ebook img

A short course on approximation theory (Math682) PDF

159 Pages·1998·0.691 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A short course on approximation theory (Math682)

A Short Course on Approximation Theory Math (cid:0)(cid:1)(cid:2) Summer (cid:3)(cid:4)(cid:4)(cid:1) N(cid:5) L(cid:5) Carothers Department of Mathematics and Statistics Bowling Green State University Table of Contents Preliminaries(cid:5)(cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3) Problem Set(cid:6) Function Spaces (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:2)(cid:7) Approximation by Algebraic Polynomials (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:8)(cid:9) Problem Set(cid:6) Uniform Approximation by Polynomials (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:10)(cid:2) Trigonometric Polynomials(cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:10)(cid:0) Problem Set(cid:6) Trigonometric Polynomials (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:7)(cid:10) Characterization of Best Approximation (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:7)(cid:0) Problem Set(cid:6) Chebyshev Polynomials (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:11)(cid:2) Examples(cid:6) Chebyshev Polynomials in Practice (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:11)(cid:10) A Brief Introduction to Interpolation (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:11)(cid:0) Problem Set(cid:6) Lagrange Interpolation (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:1)(cid:7) Approximation on Finite Sets (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:1)(cid:0) A Brief Introduction to Fourier Series(cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:4)(cid:1) Problem Set(cid:6) Fourier Series (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:3)(cid:3) Jackson(cid:12)s Theorems (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:3)(cid:2) Orthogonal Polynomials(cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:3)(cid:4) Problem Set(cid:6) Orthogonal Polynomials (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:2)(cid:2) Gaussian Quadrature(cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:2)(cid:10) The Mu(cid:13)ntz Theorems (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:8)(cid:4) The Stone(cid:14)Weierstrass Theorem (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:10)(cid:7) A Short List of References (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:5) (cid:3)(cid:7)(cid:7) Preface These are notes for a six week summer course on approximation theory that I o(cid:15)er oc(cid:14) casionally at Bowling Green State University(cid:5) Our summer classes meet for (cid:4)(cid:9) minutes(cid:16) (cid:17)ve days a week(cid:16) for a total of (cid:10)(cid:7) hours(cid:5) But the pace is somewhat leisurely and there is probably not quite enough material here for a (cid:18)regulation(cid:19) one semester (cid:20)(cid:10)(cid:7) hour(cid:21) course(cid:5) On the other hand(cid:16) there is more than enough material here for a one quarter (cid:20)(cid:8)(cid:9) hour(cid:21) course and evidently enough for a (cid:17)ve or six week summer course(cid:5) I should stress that my presentation here is by no means original(cid:6) I borrow heavily from a number of well known texts on approximation theory (cid:20)see the list of references at the end of these notes(cid:21)(cid:5) I use T(cid:5) J(cid:5) Rivlin(cid:12)s book(cid:16) An Introduction to the Approximation of Functions(cid:16) as a complementary text and thus you will see many references to Rivlin throughout the notes(cid:5) Also(cid:16) a few passages here and there are taken from my book(cid:16) Real Analysis(cid:5) In particular(cid:16) large portions of these notes are based on copyrighted material(cid:5) They are o(cid:15)ered here solely as an aid to teachers and students of approximation theory and are intended for limited personal use only(cid:5) I should also point out that I am not an expert in approximation theory and I make no claims that the material presented here is in current fashion among experts in the (cid:17)eld(cid:5) My interest in approximation theory stems from its beauty(cid:16) its utility(cid:16) and its rich history(cid:5) There are also many connections that can be drawn to questions in both classical and modern analysis(cid:5) For the purposes of this short introductory course(cid:16) I focus on a handful of classical topics (cid:20)with a little bit of modern terminology here and there(cid:21) and (cid:18)name(cid:19) theorems(cid:5) Indeed(cid:16) the Weierstrass approximation theorem(cid:16) along with its various relatives(cid:16) is the central theme of the course(cid:5) In terms of prerequisites(cid:16) I assume at least a one semester course in advanced calcu(cid:14) lus or real analysis (cid:20)compactness(cid:16) completeness(cid:16) uniform convergence(cid:16) uniform continuity(cid:16) normed spaces(cid:16) etc(cid:5)(cid:21) along with a course in linear algebra(cid:5) The (cid:17)rst chapter(cid:16) entitled Preliminaries(cid:16) contains four brief appendices that provide an all too brief review of such topics(cid:22) they are included in order to make the notes as self(cid:14)contained as possible(cid:5) The course is designed for beginning master(cid:12)s students (cid:20)in both pure and applied mathemat(cid:14) ics(cid:21)(cid:16) but should be largely accessible to advanced undergraduates(cid:5) From my experience(cid:16) there are plenty of topics here that even advanced PhD students will (cid:17)nd entertaining(cid:5) Math (cid:0)(cid:1)(cid:2) Preliminaries (cid:3)(cid:4)(cid:5)(cid:1)(cid:4)(cid:6)(cid:1) Introduction In (cid:3)(cid:1)(cid:7)(cid:8)(cid:16) the great Russian mathematician(cid:16) P(cid:5) L(cid:5) Chebyshev (cid:23)C(cid:24)eby(cid:24)sev(cid:25)(cid:16) while working on a problem of linkages(cid:16) devices which translate the linear motion of a steam engine into the circular motion of a wheel(cid:16) considered the following problem(cid:6) Given a continuous function f de(cid:17)ned on a closed interval (cid:23)a(cid:0)b(cid:25) and a positive n k integer n(cid:16) can we (cid:18)represent(cid:19) f by a polynomial p(cid:20)x(cid:21) (cid:26) k(cid:0)(cid:1)akx (cid:16) of degree at most n(cid:16) in such a way that the maximum error at anPy point x in (cid:23)a(cid:0)b(cid:25) is controlled(cid:27) In particular(cid:16)is it possible to construct p in such a way that the error max f(cid:20)x(cid:21) p(cid:20)x(cid:21) is minimized(cid:27) a x bj (cid:0) j (cid:0) (cid:0) This problem raises several questions(cid:16) the (cid:17)rst of which Chebyshev himself ignored(cid:6) (cid:28) Why should such a polynomial even exist(cid:27) (cid:28) If it does(cid:16) can we hope to construct it(cid:27) (cid:28) If it exists(cid:16) is it also unique(cid:27) b (cid:2) (cid:28) What happens if we change the measure of the error to(cid:16) say(cid:16) f(cid:20)x(cid:21) p(cid:20)x(cid:21) dx(cid:27) a j (cid:0) j Chebyshev(cid:12)s problem is perhaps best understood by rephrasingRit in modern terms(cid:5) What we have here is a problem of linear approximation in a normed linear space(cid:5) Recall that a norm on a (cid:20)real(cid:21) vector space X is a nonnegative function on X satisfying x (cid:9)(cid:16) and x (cid:26) (cid:9) x (cid:26) (cid:9) k k (cid:1) k k (cid:2)(cid:3) (cid:1)x (cid:26) (cid:1) x for (cid:1) R k k j jk k (cid:4) x(cid:29)y x (cid:29) y for any x(cid:16) y X(cid:5) k k (cid:5) k k k k (cid:4) Any norm on X induces a metric or distance function by setting dist(cid:20)x(cid:0)y(cid:21) (cid:26) x y (cid:5) The k (cid:0) k abstract version of our problem(cid:20)s(cid:21) can now be restated(cid:6) (cid:28) Given a subset (cid:20)or even a subspace(cid:21) Y of X and a point x X(cid:16) is there an (cid:4) element y Y which is (cid:18)nearest(cid:19) to x(cid:22) that is(cid:16) can we (cid:17)nd a vector y Y such (cid:4) (cid:4) that x y (cid:26) inf x z (cid:27) If there is such a (cid:18)best approximation(cid:19) to x from k (cid:0) k z Y k (cid:0) k (cid:1) elements of Y(cid:16) is it unique(cid:27) Preliminaries (cid:2) Examples (cid:3)(cid:5) In X (cid:26) Rn with its usual norm (cid:20)xk(cid:21)nk(cid:0)(cid:3) (cid:2) (cid:26) nk(cid:0)(cid:3) xk (cid:2) (cid:3)(cid:0)(cid:2)(cid:16) the problem has k k j j a complete solution for any subspace (cid:20)or(cid:16) indeed(cid:0)(cid:16)Pany closed(cid:1)convex set(cid:21) Y(cid:5) This problem is often considered in Calculus or Linear Algebra where it is called (cid:18)least(cid:14) squares approximation(cid:5)(cid:19) A large part of the current course will be taken up with least(cid:14)squaresapproximations(cid:16)too(cid:5) Fornowlet(cid:12)s simplynote that the problemchanges character dramatically if we consider a di(cid:15)erent norm on Rn(cid:5) Consider X (cid:26) R(cid:2) under the norm (cid:20)x(cid:0)y(cid:21) (cid:26) max x (cid:0) y (cid:16) and consider the k k fj j j jg subspace Y (cid:26) (cid:20)(cid:9)(cid:0)y(cid:21) (cid:6) y R (cid:20)i(cid:5)e(cid:5)(cid:16) the y(cid:14)axis(cid:21)(cid:5) It(cid:12)s not hard to see that the point f (cid:4) g x (cid:26) (cid:20)(cid:3)(cid:0)(cid:9)(cid:21) R(cid:2) has in(cid:17)nitely many nearest points in Y(cid:22) indeed(cid:16) every point (cid:20)(cid:9)(cid:0)y(cid:21)(cid:16) (cid:4) (cid:3) y (cid:3)(cid:16) is nearest to x(cid:5) (cid:0) (cid:5) (cid:5) (cid:2)(cid:5) There are many norms we might consider on Rn(cid:5) Of particular interest are the (cid:2)p(cid:14) norms(cid:22) that is(cid:16) the scale of norms(cid:6) n (cid:3)(cid:0)p n p (cid:20)xi(cid:21)i(cid:0)(cid:3) p (cid:26) xk (cid:0) (cid:3) p (cid:3) (cid:0) k k j j (cid:5) (cid:6) (cid:2)k(cid:0)(cid:3) (cid:3) X and n (cid:20)xi(cid:21)i(cid:0)(cid:3) (cid:26) max xi (cid:4) k k(cid:2) (cid:3) i nj j (cid:0) (cid:0) It(cid:12)s easy to see that (cid:3) and de(cid:17)ne norms(cid:5) The other cases take a bit more k(cid:7)k k(cid:7)k(cid:2) work(cid:22) we(cid:12)ll supply full details later(cid:5) (cid:8)(cid:5) Our original problem concerns X (cid:26) C(cid:23)a(cid:0)b(cid:25)(cid:16) the space of all continuous functions f (cid:6) (cid:23)a(cid:0)b(cid:25) R under the uniform norm f (cid:26) max f(cid:20)x(cid:21) (cid:5) The word (cid:18)uniform(cid:19) is (cid:8) k k a x bj j (cid:0) (cid:0) used because convergence in this norm is the same as uniform convergence on (cid:23)a(cid:0)b(cid:25)(cid:6) fn f (cid:9) fn (cid:0) f on (cid:23)a(cid:0)b(cid:25)(cid:4) k (cid:0) k (cid:8) (cid:2)(cid:3) In this case we(cid:12)re interested in approximations by elements of Y (cid:26) n(cid:16) the subspace P of all polynomials of degree at most n in C(cid:23)a(cid:0)b(cid:25)(cid:5) It(cid:12)s not hard to see that n is a P (cid:17)nite(cid:14)dimensional subspace of C(cid:23)a(cid:0)b(cid:25) of dimension exactly n(cid:29)(cid:3)(cid:5) (cid:20)Why(cid:27)(cid:21) If we consider the subspace Y (cid:26) consisting of all polynomials in X (cid:26) C(cid:23)a(cid:0)b(cid:25)(cid:16) P wereadily see that the existence of best approximationscan be problematic(cid:5) It follows Preliminaries (cid:8) from the Weierstrass theorem(cid:16) for example(cid:16) that each f C(cid:23)a(cid:0)b(cid:25) has distance (cid:9) (cid:4) from but(cid:16) since not every f C(cid:23)a(cid:0)b(cid:25) is a polynomial (cid:20)why(cid:27)(cid:21)(cid:16) we can(cid:12)t hope for P (cid:4) a best approximating polynomial to exist in every case(cid:5) For example(cid:16) the function f(cid:20)x(cid:21) (cid:26) xsin(cid:20)(cid:3)(cid:5)x(cid:21) is continuouson (cid:23)(cid:9)(cid:0)(cid:3)(cid:25) but can(cid:12)t possiblyagree with any polynomial on (cid:23)(cid:9)(cid:0)(cid:3)(cid:25)(cid:5) (cid:20)Why(cid:27)(cid:21) The key to the problem of polynomial approximation is the fact that each n is P (cid:0)nite(cid:1)dimensional(cid:5) To see this(cid:16) it will be most e(cid:30)cient to consider the abstract setting of (cid:17)nite(cid:14)dimensional subspaces of arbitrary normed spaces(cid:5) (cid:0)Soft(cid:1) Approximation Lemma(cid:2) Let V be a (cid:0)nite(cid:1)dimensionalvector space(cid:2) Then(cid:3) all normsonV areequivalent(cid:2) That is(cid:3) if and are norms on V(cid:3) then there exist constants (cid:9) (cid:3) A(cid:0)B (cid:3) such k(cid:7)k jjj(cid:7)jjj (cid:6) that A x x B x k k (cid:5)jjj jjj(cid:5) k k for all vectors x V(cid:2) (cid:4) Proof(cid:7) Suppose that V is n(cid:14)dimensional and that is a norm on V(cid:5) Fix a basis k (cid:7) k e(cid:3)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)en for V and consider the norm n n n aiei (cid:26) ai (cid:26) (cid:20)ai(cid:21)i(cid:0)(cid:3) (cid:3) (cid:4)i(cid:0)(cid:3) (cid:4)(cid:3) i(cid:0)(cid:3)j j k k (cid:4)X (cid:4) X (cid:4) (cid:4) n (cid:4) (cid:4) for x (cid:26) i(cid:0)(cid:3)aiei V(cid:5) Sinc(cid:4)e e(cid:3)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)(cid:4)en is a basis for V(cid:16) it(cid:12)s not hard to see that (cid:3) is(cid:16) (cid:4) k(cid:7)k indeed(cid:16) Pa norm on V(cid:5) It now su(cid:30)ces to show that and (cid:3) are equivalent(cid:5) (cid:20)Why(cid:27)(cid:21) k(cid:7)k k(cid:7)k One inequality is easy to show(cid:22) indeed(cid:16) notice that n n n n aiei ai ei max ei ai (cid:26) B aiei (cid:4) (cid:4)i(cid:0)(cid:3) (cid:4) (cid:5) i(cid:0)(cid:3)j jk k (cid:5) (cid:5)(cid:3)(cid:0)i(cid:0)nk k(cid:6)i(cid:0)(cid:3)j j (cid:4)i(cid:0)(cid:3) (cid:4)(cid:3) (cid:4)X (cid:4) X X (cid:4)X (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) The real wo(cid:4)rk comes(cid:4)in establishing the other inequality(cid:5) (cid:4) (cid:4) To begin(cid:16) notice that we(cid:12)ve actually set(cid:14)up a correspondence between Rn and V(cid:22) n n speci(cid:17)cally(cid:16) themap(cid:20)ai(cid:21)i(cid:0)(cid:3) i(cid:0)(cid:3)aiei isobviouslyboth one(cid:14)to(cid:14)oneandonto(cid:5) Moreover(cid:16) (cid:9)(cid:8) this correspondence is an isomePtry between (cid:20)Rn(cid:0) (cid:3)(cid:21) and (cid:20)V(cid:0) (cid:3)(cid:21)(cid:5) k(cid:7)k k(cid:7)k Preliminaries (cid:10) Now the inequality we(cid:12)ve just established shows that the function x x is contin(cid:1) (cid:9)(cid:8) k k uous on the space (cid:20)V(cid:0) (cid:3)(cid:21) since k(cid:7)k x y x y B x y (cid:3) k k(cid:0)k k (cid:5) k (cid:0) k (cid:5) k (cid:0) k (cid:7) (cid:7) (cid:7) (cid:7) for any x(cid:16) y V(cid:5) Thus(cid:16) assumes a minimum value on the compact set (cid:4) k(cid:7)k S (cid:26) x V (cid:6) x (cid:3) (cid:26) (cid:3) (cid:4) f (cid:4) k k g (cid:20)Why is S compact(cid:27)(cid:21) In particular(cid:16) there is some A (cid:6) (cid:9) such that x A whenever k k (cid:1) x (cid:3) (cid:26) (cid:3)(cid:5) (cid:20)Why can we assume that A (cid:6) (cid:9)(cid:27)(cid:21) The inequality we need now follows from k k the homogeneity of the norm(cid:6) x A (cid:26) x A x (cid:3)(cid:4) x (cid:3) (cid:1) (cid:3) k k (cid:1) k k (cid:4)k k (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) Corollary(cid:2) Given a (cid:3) b (cid:20)(cid:0)x(cid:4)ed(cid:21) an(cid:4)d a positive integer n(cid:3) there exist (cid:9) (cid:3) An(cid:3) Bn (cid:3) (cid:6) (cid:20)constants which may depend on n(cid:21) such that n n n k An ak max akx Bn ak (cid:4) k(cid:0)(cid:1)j j (cid:5) a(cid:0)x(cid:0)b(cid:7)k(cid:0)(cid:1) (cid:7) (cid:5) k(cid:0)(cid:1)j j X (cid:7)X (cid:7) X (cid:7) (cid:7) (cid:7) (cid:7) Exercise (cid:7) (cid:7) Find explicit (cid:18)formulas(cid:19) for An and Bn(cid:16) above(cid:5) (cid:20)This can be done without any fancy theorems(cid:5)(cid:21) If it helps(cid:16) you may consider the case (cid:23)a(cid:0)b(cid:25) (cid:26) (cid:23)(cid:9)(cid:0)(cid:3)(cid:25)(cid:5) Corollary(cid:2) Let Y be a (cid:0)nite(cid:1)dimensionalnormed space and let M (cid:6) (cid:9)(cid:2) Then(cid:3) any closed ball y Y (cid:6) y M is compact(cid:2) f (cid:4) k k (cid:5) g Proof(cid:7) Againsupposethat Y is n(cid:14)dimensionalandthat e(cid:3)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)en is a basisfor Y(cid:5) From our previous lemma we know that there is some constant A (cid:6) (cid:9) such that n n A ai aiei i(cid:0)(cid:3)j j (cid:5) (cid:4)i(cid:0)(cid:3) (cid:4) X (cid:4)X (cid:4) (cid:4) (cid:4) n (cid:4) (cid:4) for all x (cid:26) i(cid:0)(cid:3)aiei Y(cid:5) In particular(cid:16) (cid:4) (cid:4) (cid:4) P n M A ai aiei M (cid:26) ai for i (cid:26) (cid:3)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)n(cid:4) j j (cid:5) (cid:4)i(cid:0)(cid:3) (cid:4) (cid:5) (cid:3) j j (cid:5) A (cid:4)X (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) (cid:4) Preliminaries (cid:7) Thus(cid:16) y Y (cid:6) y M is a closed subset (cid:20)why(cid:27)(cid:21) of the compact set f (cid:4) k k (cid:5) g n M x (cid:26) aiei (cid:6) ai (cid:0) i (cid:26) (cid:3)(cid:0)(cid:4)(cid:4)(cid:4)(cid:0)n (cid:4) j j (cid:5) A (cid:8) i(cid:0)(cid:3) (cid:9) X Corollary(cid:2) Every (cid:0)nite(cid:1)dimensional normed space is complete(cid:2) In particular(cid:3) if Y is a (cid:0)nite(cid:1)dimensional subspace of a normed linear space X(cid:3) then Y is a closed subset of X(cid:2) Theorem(cid:2) Let Y be a (cid:0)nite(cid:1)dimensional subspace of a normed linear space X(cid:3) and let x X(cid:2) Then(cid:3) there exists a (cid:20)not necessarily unique(cid:21) y(cid:3) Y such that (cid:4) (cid:4) x y(cid:3) (cid:26) min x y k (cid:0) k y Y k (cid:0) k (cid:1) for all y Y(cid:2) That is(cid:3) there is a best approximation to x by elements of Y(cid:2) (cid:4) Proof(cid:7) First notice that since (cid:9) Y(cid:16) we know that a nearest point y(cid:3) will satisfy (cid:4) x y(cid:3) x (cid:26) x (cid:9) (cid:5) Thus(cid:16) it su(cid:30)ces to look for y(cid:3) among the vectors y Y k (cid:0) k (cid:5) k k k (cid:0) k (cid:4) satisfying x y x (cid:5) It will be convenient to use a slightly larger set of vectors(cid:16) k (cid:0) k (cid:5) k k though(cid:5) By the triangle inequality(cid:16) x y x (cid:26) y x y (cid:29) x (cid:2) x (cid:4) k (cid:0) k (cid:5) k k (cid:3) k k (cid:5) k (cid:0) k k k (cid:5) k k Thus(cid:16) we may restrict our attention to those y(cid:12)s in the compact set K (cid:26) y Y (cid:6) y (cid:2) x (cid:4) f (cid:4) k k (cid:5) k kg To (cid:17)nish the proof(cid:16) we need only notice that the function f(cid:20)y(cid:21) (cid:26) x y is continuous(cid:6) k (cid:0) k f(cid:20)y(cid:21) f(cid:20)z(cid:21) (cid:26) x y x z y z (cid:0) j (cid:0) j k (cid:0) k(cid:0)k (cid:0) k (cid:5) k (cid:0) k (cid:7) (cid:7) (cid:7) (cid:7) hence attains a minimum value at some point y(cid:3) K(cid:5) (cid:4) Corollary(cid:2) For each f C(cid:23)a(cid:0)b(cid:25)(cid:3) and each positive integer n(cid:3) there is a (cid:20)not necessarily (cid:4) unique(cid:21) polynomial p(cid:3)n n such that (cid:4) P f p(cid:3)n (cid:26) min f p (cid:4) k (cid:0) k p nk (cid:0) k (cid:1)P Preliminaries (cid:0) Corollary(cid:2) Given f C(cid:23)a(cid:0)b(cid:25) and a (cid:20)(cid:0)xed(cid:21) positive integer n(cid:3) there exists a constant (cid:4) R (cid:3) such that if (cid:6) n k f akx f (cid:0) (cid:4) (cid:0)k(cid:0)(cid:1) (cid:4) (cid:5) k k (cid:4) X (cid:4) (cid:4) (cid:4) then max ak R(cid:2) (cid:4) (cid:4) (cid:1) k nj j (cid:5) (cid:4) (cid:4) (cid:0) (cid:0) Examples Nothing in our Corollary says that p(cid:3)n will be a polynomial of degree exactly n(cid:31)rather(cid:16) a polynomial of degree at most n(cid:5) For example(cid:16) the best approximation to f(cid:20)x(cid:21) (cid:26) x by a polynomial of degree at most (cid:8) is(cid:16) of course(cid:16) p(cid:20)x(cid:21) (cid:26) x(cid:5) Even examples of non(cid:14)polynomial functions are easy to come by(cid:22) for instance(cid:16) the best linear approximation to f(cid:20)x(cid:21) (cid:26) x j j on (cid:23) (cid:3)(cid:0)(cid:3)(cid:25) is actually the constant function p(cid:20)x(cid:21) (cid:26) (cid:3)(cid:5)(cid:2)(cid:16) and this makes for an entertaining (cid:0) exercise(cid:5) Before we leave these (cid:18)soft(cid:19) argumentsbehind(cid:16) let(cid:12)s discussthe problemof uniqueness of best approximations(cid:5) First(cid:16) let(cid:12)s see why we want best approximations to be unique(cid:6) Lemma(cid:2) Let Y be a (cid:0)nite(cid:1)dimensionalsubspaceof a normedlinear space X(cid:3) and suppose that each x X has a unique nearest point yx Y(cid:2) Then(cid:3) the nearest point map x yx (cid:4) (cid:4) (cid:9)(cid:8) is continuous(cid:2) Proof(cid:7) Let(cid:12)s write P(cid:20)x(cid:21) (cid:26) yx for the nearest point map(cid:16) and let(cid:12)s suppose that xn x (cid:8) in X(cid:5) We want to show that P(cid:20)xn(cid:21) P(cid:20)x(cid:21)(cid:16) and for this it(cid:12)s enough to show that there is (cid:8) a subsequence of (cid:20)P(cid:20)xn(cid:21)(cid:21) which converges to P(cid:20)x(cid:21)(cid:5) (cid:20)Why(cid:27)(cid:21) Since the sequence (cid:20)xn(cid:21) is bounded in X(cid:16) say xn M for all n(cid:16) we have k k (cid:5) P(cid:20)xn(cid:21) P(cid:20)xn(cid:21) xn (cid:29) xn (cid:2) xn (cid:2)M(cid:4) k k (cid:5) k (cid:0) k k k (cid:5) k k (cid:5) Thus(cid:16) (cid:20)P(cid:20)xn(cid:21)(cid:21) is a bounded sequence in Y(cid:16) a (cid:17)nite(cid:14)dimensionalspace(cid:5) As such(cid:16) by passing toasubsequence(cid:16)wemaysupposethat(cid:20)P(cid:20)xn(cid:21)(cid:21) convergesto someelementP(cid:1) Y(cid:5) (cid:20)How(cid:27)(cid:21) (cid:4) Now we need to show that P(cid:1) (cid:26) P(cid:20)x(cid:21)(cid:5) But P(cid:20)xn(cid:21) xn P(cid:20)x(cid:21) xn (cid:20)why(cid:27)(cid:21)(cid:0) k (cid:0) k (cid:5) k (cid:0) k for any n(cid:16) and hence(cid:16) letting n (cid:16) (cid:8) (cid:6) P(cid:1) x P(cid:20)x(cid:21) x (cid:4) k (cid:0) k (cid:5) k (cid:0) k Preliminaries (cid:11) Since nearest points in Y are unique(cid:16) we must have P(cid:1) (cid:26) P(cid:20)x(cid:21)(cid:5) Exercise Let X be a normed linear space and let P (cid:6) X X(cid:5) Show that P is continuous at x X (cid:8) (cid:4) if and only if(cid:16) whenever xn x in X(cid:16) some subsequence of (cid:20)P(cid:20)xn(cid:21)(cid:21) converges to P(cid:20)x(cid:21)(cid:5) (cid:8) (cid:23)Hint(cid:6) The forward direction is easy(cid:22) for the backward implication(cid:16) suppose that (cid:20)P(cid:20)xn(cid:21)(cid:21) fails to converge to P(cid:20)x(cid:21) and work toward a contradiction(cid:5)(cid:25) It should be pointed out that the nearest point map is(cid:16) in general(cid:16) nonlinear and(cid:16) as such(cid:16) can be very di(cid:30)cult to work with(cid:5) Later we(cid:12)ll see at least one case in which nearest point maps always turn out to be linear(cid:5) We next observe that the set of best approximations is always pretty reasonable(cid:6) Theorem(cid:2) Let Y be a subspace of a normed linear space X(cid:3) and let x X(cid:2) The set Yx(cid:3) (cid:4) consisting of all best approximations to x out of Y(cid:3) is a bounded(cid:3) convex set(cid:2) Proof(cid:7) As we(cid:12)ve seen(cid:16) the set Yx is a subset of y X (cid:6) y (cid:2) x and(cid:16) hence(cid:16) is f (cid:4) k k (cid:5) k kg bounded(cid:5) Now recall that a subset K of a vector space V is said to be convex if K contains the line segment joining any pair of its points(cid:5) Speci(cid:17)cally(cid:16) K is convex if x(cid:0)y K(cid:0) (cid:9) (cid:7) (cid:3) (cid:26) (cid:7)x(cid:29)(cid:20)(cid:3) (cid:7)(cid:21)y K(cid:4) (cid:4) (cid:5) (cid:5) (cid:3) (cid:0) (cid:4) Now(cid:16) y(cid:3)(cid:16) y(cid:2) Yx means that (cid:4) x y(cid:3) (cid:26) x y(cid:2) (cid:26) min x y (cid:4) k (cid:0) k k (cid:0) k y Y k (cid:0) k (cid:1) Next(cid:16) given (cid:9) (cid:7) (cid:3)(cid:16) set y(cid:3) (cid:26) (cid:7)y(cid:3)(cid:29)(cid:20)(cid:3) (cid:7)(cid:21)y(cid:2)(cid:5) We want to show that y(cid:3) Yx(cid:16) but notice (cid:5) (cid:5) (cid:0) (cid:4) that we at least have y(cid:3) Y(cid:5) Finally(cid:16) we estimate(cid:6) (cid:4) x y(cid:3) (cid:26) x (cid:20)(cid:7)y(cid:3) (cid:29)(cid:20)(cid:3) (cid:7)(cid:21)y(cid:2)(cid:21) k (cid:0) k k (cid:0) (cid:0) k (cid:26) (cid:7)(cid:20)x y(cid:3)(cid:21)(cid:29)(cid:20)(cid:3) (cid:7)(cid:21)(cid:20)x y(cid:2)(cid:21) k (cid:0) (cid:0) (cid:0) k (cid:7) x y(cid:3) (cid:29)(cid:20)(cid:3) (cid:7)(cid:21) x y(cid:2) (cid:5) k (cid:0) k (cid:0) k (cid:0) k (cid:26) min x y (cid:4) y Y k (cid:0) k (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.