ebook img

A Senior Seminar On Quadratic Reciprocity PDF

78 Pages·2010·0.537 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Senior Seminar On Quadratic Reciprocity

A Senior Seminar On Quadratic Reciprocity AngelV.Kumchev Contents Chapter1. ElementaryNumberTheory: AReview 1 1.1. Divisibility 1 1.2. Thegreatestcommondivisoroftwointegers 2 1.3. Primenumbersandthefundamentaltheoremofarithmetic 5 1.4. Congruencemodulom 5 1.5. Completeandreducedsystemsmodulom 8 1.6. Exercises 9 Chapter2. TheLawOfQuadraticReciprocity 11 2.1. Polynomialcongruences 11 2.2. Linearcongruences 12 2.3. Quadraticcongruences. Quadraticresiduesandnonresidues 13 2.4. TheLegendresymbol 14 2.5. Quadraticreciprocity 16 2.6. Exercises 17 Chapter3. ComplexNumbers 19 3.1. Definitionandalgebraicproperties 19 3.2. Geometricinterpretation,moduliandconjugates 20 3.3. Exponentialform 22 3.4. Rootsofcomplexnumbers 23 3.5. Thecomplexexponential 23 3.6. Trigonometricandhyperbolicfunctionsofacomplexargument 24 3.7. Thecomplexlogarithmandpowerfunctions 26 3.8. Gausssums 28 3.9. Exercises 30 Chapter4. AlgebraOverTheComplexNumbers 33 4.1. Rootsofpolynomialswithcomplexcoefficients 33 4.2. Linearalgebraoverthecomplexnumbers 35 4.3. Reviewofdeterminants 40 4.4. Theresultantoftwopolynomials 44 4.5. Symmetricpolynomialsinseveralvariables 45 4.6. Exercises 46 Chapter5. FourierSeries 51 5.1. Definition 51 5.2. Calculusofcomplex-valuedfunctions 51 5.3. Anexample 53 5.4. RepresentingfunctionsbyFourierseries 54 i ii CONTENTS 5.5. Poisson’ssummationformula 56 5.6. Exercises 57 Chapter6. AlgebraicNumbersAndAlgebraicIntegers 61 6.1. Definition 61 6.2. Theringofalgebraicintegers 61 6.3. Congruencesbetweenalgebraicintegers 63 6.4. AproofofTheorem2.17 64 6.5. Exercises 65 Chapter7. ProofsOfTheLawOfQuadraticReciprocity 67 7.1. S.Y.Kim’selementaryproof 67 7.2. Eisenstein’slemmaandcountinglatticepoints 68 7.3. AnotherproofofEisenstein’s 69 7.4. Analgebraicproof: Gausssumsarealgebraicintegers 69 7.5. AproofusingtheformulafortheGausssum 70 7.6. AnevaluationoftheGausssumusingFourierseries 71 7.7. AnevaluationoftheGausssumusingmatrices 72 7.8. Aproofusingpolynomialsandresultants 73 CHAPTER 1 Elementary Number Theory: A Review As we said already in the Introduction, the focus of this course is a theorem from number theory known as the law of quadratic reciprocity. Thus, it should not come as a surprisethatweshallneedcertainfactsfromelementarynumbertheory.Inthischapter,we reviewsomeofthebasicsofarithmetic: thedefinitionofdivisibility,thegreatestcommon divisoroftwointegers,thedefinitionandbasicpropertiesofprimenumbers,andproperties of congruences. It is very likely that you are familiar with much of the material in the chapterfromearliercourses,soweaimmainlytorefreshyourknowledge,fillanypotential gaps in it, and set up the notation and terminology for future reference. The pace of the expositionisthusratherbrisk,andseveralproofsareleftasexercises. 1.1. Divisibility Numbertheorystudiesthepropertiesoftheintegers,andthatstudyusuallystartswith thenotionofdivisibilityofoneintegerbyanother. Definition1.1. Ifa,b∈Zandb(cid:44)0,wesaythatbdividesaandwriteb|a,ifa=bqfor someq∈Z. Ifbdoesnotdividea,wewriteb(cid:45)a. Whenb|a,wemayalsosaythatbisa divisorofa,bisafactorofa,oraisamultipleofb. Example1.2. Wehave3|15and6|324,but100(cid:45)2010. Giventwointegersaandb (cid:44) 0, wesometimeswanttodivide abybeventhoughb may not be a divisor of a: say, we may want to divide 37 candy bars among 4 children. This problem leads to the concept of “division with a quotient and a remainder.” It is summarized by the following theorem, known as the quotient-remainder theorem or the divisionalgorithm. Theorem1.3(Quotient-remaindertheorem). Ifa,b∈Zandb>0,thenthereexistunique integersqandrsuchthat a=bq+r, 0≤r<b. Proof. “Existence.” Letqbethelargestintegermwithm ≤ a/bandletr = a−bq. Then q≤a/b =⇒ 0≤a−bq=r. Furthermore,sinceqisthelargestintegernotexceedinga/b,wehave a/b<q+1 =⇒ a<bq+b =⇒ r=a−bq<b. “Uniqueness.” Supposethatq ,q ,r andr areintegerssuchthat 1 2 1 2 a=bq +r =bq +r , 0≤r ,r <b. 1 1 2 2 1 2 Then bq +r =bq +r =⇒ r −r =b(q −q ). 1 1 2 2 1 2 2 1 1 2 1.ELEMENTARYNUMBERTHEORY:AREVIEW Ontheotherhand, 0≤r ,r <b =⇒ −b<r −r <b. 1 2 1 2 Hence, −b<b(q −q )<b =⇒ −1<q −q <1. 2 1 2 1 Sinceq −q isaninteger,weconcludethatq −q =0. Thus,q =q and 2 1 2 1 1 2 bq +r =bq +r =⇒ r =r . (cid:3) 1 1 2 2 1 2 1.2. Thegreatestcommondivisoroftwointegers Definition1.4. Letaandbbeintegers,notboth0. Thegreatestcommondivisorofaand b,denotedgcd(a,b)or(a,b),isthelargestnaturalnumberdsuchthatd |aandd |b. Example1.5. Thepositivedivisorsof2are1and2,andthepositivedivisorsof6are1, 2,3and6. Thus,(2,6)=2. Thepositivedivisorsof4are1,2and4,andthepositivedivisorsof6are1,2,3and 6. Thus,(4,6)=2. Thepositivedivisorsof−4are1,2and4,andthepositivedivisorsof0areallnatural numbers. Thus,(−4,0)=4. Ifa(cid:44)0,thenanypositivedivisorofais≤|a|. Moreover,|a|(whichiseitheraor−a) isadivisorofa,so|a|isthelargestpositivedivisorofa. Thus,(a,0)=|a|. (cid:3) Intheaboveexample,wecomputed(a,0)foralla(cid:44)0. Wewanttofindamethodfor computingthegcdofanytwonumbers. Thenextlemmareducesthatproblemtothecase whenaandbarenaturalnumbers. Lemma1.6. Ifaandbareintegersandb(cid:44)0,then(a,b)=(a,|b|). Lemma1.7. Letb,q,andrbeintegers,andsupposethatbandrarenotboth0. Then (bq+r,b)=(r,b). Proof. Leta = bq+r, d = (a,b), andd = (r,b). Bythedefinitionof(r,b), d | r 1 2 2 andd |b,sob=d mandr=d nforsomem,n∈Z. Hence, 2 2 2 a=bq+r=(d m)q+d n=d (mq+n). 2 2 2 Since mq+n is an integer, it follows that d | a. Since d is a positive divisor of b, we 2 2 conclude that d is a natural number that divides both a and b. Then d does not exceed 2 2 thelargestnaturalnumberthatdividesbothaandb: thatis,d ≤d . 2 1 Next, bythedefinitionof(a,b), d | aandd | b, soa = d nandb = d mforsome 1 1 1 1 n,m∈Z. Hence, r=(bq+r)−bq=a−bq=d n−(d m)q=d (n−mq). 1 1 1 Since n−mq is an integer, it follows that d | r. Since d is a positive divisor of b, we 1 1 concludethatd isanaturalnumberthatdividesbothrandb. Thend doesnotexceedthe 1 1 largestnaturalnumberthatdividesbothrandb: thatis,d ≤d . 1 2 Weprovedthatd ≤d andd ≤d . Therefore,d =d . (cid:3) 1 2 2 1 1 2 We can use Lemma 1.7 to calculate the gcd of any two positive integers. We illus- tratethemainideabyanexample,andthenproveatheoremthatdescribesthemethodin general. 1.2.THEGREATESTCOMMONDIVISOROFTWOINTEGERS 3 Example1.8. LetususeLemma1.7tocalculate(216,51). WeapplyLemma1.7repeat- edlyasfollows: (216,51)=(4·51+12,51)=(12,51)=(12,4·12+3)=(12,3)=3. ItseemsplausiblethatweshouldbeabletoproceedsimilarlytoExample1.8tocom- pute(a,b)forgeneralaandb. Thefollowingtheorem,knownastheEuclideanalgorithm, establishesthatthisisindeedthecase. Theorem1.9(Euclideanalgorithm). Letaandbbeintegers,with0<b<a. i) Ifb|a,then(a,b)=b. ii) Ifb(cid:45)a,thenthereexistintegersq1,r1,q2,r2,...,rm,qm+1suchthat a=bq +r , 0<r <b; 1 1 1 b=r q +r , 0≤r <r ; 1 2 2 2 1 r =r q +r , 0≤r <r ; 1 2 3 3 3 2 . . . r =r q +r , 0≤r <r ; m−2 m−1 m m m m−1 rm−1 =rmqm+1; and(a,b)=r . m Proof. i)Thispartisaneasyconsequenceofthedefinitionofgreatestcommondivi- sor. ii)Weuseinductiononatoprovethestatement: Ifbisanintegersuchthat0<b<aandb(cid:45)a,thenthereexistintegers q1,r1,q2,r2,...,rm,qm+1suchthat a=bq +r , 0<r <b; 1 1 1 b=r q +r , 0≤r <r ; 1 2 2 2 1 r =r q +r , 0≤r <r ; 1 2 3 3 3 2 . . . r =r q +r , 0≤r <r ; m−2 m−1 m m m m−1 rm−1 =rmqm+1; rm =(a,b). The base case of the induction is a = 3. When a = 3, the only admissible value of b is b=2,andtheabovestatementholdswithm=1,q =r =1,q =2: 1 1 2 3=2·1+1, 0<1<2; 2=1·2; 1=(3,2). Now, suppose that the above statement holds for all integers a with 2 < a < n, and considerthecasea = n. Letbbeanintegerwith0 < b < nandb (cid:45) n. ByTheorem1.3, thereexistintegersq,rsuchthat n=bq+r, 0≤r<b. Furthermore, since b (cid:45) n, the remainder r cannot be 0, so we can strengthen the above inequalitytoget n=bq+r, 0<r<b. (1.1) Ifr|b,thenb=rq(cid:48)forsomeintegerq(cid:48),andLemma1.7andparti)give (n,b)=(bq+r,b)=(r,b)=r. 4 1.ELEMENTARYNUMBERTHEORY:AREVIEW Hence,theabovestatementforthepairn,bholdswithm=1,q =q,r =r,andq =q(cid:48). 1 1 2 Next, suppose that r (cid:45) b. Since 0 < r < b < n and r (cid:45) b, we can apply the inductive hypothesistothepairb,r: thereexistintegersq1,r1,q2,r2,...,rm,qm+1suchthat b=rq +r , 0<r <r; 1 1 1 r=r q +r , 0≤r <r ; 1 2 2 2 1 r =r q +r , 0≤r <r ; 1 2 3 3 3 2 . . . r =r q +r , 0≤r <r ; m−2 m−1 m m m m−1 rm−1 =rmqm+1; rm =(b,r). Combiningtheseconditionswith(1.1),wefindthattheintegersq,r,q1,r1,q2,...,rm,qm+1 haveallthedesiredpropertiesrelativetothepairn,b,withthepossibleexceptionof(n,b)= r . Toverifythelatterproperty,weuseLemma1.7andtheidentity(b,r)=r above: m m (n,b)=(bq+r,b)=(r,b)=r . (cid:3) m The Euclidean algorithm is very effective for computational purposes. However, it doesnotrelate(a,b)directlytoaandb.Thenexttheoremprovidesexactlysucharelation. Theorem1.10. Letaandbbeintegers,notboth0,andletd = (a,b). Thendistheleast positiveintegerintheset S=(cid:8)ax+by| x,y∈Z(cid:9). Inparticular,thereexistintegersx,ysuchthatd =ax+by. TherearetwostandardwaystoproveTheorem1.10: onebasedonthewell-ordering axiom of the natural numbers, the other based on the Euclidean algorithm. Both proofs aresketchedintheexercises(cf. Exercises1.4and1.5). Wenowstateseveralimportant consequencesofTheorem1.10,whichwewillusenumeroustimesthroughoutthecourse. Theorem1.11. Ifa,b,careintegerssuchthat(a,b)=(a,c)=1,then(a,bc)=1. Proof. Suppose that a,b and c are integers such that (a,b) = (a,c) = 1. Then by Theorem1.10,thereexistintegersx,y,u,vsuchthat ax+by=(a,b)=1, au+cv=(a,c)=1. Hence, 1=ax+by=ax+by(1)=ax+by(au+cv)=a(x+byu)+(bc)(yv). Sincex+byuandyvareintegers,thisshowsthat1isapositiveintegerfromtheset S=(cid:8)am+(bc)n|m,n∈Z(cid:9). Sincethereisnopositiveintegerlessthan1, itfollowsthat1istheleastpositiveinteger in S. By Theorem 1.10, the least positive integer in S is (a,bc), so we conclude that (a,bc)=1. (cid:3) Corollary1.12. Ifk≥2anda,b ,...,b areintegerssuchthat 1 k (a,b )=(a,b )=···=(a,b )=1, 1 2 k then(a,b b ···b )=1. 1 2 k Theorem1.13. Ifa,b,careintegerssuchthata|bcand(a,b)=1,thena|c. Theorem1.14. Ifa,b,careintegerssuchthata|c,b|cand(a,b)=1,thenab|c. 1.4.CONGRUENCEMODULOm 5 1.3. Primenumbersandthefundamentaltheoremofarithmetic Wenowrecallthedefinitionofprimeandcompositenumbers. Definition1.15. Aninteger p>1iscalledaprimenumber,orsimplyaprime,ifitsonly positive divisors are 1 and p. An integer n > 1 which is not prime is called a composite number. Thenumbers0and1areneitherprime,norcomposite. Example1.16. Theintegers2,3,13and89areprime;4,6,51and837arecomposite. The next theorem provides a necessary and sufficient condition for primality that is oftenmoreusefulinnumber-theoreticproofsthanthedefinitionofaprime. Theorem1.17. Apositiveinteger p>1isprimeifandonlyif phastheproperty: (∀a,b∈Z)(p|ab =⇒ p|a or p|b). (1.2) Proof. “⇒”. Suppose that p is a prime number and a and b are integers such that p | ab. If p | a, statement (1.2) is true. Now, suppose that p (cid:45) a. By the definition of a prime, the only positive divisors of p are 1 and p. Hence, (p,a) is 1 or p. However, (p,a) (cid:44) p,because p (cid:45) a. Hence,(p,a) = 1. Since p | aband(p,a) = 1,itfollowsfrom Theorem1.13that p|b. Therefore,(1.2)istrueagain. “⇐”. Supposethat p > 1hasproperty(1.2). Wemustshowthat pisprime. Suppose that p is composite. Then p has a positive divisor other than 1 and p: p = ab, where a,b∈Nand1<a< p. Inparticular,sincea< p,weconcludethat p(cid:45)a. Notealsothat p=ab, a>1 =⇒ b< p =⇒ p(cid:45)b. However,sincep| p=ab,itfollowsfromproperty(1.2)thatp|aorp|b;acontradiction. Therefore, pisprime. (cid:3) Theimportanceofprimenumberscomesfromthenexttheorem,whichsaysroughly that one can use multiplication to build any integer n > 1 from primes, and that there is essentially a unique way to do so. In other words, one can view the primes as the basic buildingblocksoftheintegersundermultiplication. Theorem1.18(Fundamentaltheoremofarithmetic). Letn > 1beaninteger. Thennhas auniquefactorizationoftheform n= p p ···p , p ≤ p ≤···≤ p , 1 2 k 1 2 k where p ,p ,...,p areprimenumbers. 1 2 k 1.4. Congruencemodulom Definition1.19. Letm ∈ N,withm > 1,andleta,b ∈ Z. Wesaythataiscongruenttob modulom,andwritea≡b (mod m),ifm|(a−b). Theorem1.20. Leta,b,m∈Zandm>1. Thena≡b (mod m)ifandonlyifthereexists anintegerksuchthata=b+mk. Proof. Bythedefinitionsofcongruenceanddivisibility, a≡b (mod m) ⇐⇒ m|(a−b) ⇐⇒ a−b=mk ⇐⇒ a=b+mk, wherek∈Z. (cid:3) 6 1.ELEMENTARYNUMBERTHEORY:AREVIEW Thenexttheoremsummarizessomebasicpropertiesofcongruences.Propertiesi)–iii) demonstratethatcongruencemodulomisanequivalencerelationontheintegers. Proper- tiesiv)–vi)introducethebasicarithmeticoperationswithcongruences. Theorem1.21. Letm∈Nanda,b,c,d ∈Z. Then: i) a≡a (mod m); ii) ifa≡b (mod m),thenb≡a (mod m); iii) ifa≡b (mod m)andb≡c (mod m),thena≡c (mod m); iv) ifa≡b (mod m)andc≡d (mod m),thena+c≡b+d (mod m); v) ifa≡b (mod m)andc≡d (mod m),thenac≡bd (mod m); vi) ifac≡bc (mod m)and(c,m)=d,thena≡b (mod m/d). Proof. i)Sincem|0=(a−a),wehavea≡a (mod m). ii)ByTheorem1.20,a=b+kmforsomeintegerk,whence b=a−km=a+(−k)m. Since−kisalsoaninteger,itfollowsfromTheorem1.20thatb≡a (mod m). iii)ByTheorem1.20, a≡b (mod m) =⇒ a=b+km, b≡c (mod m) =⇒ b=c+lm, wherek,l∈Z. Hence, a=b+km=(c+lm)+km=c+(l+k)m=c+nm, wheren=l+kisalsoaninteger. Thus,a≡c (mod m),byTheorem1.20. iv)ByTheorem1.20, a≡b (mod m) =⇒ a=b+km, c≡d (mod m) =⇒ c=d+lm, wherek,l∈Z. Hence, a+c=(b+km)+(d+lm)=(b+d)+(k+l)m=(b+d)+nm, wheren=k+lisalsoaninteger. Thus,a+c≡b+d (mod m),againbyTheorem1.20. v)ByTheorem1.20, a≡b (mod m) =⇒ a=b+km, c≡d (mod m) =⇒ c=d+lm, wherek,l∈Z. Hence, ac=(b+km)(d+lm)=(bd)+(kd+lb+klm)m=(bd)+nm, wheren=kd+lb+klmisalsoaninteger. Thus,byTheorem1.20,ac≡bd (mod m). vi)ByTheorem1.20, ac≡bc (mod m) =⇒ ac=bc+km, where k ∈ Z. Moreover, because (c,m) = d, there exist u,v ∈ Z such that cu+mv = d. Combiningthesetwoidentities,wefindthat ac=bc+km =⇒ acu=bcu+kmu =⇒ a(d−mv)=b(d−mv)+kmu =⇒ ad =bd−bmv+kmu+amv=bd+nm =⇒ a=b+n(m/d), wheren=−bv+ku+avisalsoaninteger. Thus,yetanotherappealtoTheorem1.20gives a≡b (mod m/d). (cid:3)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.