Half-title Page: i Title Page: iii Copyright Page: iv Contents Page: v Foreword Page: vii Preface Page: ix 1 Introduction Page: 1 2 What is a qubit? Page: 5 2.1 The polarization of light Page: 5 2.2 Photon polarization Page: 8 2.3 Mathematical formulation: the qubit Page: 11 2.4 Principles of quantum mechanics Page: 17 2.6 Exercises Page: 28 2.6.1 Determination of the polarization of a light wave Page: 28 2.6.2 The (lamda, mu) polarizer Page: 28 2.6.3 Circular polarization and the rotation operator Page: 29 2.6.4 An optimal strategy for Eve? Page: 30 2.6.5 Heisenberg inequalities Page: 31 2.7 Further reading Page: 32 3 Manipulating qubits Page: 33 3.1 The Bloch sphere, spin 1/2 Page: 33 3.2 Dynamical evolution Page: 37 3.3 Manipulating qubits: Rabi oscillations Page: 40 3.4 Principles of NMR and MRI Page: 44 3.5 Exercises Page: 47 3.5.1 Rotation operator for spin 1/2 Page: 47 3.5.2 Rabi oscillations away from resonance Page: 47 3.6 Further reading Page: 48 4 Quantum correlations Page: 49 4.1 Two-qubit states Page: 49 4.2 The state operator (or density operator) Page: 54 4.3 The quantum no-cloning theorem Page: 57 4.4 Decoherence Page: 58 4.5 The Bell inequalities Page: 63 4.6 Exercises Page: 67 4.6.1 Basis independence of the tensor product Page: 67 4.6.2 Properties of the state operator Page: 68 4.6.3 The state operator for a qubit and the Bloch vector Page: 68 4.6.4 The SWAP operator Page: 69 4.6.5 The Schmidt purification theorem Page: 70 4.6.6 A model for phase damping Page: 71 4.6.7 Amplitude damping channel Page: 72 4.6.8 Invariance of the state (4.35) under rotation Page: 72 4.7 Further reading Page: 72 5 Introduction to quantum computing Page: 75 5.1 General remarks Page: 75 5.2 Reversible calculation Page: 77 5.3 Quantum logic gates Page: 81 5.4 The Deutsch algorithm Page: 84 5.5 Generalization to n + m qubits Page: 86 5.6 The Grover search algorithm Page: 88 5.7 The quantum Fourier transform Page: 91 5.8 The period of a function Page: 94 5.9 Classical algorithms and quantum algorithms Page: 101 5.10 Exercises Page: 103 5.10.1 Justification of the circuits of Fig. 5.4 Page: 103 5.10.2 The Deutsch–Josza algorithm Page: 104 5.10.4 Example of finding y Page: 105 5.11 Further reading Page: 105 6 Physical realizations Page: 107 6.1 NMR as a quantum computer Page: 108 6.2 Trapped ions Page: 114 6.3 Superconducting qubits Page: 122 6.4 Quantum dots Page: 131 6.5 Exercises Page: 133 6.5.1 Off-resonance Rabi oscillations Page: 133 6.5.2 Commutation relations between the a and a Page: 134 6.5.3 Construction of a cZ gate using trapped ions Page: 134 6.5.4 Vibrational normal modes of two ions in a trap Page: 136 6.5.5 Meissner effect and flux quantization Page: 136 6.5.6 Josephson current Page: 136 6.5.7 Charge qubits Page: 137 6.6 Further reading Page: 138 7 Quantum information Page: 141 7.1 Teleportation Page: 141 7.2 Shannon entropy Page: 144 7.3 von Neumann entropy Page: 147 7.4 Quantum error correction Page: 154 7.5 Exercises Page: 157 7.5.1 Superdense coding Page: 157 7.5.2 Shannon entropy versus von Neumann entropy Page: 157 7.5.3 Information gain of Eve Page: 158 7.5.4 Symmetry of the fidelity Page: 158 7.5.5 Quantum error correcting code Page: 158 7.6 Further reading Page: 158 References Page: 161 Index Page: 165
Description: