointegratetheobjectsignaloveradiscretenumberof PaintArcs,weconvolveitwitha2DnormalizedGaussianPSF, pixels. We thus need to controlthe changein signal caused by givenby thepixelationandtrytokeepitlowerthansometolerancevalue, ǫ.Inatypicalpositioninourimage,closetotheSe´rsiceffective exp x2 + y2 radiusr ,theprofileintensityisexpectedtovaryby PSF =g(x,y)= − 2σ2x 2σ2y , (18) e (cid:26) (cid:20) (cid:21)(cid:27) exp x2 + y2 dxdy − 2σ2x 2σ2y ∂I R R (cid:26) (cid:20) (cid:21)(cid:27) dI = ∂rr=rc+re,θ=θ0δ, (15) wThheeroepσtixonanσdσ,yaσreathlleowstsanadnaerdllidpetivciaaltiGonauinssxiaann.dydirections. x y Assuminga circularGaussian(σ = σ = σ ),thestandard x y where δ is the linearsize of the pixel.Therefore,the fractional deviation can be obtainedfrom the FWHM of an actualimage errorinthepixelintensityis through FWHM =2√2ln2σ. (19) dI δ ∂I = . (16) I I ∂rr=rc+re,θ=θ0 WeimplementedaPythonmoduletoconvolveimageswith (r=rc+re,θ=θ0) aGaussiankernelwhosesizeisamultipleofthestandarddevi- ation(n ). Wekeepthiserrorwithinatolerancelimitbyestimatingthe σ In the middle panel of Fig. 2 we show the result of the intensity at a numberof subpixels. We can find the numberof Gaussianconvolutiononthearcimagepreviouslypresented(arc subpixelsn byimposingdI/I =ǫ asfollows p intheleftpanelofthisfigure),whereweuseaseeingFWHMof 1.1 ,whichcorrespondstoσ=0.47 ,andn =4. ′′ ′′ σ 1 1 ∂I Attesting the code’s flexibility and modularity, new imple- n = = . (17) p δ ǫI(r=rc+re,θ=θ0)∂rr=rc+re,θ=θ0 mentations of PaintArcs are being developedto use alternative seeingkernels,suchasa2DMoffatfunction. Thenumbern representstheminimumintegernumberofsub- p divisionsofapixelrequiredtomaketheerroronthepixelation 3.3.AddingPoissonnoise lessthanǫ. IntheexampleofFig.2,weusedǫ = 0.1astheupperlimit Ina quantumdetectorsuchasaCCD thephotoncountsfollow fortheerroronthedigitalizationofthearcsignal.Inthis case, aPoissondistribution, np = 4, which means that each pixel was subdivided into 16 e µ parts.Theexactvalueofthedigitalizationerror,computedafter- P(x,µ)=µx − , (20) x! wardsbycomparingthe totalsignalto be simulated(S , see total Eq.13)withthesignalthatwaseffectivelydistributed,isonthe whereµisthemeanofthedistribution. orderof10 3. Thisvalueismuchlowerthanthe adoptedǫ, at- We add Poisson noise to an ArcEllipse produced by − testingthatthecriteriumgivenbyEq.(17)isbasedonaprofile PaintArcs by randomly picking values from the distribution region where the variation in the arc intensity is stronger than givenbyequation(20)withthemeanequaltothesignalineach average,whiletheexactvalueoftheerroriscomputedusingall pixelofthesimulatedimageafterconvolutionwiththePSF.This pixels.Thereforetheactualpixelationerrorismuchsmallerthan isdonewith a separatemodulethatgeneratesrandomnumbers ǫ. fromaPoissondistribution. 4 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs In the right panel of Fig. 2 we show the result of adding InSection2 we showedthatthe ArcEllipsedependsonthe Poissonnoisetothearcofthemiddlepanelofthesamefigure. followingparameters(seeEq.6) – x :xpositionofthepointwherethearciscentered(pixel) 0 3.4.ApplyingPaintArcs – y :ypositionofthepointwherethearciscentered(pixel) 0 – r :distanceofthearccenterrelativeto(x ,y )(pixel) After the pixelation of the surface brightness profile of the arc c 0 0 – θ :orientationofthearccenterrelativetothexaxis(radians) created with PaintArcs with a Se´rsic profile and adding seeing 0 – e ande :ellipticitiesofthearc and Poisson noise to its image, PaintArcs can paste this simu- 1 2 – b:minorsemi-axesofthearc(pixel). latedarcontoarealimage(forexampleonecontainingagalaxy cluster),whichcanbespecifiedinitsinputconfigurationfile.In IfthesurfacebrightnessdistributionofthearcfollowsaSe´rsic thiscase,PaintArcsaddsthearcmodelparameterstotheimage profile,weaddthreemoreparameterstothefitting: headerforbookkeepingpurposes. Figure 3 shows an example of an arc simulated with – re: radius that encloses half of the total luminosity of the PaintArcs. It was added to the image of the galaxy Se´rsicprofile(pixel) cluster SOGRAS0328+0044, which was imaged by the – n:indexthatdescribestheshapeoftheSe´rsicprofile SOAR Gravitational Arc Survey (SOGRAS, Furlanettoetal. – I0:intensityoftheSe´rsicprofileatthecenterofthearc(r = 2012).Two real arc candidates are also found around the clus- 0). ter’sbrightestgalaxy(indicatedbyarrows),andmayserve asa If we choose b = r , as we do in PaintArcs, we ob- visualguidelineforthe accuracyof the PaintArcsoutputs. The e tain nine fitting parameters. Therefore, the set of parameters simulated ArcEllipse is circled in the figure andwas generated that represents the ArcEllipse with a Se´rsic profile is p = withtheparametersm=21.5,e =0.9,e =0.8,r =7.7 ,θ = 1 2 c ′′ 0 (x ,y ,r ,θ ,e ,e ,r ,n,I ). 40o,n=3,andr =0.8 .ItwasconvolvedwithaGaussianPSF 0 0 c 0 1 2 e 0 e ′′ whoseFWHMwasobtainedfromtheimage(FWHM = 0.7 ). ′′ The origin of the coordinate system of the arc coincides with 4.1.Creatinganarcimagetobefitted thecenterofthecluster’sbrightestgalaxy.Thepixelsizeofthis TheArcFittingcodeworksonapostagestampimageofanob- imageis0.154 . ′′ servedarc(i.e.,animagewherethepixelsnotbelongingtothe arc are set to zero),which we call the arc image. To create the arcimagewefirstrunSExtractor2.8.6(Bertin&Arnouts1996) ontheoriginalimagethatcontainsthearc.SExtractorthen cre- ates a segmentation image, which assigns a single value (cor- respondingtothesequentialnumberoftheobjectintheoutput image catalog)to all pixelsthat it associates to the object.The arcimageisthencreatedbycopyingallarcpixelsdefinedbythe segmentationimage,butusingtheirvaluesasintheoriginalim- age.Allotherpixelsinthearcimageareassignedazerovalue. Thesizeofthearcimageinthexandydirectionsaremultiples ofthearc’smajorandminoraxisvaluesasfoundbySExtractor. The procedure described above to create the arc image makes useoffunctionsfromSLtools. 4.2.Parameterdeterminationfromthearcimage Fig.3. Example of the application of PaintArcs on a real image: the circled arc was created by the code using an In the following we describe the measurements performed by ArcEllipse+Se´rsicmodelwithm=21.5,e =0.9,e =0.8,r = ArcFittingtofindtheArcEllipseparameters.ButtheArcFitting 1 2 c 7.7 ,θ = 40o,n= 3,r = 0.8 ,FWHM = 0.7 andwasadded is not only restricted to the model parameters, which currently ′′ 0 e ′′ ′′ to the image of the galaxyclusterSOGRAS0328+0044,where are the nine ArcEllipse+Se´rsic parameters listed above. It also tworealarccandidates(indicatedbyarrows)werefound. attemptstomeasureothercommonlyusedarcparameters,such asitslengthLandwidthW. 4.2.1. DeterminingtheArcEllipseparameters First, ArcFitting finds the two farthest points of the arc image, 4. ArcFitting p and p . For that, it uses any reference pointto find the first 1 2 Motivated by the need for tools for measuring arc parameters, extremeasthefarthestpointfromthereferenceone.Itthenfinds such as its length, width, curvature,and surface brightness, we thefarthestpointfromthisfirstextremethroughthefarthest-of- alsodevelopedatoolthatfitsthesepropertiestoreal(orrealisti- farthestmethod.Thecodethennamestheextremepointwhose callysimulated)gravitationalarcs.WenameditArcFitting. angleislarger(smaller)thanθ (seeEq.22below)as p (p ). 0 1 2 Currently,ArcFittingisbasedontheArcEllipsemodelwith After that, ArcFitting obtains the points along the bisectrix aSe´rsic profile.Therefore,itperformsmeasurementsonactual betweenp andp .Thislineisperpendiculartothelinesegment 1 2 arc images that lead to estimates of the ArcEllipse parameters. thatconnectsthesetwoextremepoints.Itthenfindsp ,whichis 3 Similarly to PaintArcs, ArcFitting is also a Python-based code themeanpointofthearcalongthebdirection. that was designed in a modular way to allow different shape- Thisprocessisrepeatedtwicetoobtainthepoints p andp . 4 5 andprofilemodelstobeadoptedinthefuture. p is the meanarc positionalongthe bisectrix line between p 4 1 5 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs and p , whereas p isthemeanarcpositionalongthebisectrix lackinginpreviousattemptstomeasurearcpropertiesisthesur- 3 5 line between p and p . This method is an application of the facebrightnessdistribution.Thisisthetopicofthenextsubsec- 2 3 Mediatrixmethod(Bometal.2012)forn = 2,wheren isthe tion. b b numberofbisections.Thelength(L)ofthearcisthencomputed asthesumofthelinesegmentsconnectingthefivepoints 4.2.2. DeterminingtheSe´rsicparameters L= p1p4+p4p3+ p3p5+p5p2. (21) Weuseχ2 minimizationtodeterminetheSe´rsicprofileparame- ters,I ,nandr .Thisχ2minimizationworksasfollows. Inthe leftpanelofFig.4, weillustrate thisprocessoftrac- 0 e We considera data set thatrepresentsthe informationof N ing the arc image and determining its length. The five points pixels in an arc image. We denote I (j) as the count of the p,i=1,5areshownalongthearcimage.Theimageusedasan img i jth pixel of the arc image and σ2 as its associated uncertainty, exampleinthefigureistakenfromanHSTarcsamplethatwill j bepresentedin 7. where j = (1,N). We also denote Iarc(j,p) as the theoretical TheArcEllip§separameters x ,y andr arefoundbydeter- countofthe jth pixelfromArcEllipsewithaSe´rsicprofile.This 0 0 c miningtheuniquecirclethatpassesthroughtheextremepoints, theoretical intensity depends on the pixel position and on the p1and p2,andthroughthepointwithmaximumintensity, pmax. set of parameters p. Except for I0, n and re, whose values are Thelatterpointisfoundasthearcpointwithmaximumintensity unknown, the other parameters are fixed by the procedure de- amongthosethatliewithin0.5σbfromthelinesegmentsofEq. scribedinSect.4.2.1.AssumingthatthepixelcountsIimg(j)are 21, where σ is the dispersionof the pointsalongthe bisectrix independentfromeachother,wemustminimizethequantity b line containing p . This procedure is intended to eliminate arc 3 2 imagepixelslocatedfarawayfromthetracedarc,whichmaybe I (j,p) I (j) arc img associated to a cosmic ray,orto a residualfromthe processof χ2 = − (23) (cid:16) σ2 (cid:17) objectsegmentationanddeblending,asthesepixelswouldbias j j X the p estimate. The determinationof p is depictedin the max max toestimatetheremainingparametersthatprovidethebestfitto rightpanelofFig.4.Thepixelofmaximumintensityintheen- thedata. tire image, m , failed to satisfy the 0.5σ distance criterion, in 1 b Ingeneral,weusethereducedχ2 this case measured from the p p segment. The second maxi- 1 4 mum,m2,however,iswell-placedalongtheobservedarc. χ2 The width of the arc is taken as W = 4σ . The ArcEllipse χ2 = (24) b red N 1 semi-minoraxisbisthentakenashalfofthewidth(b=W/2 = − 2σb). asameasureoftheconcordancebetweenthemodelandthedata. Theangleθ0isobtainedusingtheexpression Ifthisvalueismuchhigherthanunity,themodelisnotconsid- eredagooddescriptionofthedata. (y y ) θ =arctan c− 0 , (22) We assume that the pixel counts follow a Poisson distribu- 0 (xc−x0)! tion,suchthat where(xc,yc)arethecoordinatesofthe pmaxpoint. σ2 =I (j), (25) The asymmetric ArcEllipse ellipticities e and e are ob- j img 1 2 tained using Eqs. 7 and 8, respectively,where a1 is the size of andEq.(24)becomes the line segment p p and a is the size of the line segment 1 max 2 p p . 2 maxTh2eprocedureoutlinedaboveisdifferentcomparedtoprevi- χ2 = 1 Iarc(j,p)−Iimg(j) . (26) ous works. Some studies, particularly of observed arcs, quote red N 1 (cid:16) Iimg(j) (cid:17) − j L, L/W, or other arc parameters, without clearly mentioning X howtheyaredetermined.Othersourcesusenomorethanthree The χ2 function minimization is carried out with red points to infer L, either using a sum of arc segments, as in Pyminuit3, which is an extension for Python modules of the eq. 21, or fitting a circular arc through them (Oguri 2002; Minuit4functions. Dalaletal. 2004; Lietal. 2005; Sandetal. 2005; Horeshetal. TheinitialguessesforI andr aredeterminedthroughmea- 0 e 2005; Meneghettietal. 2008; Horeshetal. 2010; Moreetal. surements on the arc image. We consider the intensity of the 2012). Lenzenetal. (2004) and Kauschetal. (2010) measured point p astheinitialestimate for I .Thesemi-minoraxisb, max 0 momentaoverarcimagestoderivetheirsizes. whose estimate was describedabove,is the initial guessfor r . e Width measurements are usually based on the area of Given the lack of a direct method to estimate the parameter n the arc divided by its length assuming some arc geometry, fromtheimage,theinitialguessofthisparametersisfound by usually a rectangle. Meneghettietal. (2008), however, mea- usingthealgorithScanfromPyminuit,whichcalculatesχ2 for sured widths at several different positions along the arc length arangeofnvalueskeepingallotherparametersinthe psetrfiedxed, and assumed a median value. Some authors also account i.e.,themorphologicalparametersasdeterminedintheprevious for seeing effects when measuring W (Meneghettietal. 2008; subsection,andI andr fixedattheirinitialguesses. 0 e Zaritsky&Gonzalez2003). Afterdeterminingtheinitialguessesfor I ,nandr ,weuse 0 e Arc orientation and curvature are not as common to find. thePyminuitalgorithmMigrad,whichisanoptimizedgradient- OnesuchreferenceisLuppinoetal.(1999),whousedthechord basedminimumsearchalgorithm,toperformtheχ2 minimiza- length from the arc extremes and its sagittal depth to estimate red tionandtofindthebest-fittingvaluesfortheseparameters. r . Estimates of θ can also be found in Oguri (2002) and c 0 Miralda-Escude(1993). 3 http://code.google.com/p/pyminuit/ Weareunawareofpreviousstudiesthataccommodateapos- 4 http://seal.web.cern.ch/seal/snapshot/work- sible asymmetry in the arc’s shape. Finally, another element packages/mathlibs/minuit/ 6 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs Fig.4.Illustrationoftheprocessoftracingarealarcinitsimage.Theleftpanelshowsthefive ppointsusedtocomputethe arclength.Therightpanelshowsthehigh-intensitympoints(dashedcircles)usedtofind p forthesamearc.Thecenter max andradiusofcurvaturearedeterminedasthecirclecontainingthepoints p ,p ,and p = m .Thewidthisbasedonthe 1 2 max 2 linethroughthecentralpoint p ,whereastheasymmetricmajor-axes a anda arethelengthsofthesegmentsconnecting 3 1 2 m = p tothearcextremes p and p . 2 max 1 2 The approach outlined here to estimate the shape parame- Table1.InputandfittedArcEllipseandSe´rsicparametersforan ters directly from the image and to apply a χ2 minimization arccreatedwithPaintArcsusingtheArcEllipseprescriptionand to the Se´rsic profile proved to be the most effective. We tried aSe´rsicsurfacebrightnessprofile. otheralternatives,suchasχ2minimization(usingMigrad)ofall shape- and Se´rsic parameters,or an iterative method that com- Parameter Truevalue Recoveredvalue bines Migrad for some parameters and brute force (Scan) for x (pix) 100.00 98.50 0 others.Inmanyofthecaseswetried,thesemethodsdidnotcon- y (pix) 100.00 96.88 0 verge, or resulted in a final χ2 much larger than unity. These rc(pix) 50.00 52.85 red failuresareprobablycausedbyacombinationofstrongdegen- re(pix) 5.20 5.96 θ (rad) 0.70 0.72 eraciesamongtheArcEllipseandSe´rsic modelparametersand 0 I (counts) 100.00 102.81 bythelimiteddegreesoffreedomwhenconsideringthenumber 0 n 1.00 1.06 ofavailablepixelsinthearcimage. e 0.90 0.88 1 e 0.80 0.77 2 4.3.TestingtheArcFittingalgorithm TotestandvalidatetheArcFittingcode,weappliedittoimages and the reduced χ2, given by Eq. (26), as metrics for the con- ofpurearcs(noiselessandwithnoseeingconvolution)produced cordancebetween the ArcEllipse+Se´rsic model,resultingfrom withPaintArcs,usingtheArcEllipse+Se´rsicmodel. ArcFitting, and the data. Both quantities are computed using As an example, we considered an arc with true parameters onlythepixelsthatbelongtothearcasdescribedin 4.1. asshowninthemiddlecolumnofTable1.Thevaluesrecovered § byArcFittingaredisplayedintherightcolumn,showinganex- cellentagreementwiththeinputvaluesusedbyPaintArcs.This 5.1.ApplyingArcFittingonarcssimulatedwithAddArcs situationistypicalofthevalidationtests.Indeed,ArcFittingwas For this first application we used a set of arcs simulated with verysuccessfulinrecoveringtheArcEllipseandSe´rsicparame- theAddArcscode(Brandtetal.,inprep.),whichwasoriginally tersinthisidealizedcase.ThisisexpectedsincebothPaintArcs designedforDark EnergySurveyimagesimulations.The code and ArcFitting use the same analytical expression for the arc uses as basic inputs a catalog of lenses, a catalog of sources, shapeandsurfacebrightnessprofile,butdemonstratesthevalid- the cosmological parameters, and the properties of the images ity of the whole process of determining the morphologicalpa- onwhichthearcswillbesimulated(e.g.,pixelscale,magnitude rameters and using the initial guesses for scanning and fitting zeropoints,etc.).Forthesimulationsusedinthiswork,thein- theSe´rsicparameters. putlenscatalogsweregivenbytheCarmenLasDamasN-body cosmological simulation5 (McBrideetal. 2011) and the lenses 5. ArcFittingapplicationtorealandsimulatedarcs aremodeledasaprojectedNavarro–Frenk–White(Navarroet al. 1996, 1997, hereafter NFW) profile with elliptical mass distri- We applied the ArcFitting code to three different sets of arcs. bution. The redshift and mass of each lens are taken from the The first one consists of realistically simulated arcs. The other catalog,buttheNFWconcentrationparameteristakenfromthe twosetsareofrealarcs,onefromground-basedimagesandthe fitsofNetoetal.(2007),sincethesimulationsdonothavesuffi- otherfromHSTimages. cientprecisiontodetermineitaccurately.Thesourcesare mod- Weusedtheresidualsignalcontrast∆S/S,definedas eled as elliptical Se´rsic brightnessdistributionswhose parame- tersareobtainedfromfitstogalaxiesintheHubbleUltra-Deep I (j) I (j,p) ∆S j img − arc Field (UDF) givenbyCoeetal. (2006), whichprovidesthe in- = , (27) S P(cid:16) I (j) (cid:17) img 5 http://lss.phy.vanderbilt.edu/lasdamas/ j P 7 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs putsourcecatalog.Thissame catalogcontainsthe photometric redshiftinformationfrommulti-wavebanddataontheUDF. Thesourcesaredividedintoredshiftbinswhosespatialdis- tribution is uniform in each bin. For each lens (i.e., dark mat- terhalo)inthecatalog,anumberofsourcesislensedusingthe Gravlens(Keeton2001)software.Thenumberofsourcestobe lensedisobtainedfromthesurfacedensitydistributionofthein- putsourcecatalog.Afirstselectionofsourcesismadeusingthe localmagnificationcomputedwith Gravlensandthenthesame codeisusedtoproduceafullbrightnessdistributionbylensing finite Se´rsicsourcesfromtheUDFcatalog.Finally,images are identified and are dimensionally estimated by SExtractor, and only elongated images are selected by the code. We selected a subset of nine arcs generated from these simulations to have a similarsamplesizeasthetwoothersamples. WeranArcFittingonthearcsproducedwithAddArcstoin- fer their ArcEllipse+Se´rsic parameters and recreate them with PaintArcs. In Fig. 5 we show some examples of this applica- tionoftheArcFittingcode.Intheleftpanelsweshowtheorig- inal simulated arcs (noiseless and without seeing convolution) fromAddArcs.InthemiddlepanelweshowtheArcEllipsede- rived from ArcFitting and reproduced with PaintArcs. In the right panel we show the residual image resulting from the dif- ferencebetweenthetwopreviousones.Allpanelsusethesame grayscale.Somesubstructuresarevisibleintheselatterimages, indicatingthelimitationsoftheArcEllipseprescription.Butthe residualsaremuchlessintensethanthefittedarcs. We computed the residual signal contrast ∆S/S, as given in Eq. 27, between each AddArcs simulation and its fitted Fig.7. Selected ArcFitting results for HST arcs. Left panels: ArcEllipse+Se´rsic. In the left panel of Fig. 6 we show the re- originalarc;middlepanels:arccreatedwithPaintArcsusingthe sulting distribution of ∆S/S values. The median ∆S/S value parametersderivedfromArcFittingappliedtotheoriginal arcs; is 0.09, indicating that the ArcFitting process based on the right panels: difference between original and reproduced arcs. Arc−Ellipse+Se´rsicmodeltypicallyreproduces91%ofthesignal Fromtoptobottom:arcC8foundinAbell68;arcH0ofAbell oftheinputarcimage.IntherightpanelofFig.6wepresentthe 963;arcM3ofAbell2218,andarcB0/B1/B4ofAbell383. distributionof χ2 resultingfromthe applicationofArcFitting red onarcssimulatedwithAddArcs,whosemedianisχ2 =5.27. red 5.2.ApplyingArcFittingonarcsobservedwiththeHST arcswithmanysubstructures,suchasthefirstandthelastofthat WeheretestthereconstructionofHSTarcsusingtheArcFitting figure,ArcFittingcannoteffectivelyreproducethearcbrightness code basedon the ArcEllipse+Se´rsicmodel. A sample of HST profiles. arcswasselectedfromtheworkbySmithetal.(2005).Wechose bright and isolated arcs with spectroscopic redshift measure- We again used the residual signal contrast ∆S/S, given by mentsthatconfirmtheirnatureaslensedsources.A totalof12 Eq. 27, and the χ2 , givenby Eq. 26, to assess the agreement red arcs were selected. We use the same notation here as the orig- betweenmodelanddata.Thedistributionof∆S/S valuesforall inal authors. The arcs are C4, C8, and C12 from the Abell 68 12arcsinourHST sampleisshownin theleftpanelof Fig.8, galaxycluster;H0,H1,H2,andH3fromAbell963;B0/B1/B4 while the distributionof χ2 is shown in the rightpanelof the red from Abell 383; M1 and M3 from Abell 2218; and P0 and P2 samefigure.Themedianofthe∆S/S distributionis 0.13,but from Abell 2219. Arc propertiessuch as magnitude, L/W, and values as high as 0.32 are found. The median χ2 −is 18.39, − red distance to the BCG of these arcs are presented in Sandetal. butthedistributionhasalongtailstowardmuchhighervalues. (2005). These results clearly attest that there is a stronger discrepancy In Figure 7 we present some results of the application of between model and HST data than for the simulated AddArcs ArcFittingtoourselectedHSTarcs.ThepanelsofFigure7are images.Forallarcs,∆S isnegative,whichmeansthatArcFitting similartothoseofFig.5.TheleftpanelsshowtheoriginalHST isoverestimatingthearcsignal.Highvaluesinbothdistributions arcimages,themiddlepanelsshowthefittedArcEllipse+Se´rsic correspondtothearcsthatpresentmanysubstructures(example: modelarcs,whichwasreproducedwithPaintArcs,andtheright lastarcofFig.7,whichhas∆S/S = 0.32andχ2 =76.26). − red panelsshowresidualimages. InFig.9weshowacomparisonoftheL/Wvaluesmeasured From the middle panels we can see that ArcFitting is effi- by Sandetal. (2005) to those obtained with ArcFitting. Since cientinrecoveringarccurvatureandorientation.Insomecases, the arcs H1, H2, and H3 from Abell 963 are considered as a asforthesecondandthirdarcinthefigure,apartfromtheeffi- single object in Sandetal. (2005), these arcs are not included ciencyinrecoveringthearcshape,ArcFittingisalsoefficientin inthiscomparison.Nostrongsystematicsisseen,whichshows reproducingthearcbrightnessdistributions,sothattheresidual thatArcFittingprovidesarobustandautomaticmeasureofL/W imagescontain only little substructureand noise. However,for ratioinrealgravitationalarcs. 8 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs Fig.5. ArcFittingresults forAddArcsarcs. Leftpanels:original arc;middle panels:arc reproducedwith PaintArcsusing the pa- rametersprovidedbytheapplicationofArcFittingonoriginalarcs;rightpanels:differencebetweenoriginalandreproducedarcs. Fig.6.Distributionofresidualsignalcontrast∆S/S (leftpanel)andofχ2 (rightpanel)resultingfromapplyingArcFittingonarcs red simulatedwithAddArcs. 5.3.ApplyingArcFittingonarcsobservedfromtheground from the differencebetween the previoustwo. We can see that ArcFittingisefficientinrecoveringarcshapeandbrightnessdis- We also ran the ArcFitting code to reconstruct arcs observed tributions. fromtheground.Weselectedbrightandisolatedarcsincluster and galaxy group lenses from the CFHTLS Strong Lensing LegacySurvey(SL2S),presentedintheworkbyCabanacetal. In the left panel of Fig. 11 we present the residual signal (2007). Following the notation of the original authors, the contrastdistributionfortheselectedCFHTLSarcsample.Asin seven selected arcs that compose our CFHTLS sample are the HST arcs, we can see that ArcFitting overestimatesthe arc SL2SJ021416-050315, SL2SJ021807-051536, SL2SJ085446- signal,since∆S < 0forallarcsofthissample.Themedianof 012137, SL2SJ141912+532612, SL2SJ142258+512440, the∆S/S distributionis 0.11and∆S/S = 0.20intheworst − − SL2SJ143001+554647,andSL2SJ143140+553323. case.Intherigthpanelofthesamefigure,weshowthedistribu- The results of applying ArcFitting on three arcs of our tionofχ2 ,whosemedianis10.76.IncontrasttotheHSTarcs, red CFHTLSsampleareshowninFig.10.Asinthepreviouscom- no high χ2 tail is seen; the only outlier in the χ2 distribu- red red parisons,theleftpanelsshowtheoriginalarcimages,themiddle tioncorrespondstothearcSL2SJ085446-012137,thesamearc panelsshowthefittedArcEllipse+Se´rsicmodelreproducedwith thatpresentsthehighestvalueinthe∆S/S distribution.Theim- PaintArcs, and the right panels show residual images resulting provementin ArcFitting of CFHTLS arcs with respect to HST 9 CristinaFurlanettoetal.:Asimpleprescriptionforsimulatingandcharacterizinggravitationalarcs Fig.8.Residualsignalcontrast(∆S/S)distribution(leftpanel)andχ2 distribution(rightpanel)resultingfromapplyingArcFitting red onourselectedsampleofarcsfromtheHST. Fig.11.Residualsignalcontrast(∆S/S)distribution(leftpanel)andχ2 distribution(rightpanel)resultingfromapplyingArcFitting red onourselectedsampleofarcsfromCFHTLS. arcs is likely caused by the smearing of the arc substructures causedbyseeingeffectsontheground-basedset. 6. Conclusionsandfutureperspectives WehavepresentedandexploredindetailtheArcEllipse,which is a simple analyticalmodelthat approximatelyreproduces the shapeofrealgravitationalarcs.ArcEllipsesareordinaryellipses whose major axes are bent along an arc of a circle and which thereforemimictheshapeoftangentialarcs.Theyarefullychar- acterizedbya limitednumberof parametersthatquantifytheir curvature, length and width, degree of deformation, and ori- entation. We also devised a simple prescription to incorporate asymmetriestotheirshapes.Thisdescriptionofarcmorphology is more comprehensivethan previously found in the literature. We also incorporated a Se´rsic light profile distribution to the Fig.9.ComparisonbetweentheL/Wmeasurementspresentedin ArcEllipses in an attempt to explore a rough structural model Sandetal.(2005)andthoseobtainedwithArcFitting.Thesolid forlensedgalaxies. linerepresentstheidentityfunction. We also implemented PaintArcs, which is a tool that cur- rently generates simulated ArcEllipse images, and ArcFitting, which is a code that derives model parametersfrom images of real arcs. Both are Python codes built in a modular way, thus 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.