ebook img

A short course in quantum information theory: an approach from theoretical physics PDF

127 Pages·2007·0.834 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A short course in quantum information theory: an approach from theoretical physics

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Beiglböck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Hänggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zürich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zürich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Golm,Germany H.v.Löhneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andZürich,Switzerland S.Theisen,Golm,Germany W.Weise,Garching,Germany J.Wess,München,Germany J.Zittartz,Köln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchtoservethefollowingpurposes: •tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic; •toserveasanaccessibleintroductiontothefieldtopostgraduatestudentsandnonspe- cialistresearchersfromrelatedareas; • to be a source of advanced teaching material for specialized seminars, courses and schools. Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: Dr.ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Lajos Diósi A Short Course in Quantum Information Theory An Approach From Theoretical Physics ABC Author Dr.LajosDiósi KFKIResearchInstitutefor ParticalandNuclearPhysics P.O.Box49 1525Budapest Hungary E-mail:[email protected] L. Diósi, A Short Course in Quantum Information Theory, Lect. Notes Phys. 713 (Springer,BerlinHeidelberg2007),DOI10.1007/b11844914 LibraryofCongressControlNumber:2006931893 ISSN0075-8450 ISBN-10 3-540-38994-6SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-38994-1SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorandtechbooksusingaSpringerLATEXmacropackage Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SPIN:11844914 54/techbooks 543210 Preface Quantuminformationhasbecomeanindependentfastgrowingresearchfield.There are new departments and labs all around the world, devoted to particular or even complex studies of mathematics, physics, and technology of controlling quantum degrees of freedom. The promised advantage of quantum technologies has obvi- ously electrified the field which had been considered a bit marginal until quite re- cently.Before,manyfoundationalquantumfeatureshadneverbeentestedorused onsinglequantumsystemsbutonensemblesofthem.Illustrationsofreduction,de- cay, or recurrence of quantum superposition on single states went to the pages of regulartext-books,withoutbeingexperimentallytestedever.Nowadays,however,a youngestgenerationofspecialistshasimbibedquantumtheoreticalandexperimen- talfoundations“frominfancy”. From 2001 on, in spring semesters I gave special courses for under- and post- graduatephysicistsatEötvösUniversity.Thetwelvelecturescouldnotincludeall standardchaptersofquantuminformation.Myguidingprincipleswerethoseofthe theoreticalphysicistandthebelieverintheunityofphysics.Iachievedadecentbal- ance between the core text of quantum information and the chapters that link it to theedificeoftheoreticalphysics.Scholarlyexperienceofthepassedfivesemesters willbeutilizedinthisbook. Isuggestthisthinbookforallphysicists,mathematiciansandotherpeoplein- terested in universal and integrating aspects of physics. The text does not require special mathematics but the elements of complex vector space and of probability theories. People with prior studies in basic quantum mechanics make the perfect readers.Forthosewhoarepreparedtospendmanytimesmorehourswithquantum informationstudies,therehavebeenexhaustivemonographswrittenbyPreskill,by NielsenandChuang,ortheeditedonebyBouwmeester,Ekert,andZeilinger.And foreachofmyreaders,itisalmostcompulsorytofindandreadasecondthinbook “ShortCourseinQuantumInformation,approachfromexperiments”... Acknowledgements Ibenefitedfromtheconversationsand/orcorrespondencewith JürgenAudretsch,AndrásBodor,ToddBrun,TovaFeldmann,TamásGeszti,Thomas Konrad,andTamásKiss.Iamgratefultothemallforthegeneroushelpanduseful remarksthatservedtoimprovemymanuscript. VI Preface ItisapleasuretoacknowledgefinancialsupportfromtheHungarianScientific ResearchFund,GrantNo.49384. Budapest, LajosDiósi February2006 Contents 1 Introduction................................................... 1 2 Foundationsofclassicalphysics.................................. 5 2.1 Statespace ................................................ 5 2.2 Mixing,selection,operation.................................. 5 2.3 Equationofmotion ......................................... 6 2.4 Measurements ............................................. 6 2.4.1 Projectivemeasurement............................... 7 2.4.2 Non-projectivemeasurement .......................... 9 2.5 Compositesystems ......................................... 9 2.6 Collectivesystem .......................................... 11 2.7 Two-statesystem(bit)....................................... 11 Problems ...................................................... 12 3 Semiclassical—semi-Q-physics ................................. 15 Problems ...................................................... 16 4 Foundationsofq-physics........................................ 19 4.1 Statespace,superposition.................................... 19 4.2 Mixing,selection,operation.................................. 20 4.3 Equationofmotion ......................................... 20 4.4 Measurements ............................................. 21 4.4.1 Projectivemeasurement............................... 22 4.4.2 Non-projectivemeasurement .......................... 23 4.4.3 Continuousmeasurement ............................. 24 4.4.4 Compatiblephysicalquantities......................... 25 4.4.5 Measurementinpurestate............................. 26 4.5 Compositesystems ......................................... 27 4.6 Collectivesystem .......................................... 29 Problems ...................................................... 29 5 Two-stateq-system:qubitrepresentations ........................ 31 5.1 Computational-representation ................................ 31 5.2 Paulirepresentation......................................... 32 5.2.1 Statespace.......................................... 32 VIII Contents 5.2.2 Rotationalinvariance ................................. 33 5.2.3 Densitymatrix ...................................... 34 5.2.4 Equationofmotion................................... 35 5.2.5 Physicalquantities,measurement....................... 35 5.3 Theunknownqubit,AliceandBob............................ 36 5.4 RelationshipofcomputationalandPaulirepresentations .......... 37 Problems ...................................................... 37 6 One-qubitmanipulations ....................................... 39 6.1 One-qubitoperations........................................ 39 6.1.1 Logicaloperations ................................... 39 6.1.2 Depolarization,re-polarization,reflection................ 40 6.2 Statepreparation,determination .............................. 42 6.2.1 Preparationofknownstate,mixing ..................... 42 6.2.2 Ensembledeterminationofunknownstate ............... 43 6.2.3 Singlestatedetermination:no-cloning................... 44 6.2.4 Fidelityoftwostates ................................. 44 6.2.5 Approximatestatedeterminationandcloning............. 45 6.3 Indistinguishabilityoftwonon-orthogonalstates ................ 45 6.3.1 Distinguishingviaprojectivemeasurement............... 46 6.3.2 Distinguishingvianon-projectivemeasurement........... 46 6.4 Applicationsofno-cloningandindistinguishability .............. 47 6.4.1 Q-banknote ......................................... 47 6.4.2 Q-key,q-cryptography................................ 48 Problems ...................................................... 50 7 Compositeq-system,purestate .................................. 53 7.1 Bipartitecompositesystems.................................. 53 7.1.1 Schmidtdecomposition ............................... 53 7.1.2 Statepurification..................................... 54 7.1.3 Measureofentanglement.............................. 55 7.1.4 Entanglementandlocaloperations...................... 56 7.1.5 Entanglementoftwo-qubitpurestates................... 57 7.1.6 Interchangeabilityofmaximalentanglements............. 58 7.2 Q-correlationshistory....................................... 59 7.2.1 EPR,Einstein-nonlocality1935 ........................ 59 7.2.2 Anon-existinglinearoperation1955.................... 60 7.2.3 Bellnonlocality1964................................. 62 7.3 ApplicationsofQ-correlations................................ 64 7.3.1 Superdensecoding ................................... 64 7.3.2 Teleportation........................................ 65 Problems ...................................................... 67 Contents IX 8 Allq-operations................................................ 69 8.1 Completelypositivemaps ................................... 69 8.2 Reduceddynamics ......................................... 70 8.3 Indirectmeasurement ....................................... 71 8.4 Non-projectivemeasurementresultingfromindirectmeasurement.. 73 8.5 EntanglementandLOCC .................................... 74 8.6 Openq-system:masterequation .............................. 75 8.7 Q-channels................................................ 75 Problems ...................................................... 76 9 Classicalinformationtheory..................................... 79 9.1 Shannonentropy,mathematicalproperties...................... 79 9.2 Messages ................................................. 80 9.3 Datacompression .......................................... 80 9.4 Mutualinformation......................................... 82 9.5 Channelcapacity........................................... 83 9.6 Optimalcodes ............................................. 83 9.7 Cryptographyandinformationtheory.......................... 84 9.8 Entropicallyirreversibleoperations............................ 84 Problems ...................................................... 85 10 Q-informationtheory........................................... 87 10.1 VonNeumannentropy,mathematicalproperties ................. 87 10.2 Messages ................................................. 88 10.3 Datacompression .......................................... 89 10.4 Accessibleq-information .................................... 91 10.5 Entanglement:theresourceofq-communication................. 91 10.6 Entanglementconcentration(distillation)....................... 93 10.7 Entanglementdilution....................................... 94 10.8 Entropicallyirreversibleoperations............................ 95 Problems ...................................................... 96 11 Q-computation ................................................ 99 11.1 Parallelq-computing........................................ 99 11.2 Evaluationofarithmeticfunctions.............................100 11.3 Oracleproblem:thefirstq-algorithm ..........................101 11.4 Searchingq-algorithm.......................................103 11.5 Fourieralgorithm...........................................104 11.6 Q-gates,q-circuits..........................................105 Problems ......................................................106 Solutions ..........................................................109 References.........................................................123 Index .............................................................125 Symbols, acronyms, abbreviations { , } Poissonbracket ◦ composition [ , ] commutator × Cartesianproduct (cid:1) (cid:2) expectationvalue ⊗ tensorproduct Oˆ matrix tr trace Oˆ† adjointmatrix trA partialtrace ⊕ modulosum x,y,... phasespacepoints w weightinmixture Γ phasespace |↑(cid:2),|↓(cid:2) spin-up,spin-downbasis ρ(x) phasespacedistribution, n,m... Blochunitvectors classicalstate |n(cid:2) qubitstatevector x,y... binarynumbers s qubitpolarizationvector xn...x2x1 binarystring σˆx,σˆyσˆz Paulimatrices ρ(x) discreteclassicalstate σˆ vectorofPaulimatrices M operation a,b,α,... realspatialvectors T polarizationreflection ab realscalarproduct I identityoperation xˆ qubithermitianmatrix L Lindbladgenerator X,Y,Z onequbitPauligates A(x),A(x) classicalphysicalquantities H Hadamardgate H(x) Hamiltonfunction T(ϕ) phasegate P indicatorfunction F fidelity Π(x),Π(x) classicaleffect E entanglementmeasure H Hilbertspace S(ρ),S(p) Shannonentropy d vectorspacedimension S(ρˆ) vonNeumannentropy |ψ(cid:2),|ϕ(cid:2),... statevectors (cid:1)S(ρ(cid:1)(cid:2)(cid:8)ρ(cid:1)),S((cid:2)ρˆ(cid:1)(cid:8)ρˆ)relativeentropy (cid:1)ψ|,(cid:1)ϕ|,... adjointstatevectors (cid:1)Ψ± ,(cid:1)Φ± Bellbasisvectors (cid:1)ψ|ϕ(cid:2) complexinnerproduct |x(cid:2) computationalbasisvector (cid:1)ψ|Oˆ|ϕ(cid:2) matrixelement Mˆ Krausmatrices n ρˆ densitymatrix,quantumstate |n;E(cid:2) environmentalbasisvector Aˆ quantumphysicalquantity X,Y,... classicalmessage Hˆ Hamiltonian H(X),H(Y) Shannonentropy Pˆ hermitianprojector H(X|Y) conditionalShannonentropy Iˆ unitmatrix I(X:Y) mutualinformation Uˆ unitarymap C channelcapacity Πˆ quantumeffect ρ(x|y) conditionalstate p probability ρ(y|x) transferfunction q- quantum LO localoperation cNOT controlledNOT LOCC localoperationand classicalcommunication

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.