ebook img

A Self-Consistent Model for a Full Cycle of Recurrent Novae -- Wind Mass Loss Rate and X-Ray Luminosity PDF

0.76 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Self-Consistent Model for a Full Cycle of Recurrent Novae -- Wind Mass Loss Rate and X-Ray Luminosity

TOAPPEARINTHEASTROPHYSICALJOURNAL PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ASELF-CONSISTENTMODELFORAFULLCYCLEOFRECURRENTNOVAE–WINDMASSLOSSRATEAND X-RAYLUMINOSITY MARIKOKATO DepartmentofAstronomy,KeioUniversity,Hiyoshi,Yokohama223-8521,Japan; HIDEYUKISAIO AstronomicalInstitute,GraduateSchoolofScience,TohokuUniversity,Sendai,980-8578,Japan 7 1 AND 0 IZUMIHACHISU 2 DepartmentofEarthScienceandAstronomy,CollegeofArtsandSciences,TheUniversityofTokyo,3-8-1Komaba,Meguro-ku,Tokyo153-8902,Japan toappearintheAstrophysicalJournal n a ABSTRACT J An unexpectedlyslow evolutionin the pre-optical-maximumphase was suggested in the very shortrecur- 7 renceperiodnovaM31N2008-12a. Toobtainreasonablenovalightcurveswehaveimprovedourcalculation methodbyconsistentlycombiningopticallythickwindsolutionsofhydrogen-richenvelopeswithwhitedwarf ] E (WD)structurescalculatedbyaHenyey-typeevolutioncode. Thewindmasslossrateisproperlydetermined H with high accuracy. We have calculated light curve models for 1.2 and 1.38 M⊙ WDs with mass accretion ratescorrespondingtorecurrenceperiodsof10and1yr,respectively.Theoutburstlasts590/29daysinwhich . h thepre-optical-maximumphaseis82/16days,for1.2/1.38M ,respectively.Opticallythickwindsstartatthe ⊙ p endofX-rayflashandceaseatthebeginningofsupersoftX-rayphase. WealsopresentsupersoftX-raylight - curvesincludingapromptX-rayflashandlatersupersoftX-rayphase. o r Subjectheadings:nova,cataclysmicvariables–stars: individual(M31N2008-12a)–whitedwarfs–X-rays: t binaries s a [ 1. INTRODUCTION tic observationalplans (Moriietal. 2016; Katoetal. 2015, 1 2016). Katoetal. (2016)showedthatoutburstsofrecurrent A nova is a thermonuclear runaway event on a mass- v novaeare so weak thattheir pre-optical-maximumevolution accretingwhitedwarf(WD)(Nariaietal. 1980;Iben 1982; 5 couldbeveryslow. TheyreportedthenondetectionofX-ray Prialnik 1986; Sionetal. 1979; Sparksetal. 1978). The- 2 fluxduring8dayspriortothe2015outburstofM31N2008- oretical light curves of nova outbursts have been calculated 8 12a.TheyestimatedthattheX-rayflashhadalreadyoccurred mainlybased ona steady-stateapproximation(i.e., optically 1 long (9- 16days) before the optical maximum. Such unex- thickwindtheory:Kato&Hachisu 1994)withsuccessfulre- 0 pectedslowevolutionoftheveryearlyphase,inspite ofthe . production of characteristic properties, such as multiwave- 1 lengthlightcurvesincludingsupersoftX-rayphase,ofanum- veryfastopticaldecline,indicatesthefactthatwedonotfully 0 understandnovaoutburstsyet. ber of classical novae (Hachisu&Kato 2006, 2007, 2010, 7 Recurrentnovaeofveryshortrecurrenceperiods(P <10 2014,2015,2016a,b;Hachisuetal. 2008;Katoetal. 2009). rec 1 yr) were recently reported: 0.5 or 1 yr for M31N 2008-12a In spite of these successfulresults, this methodis inapplica- : (Darnleyetal. 2014, 2015, 2016; Henzeetal. 2014, 2015; v ble when a steady-state is not a good approximation. Such Tangetal. 2014; Darnleyetal. 2016), 5 yr for M31N i failuresoccurforveryfastevolutionsinrecurrentnovaelike X 1963-09c(Williamsetal. 2015),∼6yrforLMCN1968-12a U Sco and RS Oph and pre-maximum-opticalphases of all (Darnleyetal. 2016), and 10 yr for U Sco (e.g., Schaefer r kinds of novae. Thus, we need to take a different approach a 2010). Recurrent novae are binaries harboring a massive tofollowtheentireevolutionofshortperiodrecurrentnovae, white dwarf (WD). Short recurrence period novae occur in whichweaiminthepresentwork. Multicycle nova outbursts have been calculated with verymassiveWDsofMWD&1.2M⊙withveryhighmassac- Henyey-type evolution codes. These codes, however, meet cretionratesofM˙acc&1.5×10- 7M⊙yr- 1(Prialnik&Kovetz numerical difficulties when the nova envelope expands to a 1995; Wolfetal. 2013a,b; Tangetal. 2014; Katoetal. giant size. To continue numerical calculation beyond the 2014). Such massive WDs are considered to be candidates extended stage, various authors have adopted various mass for Type Ia supernova (SN Ia) progenitors (Hachisuetal. loss schemes and approximations (Prialnik&Kovetz 1995; 1999a,b; Hachisu&Kato 2001; Hachisuetal. 2010; Kovetz 1998; Denissenkovetal. 2013; Idanetal. 2013; Han&Podsiadlowski 2004; Li&vandenHeuvel 1997; Wolfetal. 2013a,b; Katoetal. 2014, 2015; Tangetal. Kato&Hachisu 2012). SNe Ia playveryimportantrolesin 2014). These works, however, paid little attention in repro- astrophysicsasastandardcandleformeasuringcosmological ducing reliable nova light curves, so there is still room for distances (Perlmutteretal. 1999; Riess 1998) and as main improvement. producersofirongroupelementsinthechemicalevolutionof Recently, X-ray flash of a nova, a brief X-ray brightening galaxies(Kobayashietal. 1998). However,theirimmediate beforetheopticalmaximum,cameintoattentionwithrealis- pre-explosion progenitors remain unclear (e.g., Maozetal. 2014; Pagnotta&Schaefer 2014). Thus, studies of very [email protected] shortrecurrenceperiodnovaeareveryimportant. 2 Katoetal. Ouraimofthisworkistoestablishaself-consistentnumer- start of the calculation. In the 1.38 M⊙ model, we restarted icalmethodfor modelinga fullcycle of novaoutbursts. We the accretion immediately after the mass loss stopped. This combine the structure of optically thick winds with a model isbecauseweadoptinternalmodelsofKatoetal. (2016). In obtained by our Henyey-type code at each phase of a nova, the 1.2 M⊙ model, we restarted accretion when the outburst which gives a mass loss rate and surface values of tempera- isalmostfinished,tocomparethedurationofthesupersoftX- tureandluminositythatarerequiredtocalculatemultiwave- ray phase with thatobtained from the static sequence which length light curves. In order to obtain successful fittings in doesnotincludemass-accretion(seeSection3.3). ˙ ohuigrhfimrstasast-taecmcprettwioenhraavteeocfhoMs˙eancca=12..20M×⊙10W- 7DMw⊙ithyra- 1vberey- casTehbeyvcaalusee.sTohfethdeetpaialrsaomfettheersse, Mpa0r,amR0e,tearnsdarRe1exaprelacinheodseinn cause the nova explosion is weak and expansion is slow, so Section5.2. the envelope structure is close to that of steady-state enve- lope. We have also calculated wind structures fitted to the 2.2. WindMassLoss evolutionmodelsofa1.38M⊙ WDwith1yrrecurrencepe- Shortlyaftertheonsetofunstablenuclearburning,theen- riodpublishedinKatoetal. (2016). Section2describesour velopeexpandsandopticallythickwindsareaccelerated.The numericalmethod, and Section 3 presents our results on the occurrenceofwindsisdetectedatthephotosphereusingthe 1.2M⊙ WDindetail. The1.38M⊙ WDmodelisbrieflyde- BC1 surfaceboundaryconditioninKato&Hachisu (1994). scribed in Section 4. Discussion and conclusions follow in Toobtainenvelopestructureswithwinds,wesolvetheequa- Sections5and6,respectively. tionsofmotion,masscontinuity,radiativeenergytransferby diffusion,andenergyconservationassumingsteady-statecon- 2. NUMERICALMETHOD ditionsandsphericalsymmetry(Kato&Hachisu 1994). The WecalculatedWDstructuresfromthecenteroftheWDup boundaryconditionsof the wind solution are set at the pho- tothephotosphere. We adopttheopticallythickwinds(e.g., tosphere and critical point (=sonic point) (Kato&Hachisu Kato 1983,1985;Kato&Hachisu 1994)asthemainmech- 1994),whichdeterminestwovalues,i.e.,thetemperatureand anism of mass loss during the nova outburst. The optically radius of the critical point, (T , R ). We calculated the op- cr cr thickwindshavebeenappliedtoanumberofnovaeandsuc- tically thick wind solutions down to a chosen inner bound- cessfully reproduced light curves and characteristic proper- ary,i.e.,wherethetemperaturerisestoaspecifiedvalue(e.g. ties(e.g.,Hachisu&Kato 2006, 2007;Hachisuetal. 2008; T =T)andobtaintheenvelopemassofthewind(Mwind)be- Hachisu&Kato 2010, 2014, 2015, 2016a,b; Katoetal. f env tween the photosphereand the pointof T =T. In short, for 2009). The interior structures of WDs are calculated with a f a chosen temperature (T =T) a wind solution is character- Henyey code (Section 2.1). When the optically thick winds f ized by T and R . The other quantities are automatically occur the structure of mass-losing envelope is calculated as cr cr calculated,such asthe massloss rate, windvelocity,and lo- describedinSection2.2. WeusetheUV planeforourfitting calluminosity(L ). IngeneralL isthesumofradiativeand processofouterandinnerstructures(Section2.3)intheway r r convective luminosities. In our calculation convection does asdescribedinSection2.4. notoccuratthematchingpointandL isalwaysequaltothe r radiativeluminosity. 2.1. Time-dependentCalculation Evolutionmodelsofmass-accretingWDsarecalculatedby 2.3. FittingintheUV Plane using the same Henyey-type code as in Katoetal. (2014, In the fitting procedure we use the UV plane 2016) and Hachisuetal. (2016). Accretion energy outside (Chandrasekhar 1939; Schwarzschild 1958; Hayashietal. thephotosphereisnotincluded. Wehavecalculatedmulticy- 1962),whereU andV arethehomologyinvariantsdefinedas clenovaoutburstsuntilthecharacteristicpropertiesofflashes becomeunchanged.Theevolutionisstartedwiththeequilib- dlnM 4πr3ρ riummodelforagivenmassaccretionrate(Katoetal. 2014), U ≡ r = , (2) dlnr M inwhichtheWDcoreisthermallyinasteadystate. Thus,the r WDcoretemperatureisnotafreeparameter. and Inalaterphaseofashellflash,thephotosphericradius(as dlnP GM ρ V ≡- = r , (3) wellastheluminosity)increasestothepointwheretheouter dlnr rP boundary condition of our evolution code fails because the densitybecomestoosmallatT ∼2×105K(attheFeopacity whereMr isthemasswithintheradiusr. In general, the fitting point of the wind solution (U , V ) peak, Iglesias&Rogers 1996). To avoid the numericaldif- w w moves downward in the UV plane if we increase the wind ficulty, we start mass loss, which hinders the growth of the radius, when the photospheric radius Rn at time-step n ex- masslossrate(i.e.,increaseTcrorRcr). Ontheotherhand,the ph fittingpointofHenyey-codesolutions(U,V)movesupward ceedsaradiusR . ThemasslossrateforthenextstepM˙n+1 is f f 0 evol fora largermasslossrate. Thus,we findauniquematching calculatedas pointforthesamewindmasslossrateandenvelopemassin M˙n+1 =M˙n exp[10(logRn - logRn- 1)]. (1) theUV plane. MatchingU andV at Tf guarantees the con- evol evol ph ph tinuation of the mechanical structure at the fitting point so AtthebeginningofmasslossM˙n isreplacedwithM˙ (<0), that the radius and density are automatically matched there evol 0 whichisanarbitraryparametertogiveaninitialmasslossrate (seeEquations(2)and(3)). Inaddition,asthereisnoenergy atRph=R0. Thisequationgivesarapidincrease(decrease)in source/sinkaroundthefittingplacethelocalluminosityLr is ˙ automaticallyfitted. |M | when the photospheric radius is increasing (decreas- evol ing).Equation(1)isuseduntilR becomessmallerthanara- ˙ ph 2.4. FittingProcedure diusR ,thenM isswitchedtotheaccretionrategivenatthe 1 evol RecurrentNovaModel 3 Inthewindphaseweneedseveralstepsofiterationuntilwe obtainafinalresultinwhichthewindmasslossisconsistently TABLE1 takenintoaccount.Ourfittingprocedureisasfollows. SUMMARYOFRECURRENTNOVAMODELS (1) First, we calculate nova outbursts with the Henyey code Subjecta units 1.2 M⊙ 1.38 M⊙ assumingatime-variablemasslossrateuntiltheshellflashes reachalimitcycle.Weusethelastonecycleinthefollowing M˙acc 10- 7M⊙yr- 1 2.0 1.6 procedure. Prec yr 9.9 0.95 logTcore K 7.93 8.03 (2)WhenthemasslossoccursontheHenyeycode,wecalcu- Macc 10- 7M⊙ 17 1.4 lateopticallythickwindsolutionswithaspecifiedparameters, Mig 10- 7M⊙ 26 2.0 (Tcr,Rcr),downtothefittingplaceT =Tf. Ifthefittingcondi- Lmnuacx 106L⊙ 2.2 3.9 tion(Uw,Vw)=(Uf,Vf)isnotsatisfied,wechangeTcr andRcr logTnmucax K 8.11 8.23 untiltheconditionissatisfied. Weneedtypically20iterations tnovab day 590 29 donebyhand. ttwX-infldashc ddaayy 113100 109.77 (3)IftheenvelopemassMewnivnd ofthewindsolutiondoesnot tSSSc day 440 7.8 match to that of the interior solution we change the fitting trised day 82 16 place T and repeat the same process until the two envelope tdecaye day 510 13 f masses are sufficiently close to each other. A few to several aTheWDmassandmassaccretionratearegivenparameters iterationsareneededfortheprocess. andrecurrenceperiodandotherquantitiesaretheresultsof calculation. w(4i)thWaewreeplllamceadtcthheedowutienrdpsaorltu(tTion<.TTfh)eonf,twheeeovbotlauitnioancmonotdine-l bcdduurraattiioonnooffththeeflXas-hrawyitflhasLhpha>nd1S0S4LS⊙p.hase: LX(0.3- 1.0 uousstructure from the WD core up to the photospherethat keV)>103L⊙for1.2M⊙,but>104L⊙for1.38M⊙. consistently includes the optically thick wind at a specified d thetimeelapsedbetweenthetimeofthepeaknuclearlu- time during the wind phase. The photospheric temperature, minosityandthetimeofthepeakmasslossrate. velocity, and wind mass loss rate etc. are uniquely deter- eopticaldecaytimecalculatedastdecay=tnova- trise. mined. thatwestopmasslossatlogT (K)=5.60).Theresultantmass (5)Weneedtodosuchaprocedure(2)-(4)foreachtimestep. ph lossratesareshownlaterinFigure7. However,ourwindphasecontains∼10,000timesteps,which Table1summarizestheresultsofourcalculations.TheWD isfarbeyondthecapacityofmanualhandlings. Forthisrea- massandmass-accretionratearegivenparameters. Theoth- son,weselectabout30epochsandapplytheiterationproce- ers are the results of calculation: the recurrence period P , dure(2)-(4)byhand.Thus,weobtainstellarstructuremodels rec temperature at the WD center T , mass accreted after the foronecycleofnovaoutburst. core previousoutburst until the beginning of the currentoutburst (6) The mass loss rates of the optically thick winds, which (=masstransferredfromthe companion)M , ignitionmass variestimetotime,isgenerallydifferentfromthoseassumed acc M which is the envelope mass at the epoch of maximum instep(1).Werepeatedtheprocess(1)-(5)assumingdifferent ig nuclearluminosityLmax, maximumtemperatureattheepoch mass loss rates M˙0 in Equation(1) until the calculated wind ofmaximumnuclearnluucminosityTmax,novaoutburstduration mass loss rates well match to the assumed values. It takes nuc severaliterations. tnova forLph>104L⊙,durationofthewindphasetwind,dura- Amongtheaboveprocess,themostdifficultprocessisstep tionsoftheX-rayflashtX- flash,andSSSphasetSSS,risingtime t which is the time elapsed between the time of the peak (1). A Henyey-type code often meets numerical difficulties rise nuclear luminosity and the time of the peak mass loss rate, withoutassuminglargemasslossrateswhentheenvelopeex- decaying time t =t - t . Here, the durations of the pands. If we assume too large mass loss rates, however, the decay nova rise X-rayflashandSSSphasearedefinedasthetimespanwhen procedure(1)-(6)doesnotconverge. Notethatthefittingpointbetweenthewindandtheinterior LX>104L⊙for1.38M⊙followedbyKatoetal. (2016),but should be carefully chosen especially in the first trial. The LX >103 L⊙ for 1.2 M⊙ because of faint X-ray luminosity, where L means the luminosity in a band of 0.3- 1.0 keV. fittingpointshouldbedeepenoughtobeinsensitivetotreat- X Notethattheoutburstdurationt isdifferentfromthesum- ments in the surface region, especially when we assume in- nova adequatemass lossratesin the trialprocess. Thispointalso mation of the three phases, tX- flash+twind+tSSS, because the definitionisdifferent. shouldbeshallowenoughtoensurethetime-dependentterm Figure1showsthelastcycleofour1.2M WDmodel.We ǫ (gravitationalenergyreleaserateperunitmass: see equa- ⊙ tigon(1)inHachisuetal. 2016)isnegligible. stoppedthemassaccretion(M˙acc=2.0×10- 7M⊙yr- 1)when Our procedure (1)-(6) currently needs many iterations by the luminosity increases to logLph/L⊙ = 4.32 (logTph (K)= hand,andthus,takesmuchhuman-time. Forthisreason,we 5.85), and resumed mass accretion after the flash when the havecalculatedonly1.2 and1.38M⊙ models. We certainly luminositydecreasestologLph/L⊙=4.0(logTph (K)=5.83). needtoimproveourfittingprocedure. TheperiodofmassaccretionisdepictedinFigure1(b). The recurrenceperiodisobtainedtobe9.9yr. 3. 1.2M⊙MODEL Figure1(a)showsthephotosphericluminosity,L ,nuclear ph We have calculated two models of 1.2 and 1.38 M . The burningenergyrelease rate integratedfromthe centerof the ⊙ 1.38M modelarealmostthesameasthosepartlypublished WDtothesurface,L ,andtotalgravitationalenergyrelease ⊙ nuc in Katoetal. (2016). Thus, we first describe the 1.2 M⊙ rate,LG,definedastheintegrationofǫgfromthecenterofthe modelandthen summarizeforthe 1.38M resultsfocusing WD to the photosphere (equation (3) in Katoetal. 2016). ⊙ onthedifference.Forthemasslossparametersofthe1.2M⊙ ThesupersoftX-ray(0.3- 1.0 keV) luminosityLX is calcu- modeldiscussed in Section 2.1 we adoptlogR0/R⊙ =- 1.25 latedassumingtheblackbodyemissionofphotospherictem- (correspondingto the case that we start mass loss at logT perature T . The lower panel (b) shows the change of the ph ph (K)=5.54)andlogR1/R⊙=- 1.36(correspondingtothecase photospherictemperatureTphandradiusRph. 4 Katoetal. FIG.2.—CloseupviewofaveryearlyphaseoftheshellflashinFigure 1:thenuclearburningluminosity(blackline),Lnuc,photosphericluminosity (thick red line), Lph, and gravitational energy release rate (blue line), LG. Mostofthenuclearluminosityisabsorbedintheburningshellasexpressed bylargenegativevaluesofLG.Asaresult,thephotosphericluminosity,Lph, ismuchsmallerthanLnuc.Thethinredlinedenotes10timesthephotospheric luminosity,Lph×10. itsmaximumatpointB.Astheenvelopeexpands,thephoto- FIG.1.—Temporalchangeinonecycleofanovaoutburstona1.2M⊙ WDwithamassaccretionrateof2×10- 7 M⊙ yr- 1. (a)Thephotospheric spherictemperaturedecreasesandopticallythickwindsstart luminosityLph(redsolidline),integratedfluxofnuclearburningLnuc(black toblowatpointC.Thewindscontinueuntilitreachespoint dashedline),integratedgravitationalenergyreleaserateLG(bluedottedline), G. At point F the photospheric temperature attains a mini- andsupersoft(0.3-1.0keV)X-rayflux(solidorangeline). (b)Thephoto- mum. After that the photospheric radius decreases and the pspehrieordicotfemacpcereratitounreisTpinhd(ibclaatcekdsboylidthleinheo)raiznodnrtaaldibulsueRlpihne(r.edsolidline).The temperatureTph increaseswith time. The envelopemass de- creasesowingtowindmasslossandhydrogenburning. A closeup view in a very early phase is shown in Figure Figure3(b)showsacloseupviewofthesametrack. There 2. ThenuclearenergyreleaseratereachesLnuc=2.2×106L⊙ isazigzagpart(D-E-F)arisingfromthechangeofchemical at maximum. This energy is mostly absorbed in the lower composition in the surface layers. Just after the thermonu- partoftheburningregionasshownbyalargenegativevalue clearrunawaysetsin,convectiondevelopsthroughouttheen- of L (<0). Thus, only a very small part of L is trans- G nuc velope up close to the photosphere. In the uppermost layer portedoutwarduptothephotosphere. Asaresult,thephoto- where the convection never reaches, the chemical composi- spheric luminosity L does not exceed the Eddingtonlumi- ph tion remains to be the same as that of the accreted matter, nosity. Thesepropertiesarethesameasthosereportedinthe i.e., X = 0.7, Y = 0.28 and Z = 0.02. In the region where 1.38 M⊙ model (Figure 2 in Katoetal. 2016). Comparing theconvectionreachedthehydrogenmass-fractiondecreased the two models in Table 1, we find that Lmax of the 1.2 M nuc ⊙ to X ∼0.6. Figure 4 shows distributionsof hydrogenmass- modelisalmostahalfofthe1.38M⊙model,i.e.,theoutburst fraction in the envelope at selected stages, in which all the isveryweak. layerwithX=0.7havebeenblownoffinthewindalittleafter Theabsorbedenergy(L <0)isreleasedinthelaterphase G stageE.ThegradientofX resultsintheopacitygradient(for of the outburst. As shown in Figure 1(a), L (>0) reaches G larger X, opacity is larger owing to electron scattering) that about 10 % of L during the outburst. After the shell flash ph causesadditionalaccelerationofthewinds. Thus,the winds ends,L quicklydecreases,butL slowlydecreasesbecause nuc ph blowrelativelystrongeruntiltheregionwithX =0.7iscom- themass-accretionresumesandL contributestoL . During G ph pletely blown off. As the chemicalcomposition distribution thequiescentphaseLph≈LGisalmostconstant(logLph/L⊙& approachesuniformwindsbecomeweakandthephotospheric 2.4)asshowninFigure1(a). temperatureriseswithtime.Astheshellflashgoesontheen- velope expands and the photospheric temperature decreases 3.1. H-RDiagram again. Thus, the track in the H-R diagram has a zigzag ex- Figure3 showsthe trackin the H-R diagramfor thesame cursionbeforeitreachespointFinFigure3(b).Theenvelope periodinFigure1. Duringthe quiescentphasetheaccreting masscontinuouslydecreasesthroughthesestages. Notethat WD model stays around point A. After the unstable nuclear thedistributionofhydrogenabundanceX inFigure4isthatof burning sets in, the bolometric luminosity quickly increases theevolutionmodel. InwindsolutionweassumedX-profile whereasthe photosphericradiusstaysalmostconstant(from mimictothecorrespondingevolutionmodel. pointAtoB).ThenuclearenergygenerationrateL reaches Thedottedand dashedlinesin Figure3(b)are the steady- nuc RecurrentNovaModel 5 FIG.3.—EvolutiontrackofthemodelinFigure1. Filledcirclesonthe FIG.4.— Runsofthehydrogenmassfraction,X,intheWDenvelopesat trackcorrespondtothecharacteristic stages. A:minimumphotosphericlu- selectedstages. (a)X distributionintheentirehydrogen-richenvelope. (b) minosity,Lph=Lmphin. B:maximumnuclearluminosityLnuc=Lmnuacx. C:opti- Closeupviewofthesurfaceregionofpanel(a). Inthebothpanels,theleft callythickwindsstart. D:firstlocalmaximumexpansion. E:theuppermost bound(M- Mr=0)correspondstothephotosphere.Theaccretedmatterhas hydrogen-richenvelopeofX=0.7isblownoff. F:maximumexpansionof ahydrogencontentofX=0.7initially. Theenvelopemassdecreasesowing thephotosphere. G:opticallythickwindscease. H:maximumphotospheric towindmasslossandnuclearburning.Eachstageisindicatedbesidetheline. temperatureTph=Tpmhax. (a)Thebluearrowsindicate thedirectionofevo- TheoutermostX=0.7layerisblownoffjustafterstageE.Theconvective lution. Thegreensolidlinesindicate thelinesoflogRph/R⊙=- 1and- 2 regionisindicatedbythehorizontallinesintheupperpartofpanel(a),which (left).(b)Closeupview.ThethinsurfacelayerofX=0.7isblownoffinthe becomesnarroweranddisappearsjustafterstageE.Thematchingpointof opticallythickwindsthroughC-D-E.Afterwardtheenvelopecompositionis theouterwindsolutionwiththeinnerstructureisindicatedbyfilledcircles. almostuniformatX∼0.6.Thedottedanddashedlinesindicatesteady-state sequenceswiththechemicalcompositionofX=0.6,Y=0.38andZ=0.02, maximumexpansionofthephotosphere(epochF).Thepho- andX=0.7,Y=0.28andZ=0.02,respectively(seeSection3). tosphere reaches logRph (cm)=10.61 (0.58 R⊙). This figure state/static sequences that represent the nova decay phase alsoshowsthedistributionofthelocalluminosityLr andthe (Kato 1999; Kato&Hachisu 1994). The dashed line is localEddingtonluminositydefinedby for a 1.2 M⊙ WD with the uniform chemical composition 4πcGM of X = 0.7, Y = 0.28 and Z = 0.02 while the dotted is for L = WD, (4) Edd X =0.6, Y =0.38 and Z =0.02. The WD radius, which is κ neededinobtainingsteady-statemodels,i.e.,theradiusatthe where κ is the opacity. We adopt OPAL opacity bottomofthehydrogen-richenvelope,istakenfromourevo- (Iglesias&Rogers 1996). The local Eddington luminosity lutioncalculationaslogR/R⊙=- 2.22. has a small dip corresponding to a small peak in the OPAL Inthedecayphase(stagesF,G,andlater)theevolutionpath opacityowingtoionizedOandNe(logT (K)∼6.2–6.3),and is veryclose to thatof the uppersteady-state sequence(dot- alargedecreasecorrespondingtoalargeFepeakatlogT (K) ted line). In this phase, the envelope composition is almost ∼5.2(seeFigure6ofKatoetal. 2016).Thewindisacceler- uniform at X = 0.6, Y = 0.38, and Z = 0.02, and the enve- atedwheretheopacityincreasesoutward. Thewindvelocity lopestructureisclosetothatofthesteady-state(stageFtoG) barelyexceedstheescapevelocityvesc=p2GMWD/r. andofhydrostaticbalance(afterstage G)as wellasthermal The dotted lines show the interior structure of the model equilibrium. Thus, the nova evolves along with the steady- calculated with the Henyey code in step (1) in Section 2.4. state/staticsequence. The connecting point with the wind solution is depicted by In the rising phase, on the other hand, the envelope does filled circles. To demonstratethe smoothfitting, we plotthe notyetreachthermalbalancebutapproachesthebalancewith modelstructurebeyondtheconnectingpoint.Itshowsagood time. TheenvelopestillhasanX =0.7layeronitstop,sothe agreementwiththesteadystatesolutionnotonlyonthecon- evolutionpathisclosetothelowerdashedline. nectingpointbutalsointhewideoutsideregion. Figure6 demonstrateshow the optically thickwinds’qui- 3.2. Envelopestructure etly’ceaseatstageG.Inthedecayphaseofthenovaoutburst, Figure5showstheenvelopestructuresofthewindsolution thephotospherictemperatureincreaseswithtimeandthedip (solid lines) and Henyey code solution (dotted lines) at the of L becomes shallower. The solid line depicts the enve- Edd 6 Katoetal. FIG.5.—Internalstructureatthemaximumexpansionofthephotosphere FIG.6.— SameasFigure5,butjustbefore(solid)andat(dotted)stageG. (pointFinFigure3). Weplot,toptobottom,theescapevelocityvesc(thin ThewindbecomesweakercomparedwiththatatstageFinFigure5. The solidblackline),windvelocityv(solidblackline),temperatureT (redline), local super-Eddington region becomes much narrower. At stage G, when densityρ(blueline), localluminosityLr (blackline), andlocalEddington theopticallythickwindstops(dottedline),thereisnolocalsuper-Eddington luminosityLEdd(redline). Thesolidlinesindicatetheopticallythickwind region.Noconvectionoccurs. solution, whereasthedottedlinesshowtheinnerstructureobtained bythe Henyeycode. ThelocalEddingtonluminosity,shownonlyfromtheoutside decreases) toward stage F, the wind mass loss rate increases ofthefittingpoint(filled circle), becomes smaller thantheradiative lumi- nosityforlogr(cm)>10.1. Theinteriorsolutionisplottedbeyondthefit- with time. After stage F the mass loss rate decreases as the ting point todemonstrate that the inner andouter solutions are veryclose starevolvesbackfromstageFtoGintheH-Rdiagram(Fig- toeach other. Theopencircles denotethecritical point ofthewindsolu- ure 3). The wind stopped at stage G when the SSS phase tion(Kato&Hachisu 1994). Convectiveregionhasdisappearedbeforethis begins. In this way the X-ray turn on/off is closely related stage. totheoccurrenceoftheopticallythickwinds. Themassloss lope structure just before stage G. The wind is still acceler- rateincreases(decreases)asthephotospherictemperaturede- ated, buttheaccelerationregion,whereL >L , isgetting creases (increases) which will be shown later (Figure 12 in r Edd narrower.ThisregiondisappearsatstageG(dottedline).The Section5.1). resemblance of the two structures demonstrates that the op- A sequence of static and steady-state solutions is also tically thick winds gradually weaken and stop quietly. This showninFigure7(a)forcomparison. Thedottedredlinede- propertywasalreadypointedoutinthesteady-statesequences pictstheX-raylightcurvecalculatedfromthemodelshown (Kato&Hachisu 1994)thattheopticallythickwindsquietly by the dotted line in Figure 3. The rightmost point corre- ceaseswhenthephotospherictemperaturerisestobeyondthe spondstotheepochofextinctionofhydrogenburning. This Fepeak. X-ray light curve shows a good agreement with the evolu- tional one but the termination point comes earlier. This dif- 3.3. X-rayLightCurveandWindMassLoss ference is explained as follows. The evolution time of the equilibriumsequenceiscalculatedfromthemassdecreasing In Figure 7 the upper panel (a) shows the bolometric and rateowingtonuclearburning.Ontheotherhand,inthetime- supersoft X-ray luminosities during the outburst, while the dependentcalculation,theevolutiontimeisinfluencedbythe lower panel (b) shows its closeup view with wind mass loss gravitational energy release at the bottom of the envelope, rates. Theoverallone-cycleviewisalreadyshowninFigure i.e.,theevolutiontimeisdeterminedbythemassdecreasing 1. ThefirstbrightX-rayphaseis theX-rayflash thatoccurs rateowingtonuclearburningandadditionalenergysourceof just after the onset of thermonuclear runaway (Katoetal. gravitational energy release rate L . This additional energy 2016). ThetinyX-raypeakshortlyaftertheX-rayflashcor- G source, amounts about 10% of the photospheric luminosity respondstothesmallleftwardexcursiontowardstageEinthe (Figure1),lengthenstheSSSlifetime.Consideringthiseffect H-Rdiagram(Figure3). ThesupersoftX-rayphasebeginsat we can conclude that the steady-state sequence is consistent stageGandendsshortlyafterstageH. withthetime-dependentcalculation. Thepanel(b)alsoshowsthetemporalchangeofthewind mass loss rate which is closely related to the change in the X-ray light curve. The X-ray flash ends when the envelope 4. 1.38M⊙MODEL expands and the optically thick winds starts at stage C. As Our multicycle shell flash calculation of a 1.38 M⊙ WD the photospheric radius increases (photospheric temperature with M˙acc =1.6×10- 7 M⊙ yr- 1 was published (Katoetal. RecurrentNovaModel 7 FIG.7.—(a)Temporalchangeofsupersoft(0.3-1.0keV)X-rayluminosity WLXD(bmlaocdkelli.nTe)haenddopttheodtoresdphleinriecdluenmoitneosstihtyeLXp-hra(syolliigdhrtecdulrinvee)ooffsttheead1y.2-sMta⊙te mFasIsGa.c8c.r—etioSnamraeteaosft1h.o6s×ei1n0-F7igMur⊙e1y,r-b1u.tforthe1.38M⊙ modelwitha sequence, in which the wind stops at the small filled circle and hydrogen nuclear burning stopsatthesmallopen circle (seesection 3.3). Epochof stageHisindicated.(b)Closeupviewofthefirsthalfpartoftheupperpanel ˙ withthemasslossrateofopticallythickwindMwind(redline).Dottedpurple ˙ lineistheassumedmasslossrateMevolinprocess(1)inSection2.4.Stages B,C,E,F,andGareindicated. 2016),butitincludedonlytheearlyphaseoftheX-rayflash. UsingthemethodofcalculationdiscussedinSection2.4we improvedthe fitting in the wind mass loss phase. We adopt logR0/R⊙ =- 1.00 and logR1/R⊙ =- 1.15. The recurrence periodis0.95yr. Thecharacteristicpropertiesofthismodel aresummarizedinTable1. Here,wereportourresultsfocus- ingonthedifferencefromthe1.2M case. ⊙ Figure 8 shows the last one cycle of our calculation. The outburst duration (Lph > 104 L⊙) is 29 days. In the inter- pulse phase, the gravitational energy release rate L domi- G natesthephotosphericluminosityL . Theenergybudgetin ph the early phase, corresponding to Figure 2, is already pub- lished in Katoetal. (2016). These characteristic properties aresameasthoseinthe1.2M WDmodel. ⊙ Figure 9(a) shows one cycle of nova outbursts in the H-R diagram. Acloseupviewisshowninpanel(b). Similarlyto the1.2M model(Figure3),stagesC-D-Ecorrespondtothe ⊙ periodthat the uppermostlayer with X =0.7, of mass 1.6× 10- 9 M ,areblownoffinthewind. Afterthat,thechemical ⊙ composition in the envelope is almost uniform at X =0.58, Y =0.4andZ=0.02,andtheenvelopeevolvesalongwiththe lineofsteady-state/staticsequence. Figure 10 shows the internal structure at stage F. The ve- FIG.9.— SameasthoseinFigure3,butforthe1.38M⊙model.Inpanel (b),thedottedanddashedlinesindicatethesequencesofsteady-state/static locityquicklyrises(aroundlogr(cm)∼10.0)wherethelocal solutionsofthechemicalcompositionofX=0.55, Y =0.43,andZ=0.02, Eddingtonluminosityquicklydecreasescorrespondingtothe andX=0.7, Y =0.28,andZ=0.02. Inthesesequences,theWDradiusis Feopacitypeak.Theenvelopemassatthisstageisassmallas assumedtobelogR/R⊙=- 2.57(takenfromourevolutioncalculation). See 1.1×10- 7M⊙ whichisnotenoughtoexpandtoagiantsize, themaintextformoredetails. sothephotosphericradiusisassmallaslogR (cm)=10.52 ph 8 Katoetal. FIG.10.—SameasthoseinFigure5,butforthe1.38M⊙model.Convec- FIG.11.— (a)Thenuclear burningluminosity, Lnuc (black line), photo- tiveregionhasdisappearedbeforethisstage. spheric luminosity, Lph (redline), rateofenergy release owingtogravita- ((K0.)4=85R.1⊙0).,andthesurfacetemperatureisratherhighatlogTph t(iuopnpaelrcbolnuteralcintieo)ni,nLthGe(olouwtbeurrsbtlupehalsineeo)f,tahned1p.3h8otMos⊙phmeroicdetle.m(bp)erTahtuereX,-Trapyh luminosityforthe0.3-1.0keVband,LX (blackline),andwindmassloss To demonstrate a good matching between the interior and ˙ ˙ rateMwind(redline).ThemasslossrateMevolinitiallyassumedinstep(1)in windsolutions, the interiorstructureoutsidethe fittingpoint Section2.4isshownbythedottedblueline.Anothertrialiterationisadded: ˙ ˙ isalsoplotted;thisouterpartwasreplacedwiththewindso- Mevol(dottedgreenline)andMwind(solidgreenline).Forthesetwolinesthe lutioninstep(4)inSection2.4. Thedottedlineisveryclose timeisnormalizedtofitthewindphaseoftheredlinemodel. SeeSection 5.2formoredetails. to the steady-state wind solution, indicating that the interior structureissmoothlyconnectedtothewindsolution. Figure11(a) showsthetemporalchangesin L , L , and ph nuc L as well as the change of T . The supersoft X-ray light G ph curveshowninpanel(b)iscalculatedfromL andT . The ph ph X-rayflash(whenLX>104 L⊙)lasts0.77daysandtheSSS phase 7.8 days. Between them there is a faint X-ray peak correspondingtostageE. Thismodelmaybecomparedwiththeobservationalprop- erties of the 1 yr recurrence period nova M31N 2008-12a. Katoetal. (2015) estimated the WD mass of M31N 2008- 12a to be 1.38 M⊙ from the SSS duration that lasts about 8 days(Henzeetal. 2014, 2015; Darnleyetal. 2016). In the presentpaper,wedonotconsidertheopticallightcurvesbe- cause the relation between the optical brightness and wind masslossrateinrecurrentnovaeisuncertain,whichremains to be a future work. If we assume that the optical magni- tude peaks at stage F, i.e., when the wind mass loss rate is maximum, the X-ray turn-ontime is 4 daysafter the optical maximum,whichisroughlyconsistentwithM31N2008-12a (5.9±0.5 days: Henzeetal. 2015), considering the insuffi- cientfittingqualityofour1.38M⊙ model. Detailedcompar- ison with the observationis beyondthe scope of the present paper. FIG.12.— Masslossratesofopticallythickwindsagainstthephotospheric temperatureforthe1.2and1.38M⊙models.Theopenstarsymbolsindicate 5. DISCUSSION fromstageCtoFinFigures3and9,whereasfilledcirclesindicateatand afterstageF.Thethinlinesdepicttherelationobtainedfromthesteady-state 5.1. WindMassLossRate sequencesfor1.2and1.38M⊙ withthechemicalcompositionofX =0.6, Figure 12 shows the mass loss rate of the optically thick Y=0.38,andZ=0.02(lowerblackline)andX=0.55,Y=0.43,andZ=0.02 (upperredline),respectively. windscalculatedinthefittingprocess(Section2.4)againstthe RecurrentNovaModel 9 photospherictemperatureT . Themasslossrateincreasesas 5.3. Comparisonwithotherworks ph T decreases. Intheextendedenvelopestheaccelerationre- ph In the present work we calculated nova evolution models gion (where the opacity increases outward) locates deep be- withveryfinemasszoningsandshorttimesteps. Asaresults, low the photosphere where the density is large (see Figures we are able to followthe temporalchangeof the wind mass 5 and 6), which results in a large mass loss rate. The mass loss, including the gradual increase and decrease, as in Fig- lossratealsoweaklydependsontheWDmass. The1.38M⊙ ures7and11. Wealsoshowedhowtheupperenvelopewith modelshowsaslightlyhighermasslossratesbecausethesur- X =0.7isblownoff(Figure4andzigzagtracksinFigures3 facegravityisstrongerinmoremassiveWDs. and9). ˙ This figurealso shows the two Mwind - Tph relations(solid Manytime-dependentcalculationsonnovaehavebeenpre- lines) obtained from the steady-state sequences of 1.2 and sentedso far, butnoneof themshoweda zigzagbehaviorin 1.38 M⊙, correspondingto the upper sequence in each H-R the H-R diagram. For example, Prialnik&Kovetz (1995) diagram (Figure 3(b) for 1.2 M⊙ and Figure 9(b) for 1.38 calculatednovamulticycleoutburstsforvariousWDmasses, M⊙). The dependence on the chemical composition is very ofwhichlightcurvesarerecentlypublishedbyHillmanetal. weak, so the solar composition sequences are omitted. The (2014). Theirlightcurvesshownozigzagbehaviorlikeours. masslossratesobtainedfromourtime-dependentcalculations The differencemightarise fromthe differencein zoningsof agreeverywellwiththoseofsteady-statesequencesthrough- theenvelope,becauseifthemasszoningdidnotresolvewell outthewindphase,includingthezigzagpath,C-D-E-F-G. thesuperficialX =0.7region,themodelwouldbeunableto ˙ ThisagreementoftheMwind-Tphrelationsisreasonablebe- follow the temporal change of the chemical composition of causetheinteriorstructureofourtime-dependentcalculation thesuperficiallayers.Thisreasoningmaybesupportedbythe showsa goodagreementwith the steady state solution. The description“convectionhadalreadyreachedthesurfaceofthe envelope is accelerated where the opacity rapidly increases star” (Section 2.1 Prialnik&Kovetz 1995). In addition, in outwardatT ∼2×105K,sothatsimilarenvelopestructures their nova outbursts, the photospheric temperature suddenly result in similar photospheric temperatures and wind mass- jumpstotheminimumvalue,andstaythere,andjumpsback. lossrates. Thiscorrespondsto,inourFigure3,thatthestarjumpsfrom stageCtoFinstantaneouslyandjumpsbacktostageG.Such 5.2. DetailsofNumericalCalculation abehaviorcouldoccuriflargetimestepswereadopted,skip- InSection2.1wedescribedthemasslossrateM˙ which ping the gradual increase/decrease periods of the mass loss evol isinitiallyassumed. Afterseveraltime-consumingiterations, rates. we found that better results are obtained if we choose R to Kovetz (1998)presentedanalgorithmtoplaceanoptically 0 be close to those wherethe opticallythick wind stopsin the thickwind solutionontopof a hydrostaticstellar configura- steady-statesequence(Kato&Hachisu 1994),i.e.,whenthe tion.Thecalculationshowsnoindicationofthezigzagshape. ˙ Thisisbecausetheadoptedsmallnumberofmasszones(less photospherictemperatureis close to thatwhere M =0 in wind than 50) is not sufficientto treatthe very thin X =0.7 layer. Figure12. ˙ Despitethedetaileddescriptionofthealgorithm,noinforma- Figure 7(b) shows M (dotted purple line) and resultant evol tionontheconnectingpointisgiven.Inthe1.0M model,the windmass-lossrate(solidredline)inthe1.2M⊙model.The windbeginsatlogT (K)=5.36andceasesatlog⊙T (K)=5.5, resultant wind mass loss rates are somewhat larger than the eff eff which is roughly consistent with our model with the OPAL assumedvalue(19%atthetimeofmaximumwindmassloss) opacity.Attheoccurrenceofthewindthemasslossratesud- buttraceswelltheglobalchangeincludingearlysmallpeakin denlyjumpsfromzerotothe maximumvaluefollowedbya theepisodeofsurfacecompositionchange(seeSection3.1). gradualdecrease. Thegradualdecreaseisconsistentwithour This agreement is satisfactorily well, considering numerical calculation. difficultiesinstep(1). ˙ Idanetal. (2013) adopted Kovetz’ (1998) mass loss Figure 11(b) shows1.38 M⊙ modelsfor two sets of Mevol schemewithsufficientnumberofmasszones(>8000),how- (dotted lines) and correspondingresultant (solid lines) mass ever,thepaperdiscussesinteriorstructuresindetailwithlittle ˙ ˙ loss rates Mwind. Blue dotted line show Mevol obtained with descriptionofthesurfaceregion. logR0/R⊙=- 1.0andlogR1/R⊙=- 1.15,whichresultsinthe In the previous paper (Katoetal. 2015) we presented a wind mass loss rate shown by the solid red line. The 25% multi-wavelengthlight curvemodelof 1.38M⊙ WD forthe matching is obtained at the maximum mass loss rate (of the 1 yr recurrenceperiodnovaM31N2008-12a. We adopteda redline)butthereis a shortperiodof a largediscrepancyof similarmethodofnumericalcalculationtothepresentwork, factor2justbeforethewindsstop. but connected the interior structure at a much deeper place ˙ Dotted green line shows Mevol obtained adopting with the wind solutions. One of the reason why we chose logR0/R⊙ = - 1.5 and logR1/R⊙ = - 1.3. In this case suchfittingpointwasthatournumericalcalculationwiththe ˙ M has no large enhancementin the final wind phase, but Henyey code did not converge unless large mass loss rates evol a sharp narrow peak in the very early stage. The resultant wereassumed,andthefittingplacewaschosenforthestruc- windmasslossrates, M˙ , denotedbythe solidgreenline, turetobealmostindependentoftheassumedmasslossrate. wind however, are much small in the later phase. To summarize, However,insuchadeepenvelopewithalargermasslossrate, ˙ the gravitational energy release rate per unit mass ǫ is not withasmallerM (dottedblueline)wegetaslightlylarger g evol ˙ ˙ negligible,sothefittingofsteady-statesolutionswiththein- M except the final peak, and with a larger M (dotted wind ˙ evol terioryieldedmediocremodels. Theresultantmasslossrates green line), we get a much smaller M . We suppose that wind were about 3 times larger than the present work. Thus, the a well converged model should have wind mass loss rates windphasewasshorterbya factorof∼3. Thisroughlyex- between them, which may be closer to the red line model plainsthedifferencebetweenthepreviousestimateofadura- thanthesolidgreenline. Therefore,weadoptedtheredline tionof5daysandourpresentestimateof19days. model. 10 Katoetal. Inthepresentworkwehaveimprovedthenumericaltech- the maximum expansionof the photosphere, its temperature nique and adoptmuch thinner atmosphereand mass zoning, isashighas105Kinthebothcases. andconnecttotheinteriorstructureataplacewhereǫgisneg- 3.WeobtainedazigzagtrackintheH-Rdiagramcorrespond- ligible. Asaresult,matchingofinnerandoutersolutionsare ingtotheepochthattheverysurfacezoneofX=0.7isblown sufficientlywell as shownin Figures5 and 10. Our 1.2 M⊙ off in the wind, uncoveringthe region mixed by convection modelshowsverygoodconvergenceofiterationprocess(Sec- during the runaway, which therefore has a lower H fraction tion 2.4) throughout the wind phase that support our fitting correspondinglydifferentopacity. procedure. Our 1.38 M⊙ modelshows a better convergence 4. Our 1.38 M⊙ model is roughly consistent with the excepta shortperiodjust beforethe SSS phase. This model timescaleofthe1yrrecurrenceperiodnovaM31N2008-12a. mustbeimprovedfurtherinthefuture. 5. The relation between the wind mass loss rate and photo- spherictemperaturein ourevolutionmodelagreeswellwith 6. CONCLUSIONS those of steady-state/static sequence. The envelope struc- ture at each stage are also very similar to those of steady- Ourmainresultsaresummarizedasfollows. state/staticsequenceinthewideregionexceptthedeepinte- 1. We present a new calculation procedure to follow nova riorwherethegravitationalenergyreleaserateperunitmass outbursts in which the optically thick wind is consistently ǫ isnotnegligible. introduced. We have found that steady-state wind solutions g smoothlymatchwiththeinteriorcalculatedwiththeHenyey- typecode. MK and IH express our gratitude to T. Iijima and Astro- 2. Wecalculatedonecyclenovaoutburston1.2and1.38M nomical Observatory of Padova (Asiago) for warm hospi- ⊙ WDs with the mass-accretion rates corresponding to the re- tality during which we initiated the present work. We also currenceperiodsofP =10and1yr,respectively.Thewind thank the anonymous referee for useful comments that im- rec mass loss rate is accurately obtained in the new calculation proved the manuscript. This research has been supported procedure. The X-ray flash ends when the optically thick in partby Grants-in-Aidfor Scientific Research (15K05026, windsbegin. TheSSSphasestartswhenthewindscease. At 16K05289)oftheJapanSocietyforthePromotionofScience. REFERENCES Chandrasekhar,S.1939,AnIntroductiontotheStudyofStellarStructure, Kato,M.1999,PASJ,51,525 (Chicago:UniversityofChicagoPress),or1957(NewYork:Dover). Kato,M.,&Hachisu,I.1994,ApJ,437,802 Darnley,M.J.,Henze,M.,Bode,M.F.,etal.2016,ApJ,833,149 Kato,M.,&Hachisu,I.2012,BASI,40,393 Darnley,M.J.,Henze,M.,Steele,I.A.etal.2015,A&A,580,45 Kato,M.,Hachisu,I.,&Cassatella,A.2009,ApJ,704,1676 Darnley,M.J.,Henze,M.,Steele,I.A.etal.2015,A&A,593,3 Kato,M.,Saio,H.,&Hachisu,I.2015,ApJ,808,52 (Corrigendum) Kato,M.,Saio,H.,&Hachisu,I.2016,ApJ,824,22 Darnley,M.J.,Kuin,N.P.M,Page,K.L.etal.2016,ATel,8587 Kato,M.,Saio,H.,Hachisu,I.,&Nomoto,K.2014,ApJ,793,136 Darnley,M.J.,Williams,S.C.,Bode,M.F.,etal.2014,A&A,563,L9 Kato,M.,Saio,H.,Henze,M.etal.2016,ApJ,830,40 Denissenkov,P.A.,Herwig,F.,Bildsten,L.,&Paxton,B.2013,ApJ,762,8 Kobayashi,C.,Tsujimoto,T.,Nomoto,K.,Hachisu,I.,&Kato,M.1998, Hachisu,I.,&Kato,M.2001,ApJ,558,323 ApJ,503,155 Hachisu,I.,&Kato,M.2006,ApJS,167,59 Kovetz,A.1998,ApJ,495,401 Hachisu,I.,&Kato,M.2007,ApJ,662,552 Li,X.-D.,&vandenHeuvel,E.P.J.1997,A&A,322,L9 Hachisu,I.,&Kato,M.2010,ApJ,709,680 Morii,M.,Yamaoka,H.,Mihara,T.,Matsuoka,M.,&Kawai,N.2016, Hachisu,I.,&Kato,M.2014,ApJ,785,97 PASJ,68,S11 Hachisu,I.,&Kato,M.2015,ApJ,798,76 Maoz,D.,Mannucci,F.,&Nelemans,G.2014,ARA&A,52,107 Hachisu,I.,&Kato,M.2016a,ApJ,816,26 Nariai,K.,Nomoto,K.,&Sugimoto,D.1980,PASJ,32,473 Hachisu,I.,&Kato,M.2016b,ApJ,816,26 Pagnotta,A.,&Schaefer,B.E.2014,ApJ,788,164 Hachisu,I.,Kato,M.,&Cassatella,A.2008,ApJ,687,1236 Perlmutter,S.,Aldering,G.,Goldhaber,G.etal.1999,ApJ,517,565 Hachisu,I.,Kato,M.,&Nomoto,K.1999b,ApJ,522,487 Prialnik,D.1986,ApJ,310,222 Hachisu,I.,Kato,M.,&Nomoto,K.2010,ApJ,724,L212 Prialnik,D.,&Kovetz,A.1995,ApJ,445,789 Hachisu,I.,Kato,M.,Nomoto,K.,&Umeda,H.1999a,ApJ,519,314 Riess,A.G.,Filippenko,A.V.,Challis,P.etal.1998,AJ,116,1009 Hachisu,I.,Saio,H.,&Kato,M.2016,ApJ,824,22 Schaefer,B.E.2010,ApJS,187,1831 Han,Z.,&Podsiadlowski,Ph.2004,MNRAS,350,1301 Schwarzschild,M.1958,StructureandEvolutionoftheStars,(NewYork: Hayashi,C.,Hoshi,R.,&Sugimoto,D.1962,Prog.Theor.Phys.Suppl.,22, Dover) 1 Sion,E.M.,Acierno,M.J.,&Tomczyk,S.1979,ApJ,230,832 Henze,M.,Ness,J.-U.,Darnley,M.,etal.2014,A&A,563,L8 Sparks,W.N.,Starrfield,S.,&Truran,J.W.1978,ApJ,220,1063 Henze,M.,Ness,J.-U.,Darnley,M.,etal.2015,A&A,580,46 Tang,S.,Bildsten,L.,Wolf,W.M.,etal.2014,ApJ,786,61 Hillman,Y.,Prialnik,D.,Kovetz,A.,Shara,M.M.,&Neill,J.D.2014, Williams,S.C.,Shafter,A.W.,Hornoch,K.,etal.2015,ATel8234 MNRAS,437,1962 Wolf,W.M.,Bildsten,L.,Brooks,J.,&Paxton,B.2013a,ApJ,777,136 Iben,I.,Jr.1982,ApJ,259,244 Wolf,W.M.,Bildsten,L.,Brooks,J.,&Paxton,B.2013b,ApJ,782,117, Idan,I.,Shaviv,N.J.,&Shaviv,G.2013,MNRAS,433,2884 (Erratam) Iglesias,C.A.,&Rogers,F.J.1996,ApJ,464,943 Kato,M.1983,PASJ,35,507 Kato,M.1985,PASJ,37,19

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.