Mon.Not.R.Astron.Soc.000,000–000(0000) Printed5February2008 (MNLATEXstylefilev2.2) A search for strong, ordered magnetic fields in Herbig Ae/Be stars⋆ G.A. Wade1, S. Bagnulo2, D. Drouin1, J.D. Landstreet3, D. Monin4 1DepartmentofPhysics,RoyalMilitaryCollegeofCanada,POBox17000,Station’Forces’,Kingston,Ontario,CanadaK7K4B4 2EuropeanSouthernObservatory,Casilla19001,Santiago19,Chile 3DepartmentofPhysics&Astronomy,TheUniversityofWesternOntario,London,Ontario,Canada,N6A3K7 7 4NationalResearchCouncilofCanada,HerzbergInstituteofAstrophysics,5071WestSaanichRd.,Victoria,BC,Canada,V9E2E7 0 0 2 5February2008 n a J ABSTRACT 2 The origin of magnetic fields in intermediate-mass and high-mass stars is fundamentally a 1 mystery. Clues toward solving this basic astrophysical problem can likely be found at the pre-main sequence (PMS) evolutionary stage. With this work, we perform the largest and 1 mostsensitivesearchformagneticfieldsinpre-mainsequenceHerbigAe/Be(HAeBe)stars. v We seek to determine whether strong, orderedmagnetic fields, similar to those of main se- 7 quenceAp/Bpstars, can bedetectedin these objects,andif so,to determinethe intensities, 8 3 geometricalcharacteristics, and statistical incidence of such fields. Sixty-eightobservations 1 of 50 HAeBe stars have been obtained in circularly polarised light using the FORS1 spec- 0 tropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the 7 possiblepresenceofweak longitudinalmagneticfields inphotosphericlinesoftwo HAeBe 0 stars,HD101412andBFOri.Resultsfortwoadditionalstars,CPD-53295andHD36112, / aresuggestiveofthepresenceofmagneticfields,butnofirmconclusionscanbedrawnbased h p ontheavailabledata.TheintensityofthelongitudinalfieldsdetectedinHD101412andBF - Orisuggestthattheycorrespondtoglobally-orderedmagneticfieldswithsurfaceintensities o oforder1kG.Ontheotherhand,nomagneticfieldisdetectedin4otherHAeBestarsinour r t sampleinwhichmagneticfieldshadpreviouslybeenconfirmed.MonteCarlosimulationsof s thelongitudinalfieldmeasurementsoftheundetectedstarsallowustoplaceanupperlimits a : of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of v about500Gonperpendiculardipolefields.Takingintoaccounttheresultsofoursurveyand i X otherpublishedresults,wefindthattheobservedbulkincidenceofmagneticHAeBestarsin oursampleis8-12%,ingoodagreementwiththatofmagneticmainsequencestarsofsimilar r a masses.Wealsofindthatthermslongitudinalfieldintensityofmagnetically-detectedHAeBe starsisabout200G,similar tothatofApstarsandconsistentwith magneticfluxconserva- tion during stellar evolution.These results are all in agreementwith the hypothesisthat the magneticfieldsofmainsequenceAp/Bpstarsarefossils,whichalreadyexistwithinthestars at the pre-main sequence stage. Finally, we explore the ability of our new magnetic data to constrain magnetospheric accretion in Herbig Ae/Be stars, showing that our magnetic data arenotconsistentwiththegeneraloccurrenceinHAeBestarsofmagnetosphericaccretionas describedbythetheoriesofKo¨nigl(1991)andShuetal.(1994). Keywords: stars:magneticfields–polarisation 1 INTRODUCTION suppressing large-scalemixingandleadingtoanamazingarrayof atmosphericpeculiaritieswhicheffectivelydefinethesestarsspec- About 5-10% (e.g. Wolff 1968) of all intermediate mass (B and troscopically(e.g.Adelman1993). A) main sequence stars exhibit organised magnetic fields with strengthsrangingbetweenafewhundred andafew tensof thou- Their magnetic fieldshaveclearly defined observational and sandsofgauss.Thepresenceofthesefieldshasimportantconse- physicalpropertieswhicharetotallydifferentfromthoseofthesun quencesforthestructureoftheatmospheresoftheseAp/Bpstars, andotherlate-typestars.Thefieldsarestrong,withimportantdipo- larcomponentsandfillingfactorsnear100%;thefieldstructureis staticintherotatingstellarreferenceframe,andappearstobesta- ⋆ BasedonobservationsfromtheESOtelescopesattheLaSillaParanal bleontimescalesofdecades;andthefieldsshowonlyweakorno Observatory underprogrammeID072.C-0447,DDT-272.C-5063,074.C- correlationwithprojectedrotational velocity, mainsequence age, 0442. andotherphysicalparameters. 2 G.A. Wade,S. Bagnulo,D. Drouin,J.D. Landstreet,D. Monin Because these characteristicscontrast sostrongly withthose of active cool stars(theonly other broad classof non-degenerate starsinwhich magnetic fieldscan be studied systematically), the magneticAp/Bpstarsrepresentanimportantlaboratoryforinves- tigating the fundamental physics associated with stellar and cos- micmagnetism. Inparticular,becausestarsinthismassrangeare progenitorsofbothwhitedwarfsandneutronstars,theirmagnetic 4 characteristicsmayprovideimportantcluesneededinordertoun- derstandmagnetisminthesedegenerateobjects. lutionReomf tahreksaeblmy,avgenreytilcittfileelidssk.nRoewcnenatbionuvtetshteigfaotriomnastiboynaBnadgnevuolo- 6.0Birthline (10-5 Msun/yr) et al. (2003, 2004, 2006) and Po¨hnl et al. (2003, 2005), showing tvheartymyoaugnngetiocpaenndclcuhsetemrsic,asltlryonpgelcyulsiuaprpAo-rttytpheesvtiaerwsathreatptrheesefinetldins L)sun 5.0 L/* arepresentinthesestarsatthetimetheyreachthemainsequence. g( 4.0 o Thissuggeststhatthemagneticfieldsobserved inmainsequence l 3.5 Ap/Bp stars arepresent, and possibly produced, within their pre- 2 mainsequence (PMS)progenitors. Thisideaisalsosupported by 3.0 the theoretical work of Ste¸pien´ (2000) and of Ste¸pien´ and Land- 2.5 street(2002),whichsuggestthatstrongmagneticfieldsarerequired atthepre-mainsequencephaseinordertoproducetheslowrota- 2.0 tionwhichiscommonlyobservedintheAp/Bpstars.Theprimary aimofthisstudyistotestthesepropositionsbysearchingfordirect 1.5 evidence of magnetic fields in the photospheres of a statistically usefulsampleofPMSstarsofintermediatemass. ZA A second motivation of this study is to explore the gen- M S eral role of magnetic fields in the late stages of formation of 0 4.4 4.2 4 3.8 intermediate-massstars.Accretionontolower-massPMSTTauri log(T ) eff starsisnowgenerallysupposedtobemediatedbythepresenceof strong,large-scalemagneticfields(e.g.discussionbyJohns-Krull Figure1.HRdiagramofsamplestarswithknownTeff andlogL/L⊙,de- rivedfromTable1.Thedataareinterpretedusingthemodelevolutionary etal.(1999)andreferencestherein).Someauthors(e.g.Vinketal. calculations ofPalla&Stahler(1993),whichassumeanaccretionrateof 2002,Muzzeroleetal.2004)havesuggestedthatsimilar“magne- 10−5 M⊙/yrbeforethebirthline. Eachevolutionary trackislabelled with tosphericaccretion”mayoccurinintermediate-massPMSstarsas thecorresponding stellarmass.Notably,amajorityofthesampleiscon- well.Theobservationspresentedhereprovideauniqueopportunity centratedbetween1.5-3 M⊙. Starsinwhichmagneticfieldsarepossibly toexplorethisproposal. detectedinthisstudy(HD101412,BFOri,andHD36112)areindicated Many intermediate-mass PMS stars areidentifiable observa- byfilledsymbols(theluminosityofCPD-53295isnotknown,andthuswe tionally as Herbig Ae/Be (HAeBe) stars (Herbig 1960; Cohen & areunabletoplaceitontheHRdiagram). Kuhi 1979; Finkenzeller & Mundt 1984; Hillebrand et al. 1992). HAeBe stars are characterised by spectral types A and B with strong, often ubiquitous emission lines. They are distinguished 1kG.AsurveyundertakenbyGlagolevski&Chountonov(1998), from the classical Ae/Be stars by their IR colours and frequent including a larger sample of stars, also found no fields, but with presence within dust-obscured regions and association with neb- relativelypoor precision. On theother hand, Donati et al. (1997) ulae(Waters&Waelkens1998).Accordingtostandardstellarevo- andDonati(2000)reportedtheprobableanddefinite(respectively) lution theory, HAeBe stars should not posses deep outer convec- detection of a circular polarisation signature in metallic lines of tionzoneswhichgenerateimportantquantitiesofoutward-flowing the Herbig Aestar HD 104237, providing the first detection of a mechanicalenergy.Rather,thesestarsareexpectedtohaveconvec- magneticfieldinaHAeBestar.Morerecently,Hubrigetal.(2004, tivecoressurroundedby primarilyradiativesub-photosphericen- 2006a)haveclaimedthedetectionofstrongmagneticfieldsinsev- velopes(Iben1965;Gilliland1986).However,since1980,repeated eralHAeBestars.Clearly,indirectanddirectevidenceforthepres- observationsofthesestars(e.g.Praderieetal.1982;Felenboketal. enceofmagneticfieldsinsomeHAeBestarsinincreasing, butit 1983;Catalaetal.1986;Hamann&Persson1992)haveshownthat remainsverysparse. manyareintenselyactive.Inparticular,theydisplaycharacteristics In this study, we use the low-resolution spectropolarimeter oftenassociated withmagneticactivityand thepresence of chro- FORS1attheESOVLTtoconductasearchformagneticfieldsin mospheres or coronae (e.g.Skinner &Yamauchi 1996; Swartzet about50HAeBestars,thelargestsuchsampleeverstudied.First al. 2005). These properties havebeen proposed asindicators that resultsofthisstudyhavealreadybeenreportedinashortpaperby at least some of these stars or their circumstellar envelopes are Wadeetal.(2005). intenselymagneticallyactive. Previous attempts to detect magnetic fields in HAeBe stars haveproducedvariedresults.Catalaetal.(1993)attemptedtode- 2 SAMPLESELECTION tectZeemancircularpolarisationintheFeλ5018andHeλ5876 linesinthespectrumoftheprototypicalHAeBestarABAur.High Our study required the selection of a relatively large number of resolution,highsignal-to-noiseratiospectraofABAurresultedin HAeBestarstoallowustoderivestatisticallymeaningfulconclu- nodetectionofamagneticfield,withupperlimitsontheorderof sionsaboutthepresenceofmagneticfieldsinthesestars,andthe A searchforstrong,ordered magneticfieldsin HerbigAe/Bestars 3 relationshipofmagneticHAeBestarstotheAp/Bpstars.Various yieldsadispersionof1.2Åperpixel.Spectrawereobtainedwitha literaturesourceswereusedfortargetselection,primarilythecata- slitwidthof0.5”or0.8”,yieldingaresolvingpowerof1560or975, loguesofHAeBestarsandHAeBecandidatesbyThe´etal.(1994) respectively.Inafewcases, grism1200g(nowdecommissioned) andbyVieiraetal.(2003). was used, which covers the spectral range from 4310 to 5490 Å ThecatalogueofThe´ etal.(1994)containssixcategoriesof (whichincludesHβandHγonly).Itsdispersionis0.6Åperpixel, stars;thestarsselectedforourstudywereobtainedonlyfromthe andwithaslitwidthof0.5”or0.8”,thisgrismyieldsaresolving first category, which contains stars historically known as HAeBe powerof2800or1800,respectively. stars,orstrongcandidatesofthegroup.Accordingtotheauthors, Sixty-eightobservationsofthe50targetswereobtainedincir- allofthesestarspossessnear-orfar-infraredexcessandemission cularlypolarisedlightfollowingtheprocedure describedbyBag- lines,associatedwiththepresenceofcircumstellardust, discsand nulo et al. (2006). The light gathered by the telescope is sent energeticouflowswhichareusuallyfoundinHAeBestellarenvi- through the Longitudinal Atmospheric Dispersion Corrector and ronments.Ontheotherhand,Vieiraetal.(2003)producedacata- theinstrumentcollimator,thenpassesthroughasingleslitintothe logueofHAeBestarsandstrongcandidatesfromaninitialsearch topsectionoftheFORS1instrument.There,thestellarlightpasses fornewTTauristars(pre-mainsequencestarsoflowermass)using througharotatablequarter-waveplate(locatedinthefilter/camera theInfraredAstronomicalSatellite(IRAS)pointsourcecatalogue1. section of FORS1) oriented at ±45◦ with respect to the fast axis Becausetheinitialsearchwasbasedoncircumstellardustproper- of the analyser, which converts the circularly polarised light into ties, itincluded HAeBestarsalong withtheT Tauri stars. Viera linearly polarized light. The orthogonal linearly polarized beams etal.extractedtheHAeBestarsbyfilteringthedatausingspecific arethenseparatedbytheWollastonprismbeforebeingdispersed requirements such as a spectral type earlier than F5, emission at byagrism.Twospectra(each corresponding tooneof theoppo- Hα, and a minimum level of infrared emission. The majority of sitelypolarisedbeams)arefinallyrecordedsimultaneouslyonthe thestarswereassociatedbytheauthorswithastarformingregion CCD.Bychanging theorientationof thequarter-waveplatewith (SFR).Basedonthequalityofthesetwoliteraturesourcesandthe respect to the Wollaston fast axis (alternately +45◦ or −45◦) and arguments presented by theirauthors, weconclude that all of the obtaining an additional exposure, the positions of the right and starsinoursamplearebonafideHAeBestars.Intotal,50HAeBe left circularly polarised beams are exchanged throughout the in- starshavebeenselected,spanninginaspectraltyperangefromF2 strument, and in particular their respective positions on the CCD throughB0. areinterchanged.AsdescribedintheFORS1manual(VLT-MAN- TheselectedstarsarelistedinTable1.Thespectraltypesof ESO-13100-1543), this procedure allows for the removal of sys- the stars have been obtained from the bibliographic service SIM- tematicerrorsduetoCCDinhomogeneitiesanddifferentialwave- BAD (unless indicated otherwise). Table 1 also contains physical lengthcalibrationerrors. properties(whereavailable)suchasmass,radius,effectivetemper- Inordertoobtainahighsignal-to-noiseratio,multipleexpo- ature,luminosity, vsini,ageanddistance, found intheliterature. suresofeachstarwereobtained.Anevennumberofexposures(be- Wheneverthesourcespermitted,theuncertaintiesassociatedwith tween2and30, depending ontheapparent magnitude ofthestar theseparameterswereincluded. andtheseeing)wasobtained,eachpairofexposurescorresponding AscanbeseeninTable1, 7objectshavenowell-determined toaquarter-waveplateorientationofeither+45oor−45o.Thedata physical parametersintheliterature.Inaddition, thephysical pa- werereducedusingtheproceduredescribedindetailbyBagnuloet rameters (and in particular the luminosities) of many objects are al.(2006). highlyuncertain. Notwithstandingthislimitation,wehaveplaced Thejournalofobservations(Table2)reportsourobservations those stars with known temperatures and luminosities on the HR ofbothstandardandprogrammestars.Itshouldbenotedthatgrism diagraminFig.1,alongwiththemodelpre-mainsequenceevolu- 600Bwasusedforallobservationsunlessindicatedotherwise(in tionarytracksofPalla&Stahler(1993).BasedonFig.1,mostof whichcasegrism1200gwasused).Table2includestheJulianDate thestarsintheobservedsamplehavemassesabove2M ,andfully of mid-observation, the slit width, exposure time and number of ⊙ 18ofthe37starsonthediagram(49%)havemassesbetween2and exposures,andtheresultant peaksignal-to-noiseratio perÅ.The 4M .Eightstarshavemassesbelow2M ,and9starshavemasses tablealsocontainstheresultsofthemagneticfielddiagnosis,which ⊙ ⊙ largerthan4M . arediscussedinSect.4. ⊙ 3 OBSERVATIONSANDDATAREDUCTION 4 RESULTS ThesamplestarswereobservedattheEuropeanSouthernObser- vatory (ESO) Very Large Telescope (VLT) with the first of the Thelongitudinal magnetic fieldhasbeen inferredfromthepolar- two FOcal Reducer and low dispersion Spectrographs (FORS1). isationspectrain themanner described by Bagnulo et al.(2006). FORS1 was mounted at the Cassegrain focus of one of the tele- Briefly, the field diagnosis is obtained using a Least-Squares fit scope unitsand wasused inspectropolarimetricfast mode. Ato- based on the predicted circularly polarised flux V/I in the weak- tal of about five nights were allocated for our study, distributed fieldregime,givenby overthreeobservingruns(visitormoderunsinFebruary(P72)and V 1 dI November2004(P74),andoneservicemoderunofDirector’sDis- I =−geffCzλ2 I dλ hBzi, (1) cretionaryTimeinApril2004). Thelargemajorityofourspectrawereobtainedwiththegrism wheregeff istheeffectiveLande´factor,Iistheusual(unpolarised) 600B,whichcoversthespectralrangefrom3450to5900Å,and intensity,λisthewavelengthexpressedinÅ,hBziisthelongitudi- nalfieldexpressedingauss,and e C = (≃4.67×10−13Å−1G−1) 1 http://irsa.ipac.caltech.edu/ z 4πm c2 e 4 G.A. Wade,S. Bagnulo,D. Drouin,J.D. Landstreet,D. Monin Name Sp.Type Mass R∗ log(Teff) log(L∗/L⊙) vsini Age Distance (M⊙) (R⊙) (K) (km/s) (Myr) (pc) CPD-53295b F2 - - b3.83 - b175 - - HD17081d B7IV ∗4.6 ∗4.9 o4.09 o2.70 n18 o0.1 o135 HD278937a A3 g2.0 ∗1.9 g3.92 g1.21 - g8.0 g350 HD275877a A2IIvar+ g1.9 ∗1.7 g3.92 g1.12 i217±13 g11.0 g120 HD31293a A0Vpe f2.4 b2.7 f3.98±0.05 f1.68+0.13 f80 f2.0 b160 −0.11 HD31648a A3pshe+ f2.2 ∗2.5 f3.94±0.05 f1.51+0.15 i102±5 f2.5 p131±20 −0.13 HD293782a A3e c3.3 c3.2 c3.96±0.05 c1.79 i215±15 g4.0 c460 HD34282a A0e+sh j1.39 q0.6 j3.94+0.02 j1.13+0.06 j110±10 j6.4 j348 −0.01 −0.05 HD35187b A2e r2.2 ∗2.3 r3.96 r1.53 h105±9 r5.0 r150 HD287841a A5III:e m1.55±0.15 ∗1.4 m3.87±0.01 m0.74±0.05 - ∗20.0 - HD35929a A5 s3.6±0.2 ∗6.6 s3.85±0.01 s2.00+0.06 f150±30 f3.2 s390±30 −0.07 HD36112a A8e cc1.8±0.2 ∗2.3 q3.89±0.02 ∗1.24 cc60±6 q6.0 ∗200+63 −40 HD244604a A3 - - - - - - - HD245185a A5 g2.2 ∗1.8 g3.97 g1.36 - g8.0 g400 TOria A3V c3.6 c2.8 c4.03±0.05 c1.92 c100 g1.7 c460 V380Oria A0 aa2.8±0.3 aa2.7 c4.03±0.05 c1.93 - ∗1.4 c460 HD37258a A2V h3.0 - h3.96±0.02 t0.59 h160±13 - - BFOria A5II-IIIevar c1.4 c1.3 c3.83±0.05 c0.49 i37±2 ∗25.0 c460 HD37357a A0e - - b3.96 - - u66.0 u480 HD37411a B9V - - h4.03 - - - v510 HD37490a BIIIe c16.9 c11.4 c4.31±0.05 c4.30 c160 - c360 HD37806a A0 h3.0 ∗2.4 f3.95±0.05 f>1.51 f120±30 ∗2.6 - HD250550a B7e c4.8 c3.5 c4.09±0.05 c2.38 c110 g1.4 c700 HD259431a B6pe c12.2 c6.4 c4.31±0.05 c3.80 c100 g0.1 c800 HD52721a B2Vne c24.1 c17.4 c4.35±0.05 c4.83 c400 - c1150 HD53179a Bpe w16 - l3.90 l3.85 - w0.3 l1150 HD53367a B0IV:e e13±3 c17.4 e4.50±0.05 e4.04+0.34 c30 - e250+120 −0.26 −60 NXPupa A0 c3.0 c2.4 c3.99±0.05 c1.65 f120±10 ∗2.3 c450 HD68695b A0V - - - - - - - HD72106Ab A0IV aa2.4±0.4 - aa4.04 aa1.3 aa45 - b290 HD72106Bb A0IV aa1.75±0.25 - aa3.90 aa1.0 10 - b290 HD76534a B2Vne c11.4 c7.5 c4.25±0.05 c3.70 c110 - c870 HD85567a B5Vne - - x4.28 x4.0±0.3 x70 - x1500±500 HD87403b A1III - - - - - - - HD94509a A0Ib - - - - - - - HD95881a A1/A2III/IV - - - - y150 - - HD96042b B1V:ne - - - - b132 - - HD97048a A0pshe c3.4 c2.5 f4.00±0.05 f1.61+0.13 f140±20 f>6.3 c215 −0.10 HD98922a B9Ve ∗5.0 ∗9.2 f4.02±0.05 f>2.96 - ∗0.1 - HD100453b A9Ve k1.7 ∗1.7 k3.86 k0.95+0.18 - ∗10.0 k114 −0.30 HD100546a B9Vne e2.4 ∗1.7 e4.02±0.05 e1.51+0.06 - e∼10 e103+7 −0.05 −6 HD101412a B9.5V aa2.6±0.3 - b3.98 1.74 dd7 2 bb500−700 HD104237a A:pe f2.3 ∗2.7 f3.93±0.05 f1.55+0.06 - f6.3 - −0.05 HD132947a A0 - - - - - - - HD141569a B9.5e j2.0 ∗1.7 j4.00+0.01 j1.41±0.05 j236±15 j4.71 j108 −0.01 HD142666a A8Ve k1.8 ∗1.5 k3.93 k1.04+0.18 i72±2 ∗10.0 k116 −0.30 HD144432a A9/F0V k2.2 ∗3.0 k3.90 k1.51+0.18 i85±4 ∗2.0 k200 −0.30 HD144668a A7IVe e3.1±0.5 c3.9 e3.88±0.05 e1.89+0.17 h180±50 e0.6±0.4 e210+50 −0.15 −30 TyCraa B8e c1.9 c1.5 c3.92±0.05 c0.97 c88 ∗11.5 c130 HD190073a A2IVpe ∗2.7 ∗3.3 f3.95±0.05 f>1.80 z20 ∗1.3 f>290 Table 1. HAeBe programme stars ordered by right ascension, including spectral type, mass, radius, effective temeperature, luminosity, vsini, age and heliocentricdistance,whereavailable.Reference:aThe´etal.(1994),bVieiraetal.(2003),cHillenbrandetal.(1992),dMalfaitetal.(1998),evandenAncker etal.(1997),fvandenAnckeretal.(1998),gHerna´ndezetal.(2004),hBo¨hm&Catala(1995),iMoraetal.(2001),jMer´ıetal.(2004),kDominiketal.(2003), lFuenteetal.(2002),mPinheiroetal.(2003),nAcke&Waelkens(2004),oHabartetal.(2003), pGalazutdinov etal.(2003),qMannings&Sargent(2000), rNattaetal.(2004),sMarconietal.(2000),tKovalchuketal.(1997),uHolmesetal.(2003),vHovhannessianetal.(2001),wvandenAnckeretal.(2004), xMiroshnichenkoetal.(2001),yGradyetal.(1996),zCarporon&Lagrange(1999),aaWadeetal.(2005),bbCorradietal.(1997),ccBeskrovnayaetal.(1999), ddGuimaraesetal.(2006),∗Thiswork. A searchforstrong,ordered magneticfieldsin HerbigAe/Bestars 5 [ht] x 10−3 x 10−3 x 10−3 x 10−3 6 5 5 6 4 4 2 2 V/I 0 V/I 0 V/I 0 V/I 0 −2 −2 −4 −4 −5 −5 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 4950 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) x 106 x 106 x 106 x 106 3 3 4 4 3 2 2 3 U) U) U) U) D D D2 D A A A A I (1 I (1 I ( I (2 1 0 0 0 1 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 4950 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Figure2.StokesIandVprofilesintheFORS1spectrumofHD94660.Fromlefttoright,individualframesshowH8,CaHandKandHǫ;Hδ;Hγ;and Hβ.Thinlinesrepresenttheobservedspectrum,whilethicklinesrepresentthecomputedStokesVspectrumdeterminedusingEq.(1).Notethestrong,clear signaturesassociatedwithallBalmerlines. whereeistheelectroncharge,m theelectronmass,andcthespeed This procedure has been repeated four different ways: using e oflight.FortheatmosphereofamainsequenceAorBtypestar, the whole spectrum, using only metal (and He) lines, using all theweak-fieldapproximationholds,forHlines,uptoaround10- Balmerlines,andusingallBalmerlinesexceptHβ.(Inourgrism 20kG,and,formetallines,uptoabout1kG. 600Bobservations,Hβtypicallyexhibitsthestrongestemissionof Toderivethelongitudinalfield,weminimisetheexpression anyoftheBalmerlines,withemissionintensitydecreasingstrongly for higher series members. Measurement of the field using only (y −hBix −b)2 BalmerlinesHγandhigherisanattempttomitigatetheeffectsof χ2 =X i σz2 i (2) thisemission.)Aflag”n”,”d”,or”D”,asdefinedabove,wasas- i i signed to each kind of analysis. It isclear that a series ”DDDD” denotesacertaindetection,a”nnnn”seriesdenotesanulldetecion, where, for each pixel i in the reduced spectrum, y = (V/I), i i whereasintermediatecases(includingpossibly”d”flags)indicate x =−g C λ2(1/I×dI/dλ),andbisaconstantterm.Uncertainties i eff z i i theneed of further observations tofully asseswhether thestar is σ associatedwitheachreducedspectralpixelareobtainedasde- i magneticornot.Theresultsofthefourdiagnosesofthemagnetic scribedbyBagnuloetal.(2006).Thelongitudinalfielduncertainty fieldaresummarisedincolumns6-9ofTable2,withtheirsignifi- isobtainedfromtheformaluncertainlyofthelinearregression,and cancesummarisedincolumn10. itsderivationisdescribedbyBagnuloetal.(2002). AsisdiscussedlaterinthisSection,weencounteredanumber ofcasesforwhichthefieldwasdetectedataboutthe3-σlevel,and 4.1 Standardstars in which minor changes in the data reduction would transform a marginaldetectioninanullorintoadefinitedetection.Although Inorder toevaluate the nominal operation of theinstrument, and thesecases should certainly beinvestigated further via additional theaccuracyofthereductionandanalysistechniques,weobserved observations,wetriedtoextractfurtherinformationfromtheavail- bothmagneticandnon-magneticstandardstars.ThemagneticAp ablespectra, toformulateamorerobust andreliablecriterionfor star HD 94660 (spectral type A0p) was observed 4 times: twice fielddetection. (consecutively) during the P72 run with grism 600B, and twice Eachobservationblockconsistedofseveralpairsofobserva- during the P74 run with both grism 600B and grism 1200g. The tionsobtainedwiththeretarderwaveplateat−45◦and+45◦.Asex- non-magneticA1VstarHD96441wasobservedduringtheDDT plainedbyBagnuloetal.(2006),therearetwowaystodetermine run.Themagneticdiagnosisforthesestandardstarsisincludedin hBi. (i) One can combine all observations to obtain a final, high Table2. z signaltonoiseratioStokesV profile,fromwhichisdetermineda InP72,thefieldofHD94660measuredinBalmerlineswas uniquevalueofhBi.(ii)Alternatively,onecancombineindividual −2534±63 G and −2429±70 G, and thefieldsmeasured in all z pairsofframesobtainedat−45◦ and+45◦ toobtainseverallower Balmerlinesexcept Hβwere−2363±78G and−2535±71 G. signal-to-noiseratioStokesVprofiles,whichyieldseveralhBi de- The consistency of these results is expected for a main sequence z i terminations.ThefinalhBivalueiscomputedfromtheaverageof ApstarwithnoBalmerlineemission.Ontheotherhand,thefields z thesehBi values.Ifbothmethodsyieldadetectionatthe3σlevel measuredinmetallinesweresignificantlyweaker, −1617±94G z i orhigher,weflagtheobservationwith”D”(implyingadefinitede- and−2026±54G.AsdiscussedbyBagnuloetal.(2006),incon- tectionaccordingtobothcriteri).Ifa3σdetectionisobtainedwith sistency between metal line and Balmer line longitudinal fields onlyoneofthetwomethods,weflagtheobservationwith”d”.Fi- is common in stars with strong fields, and likely results from a nally, if both methods yieldsa null detection (< 3σ) weflagthe breakdown of the weak-field assumption (in the case of metallic observationwith”n”. lines),possiblycoupled withtheinfluenceofnonuniform surface 6 G.A. Wade,S. Bagnulo,D. Drouin,J.D. Landstreet,D. Monin 15 25 30 12 nts nts 20 Balmer nts 10 Metal nts 25 Fspuellctrum e e e e urem 10 urem 15 urem 8 urem 20 as as as 6 as 15 e e 10 e e m 5 m m 4 m 10 # of # of 5 # of 2 # of 5 0 0 0 0 0 2000 4000 6000 0 100 200 300 0 100 200 300 0 100 200 300 S/N σ(1) σ(2) σ(3) B B B Figure3.Histogramsofthesignal-to-noiseratio(S/N,column5ofTable2)andformaluncertaintiesofthelongitudinalfieldmeasurements(columns6-8of Table2). 25 25 ments20 Balmer ments20 Metal measure15 measure15 Number of 105 Number of 105 0 0 0 1 2 3|<B>/σ|4 5 6 7 0 1 2 3|<B>/σ|4 5 6 7 z B z B 25 25 ments20 Fspuellctrum ments20 Bwa/olm Heβr measure15 measure15 Number of 105 Number of 105 0 0 0 1 2 3|<B>/σ|4 5 6 7 0 1 2 3|<B>/σ|4 5 6 7 z B z B Figure4.Histogramsofthedetectionsignificancez=hBzi/σBofmagneticfieldmeasurementsofprogrammestars.Eachpanelcorrespondstooneofthe4 measurementsreportedincolumns6-9ofTable2.Thedashedlineindicatesthe3σdetectionthreshold. distributions of metal abundances. Moreover, these two measure- ble (i.e. a 0.5 arcsec slit) to get the most out of the metallic line mentswereobtainedusingdifferentslitwidths(0.5vs.1arcsec). spectrum,andthatprobablythedifferencebetweenthetwometal- Toexplorethepossibleeffectsoftheslitsizedifference,wehave liclinemeasurementsofHD94660isduetosomecombinationof performedafewnumericalexperiments,computingpolarisedsyn- theseeingandtheslitsize. theticspectraanddegradingtheresolutionofbothStokesI andV toanadjustablevalue. Wecomputed thebinned andsmoothed V InP74,thefieldmeasuredinBalmerlinesfromboththegrism anddI/dλ,andcalculatedtheslopeandinferredlongitudinalfield 600B and grism 1200g observations are consistent, and equal to fromtheregression.Theinterestingresultisthatastheresolving −2437±41G(600B)and−2337±40G(1200g).Thefieldsmea- powerdegradesbelowabout2000,thededucedfieldfrommetallic suredinmetallines(−2074±44Gand−2144±16G)arealsoin linesstartstochange alot. It generally getssmaller, but it varies reasonablygoodagreement. inasomewhatunpredictablemanner.Thisappearstobebasically TheresultsforHD94660arefullyconsistentwiththosede- because,aswereducetheresolution,wearegoingfromtheregime scribedbyBagnuloetal.(2006).Inparticular,thefieldsmeasured whereeachdepressionintheobservedspectrumisroughlyoneline during P74 agree to within 1σ with the fields reported by them. totheregimewhereeachdepressionisoneblendofnearbystrong StokesIandVprofilesofHD94660areillustratedinFig.2. lines, and treating this as a single line is an increasingly bad ap- proximation.Ontheotherhand,changingtheresolvingpowerwill ThesingleobservationofHD96441,obtainedduringtheDDT havenegligibleeffectonBalmerlines(asobserved).Fromthiswe run,wasconsistentwithzerofield(−108±43GinBalmerlines, conclude that it is best to use the highest resolving power possi- and78±65Ginmetallines). A searchforstrong,ordered magneticfieldsin HerbigAe/Bestars 7 x 10−3 x 10−3 x 10−3 x 10−3 4 4 4 4 2 2 2 2 V/I 0 V/I 0 V/I 0 V/I 0 −2 −2 −2 −2 −4 −4 −4 −4 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) x 105 x 105 x 105 x 105 15 15 15 15 10 10 10 10 U) U) U) U) D D D D A A A A I ( 5 I ( 5 I ( 5 I ( 5 0 0 0 0 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Figure5.StokesIandVprofilesinthespectrumofHD101412. 4.2 Programmestars incolumn10ofTable2,onlyHD101412 andCPD-53295indi- cateasignificant fielddetectedaccording tobothcriteriaofBag- 4.2.1 Dataquality nuloetal.(2006)(andarethereforedenotedwiththesymbol“D”). Noother observation of anyprogramme starresultedinanyfield Twohundred and seventy-two magnetic fieldmeasurements have detectedabovethe3σlevel. beenobtainedfromthe68observationsofthe50programmestars. Themean peakS/N (perangstrom)ofthespectrawas2990:1,but varied significantly from 1340:1-5720:1 due to seeing and trans- 4.2.2 Detectedtargets parencyconditions,andapparentbrightnessofthetarget.Therange ofS/Nresultsinarelativelylargerangeoflongitudinalfielduncer- tainties (all uncertainties in this paper are at 1σ confidence). For HD101412 measurements obtained from Balmer lines only, the mean uncer- taintywas66G,rangingfrom19to162G.Formetallinesonly, HD101412(He3-692,PDS057)wasselectedfromthework themeanuncertaintywas105G,rangingfrom21to291G.Forthe ofThe´ etal.(1994) whereitisnotedasanhistoricallyknown or fullspectrum,themeanuncertaintywas48G,rangingfrom16to strongcandidateHAeBestar.ItwasfirstclassifiedasaHAeBestar 102G.ThesedistributionsareillustratedinFig.3(thedistribution byHuandZhou(1990) basedonitsIRASinfraredexcess.Itex- for all Balmer lines excluding Hβ was very similar to that of all hibitsdouble-peaked Hαemission,aswellasO[]λλ6300,6364 Balmerlines,andsoisnotillustratedhere). emission(e.g.Vieiraetal.2003),andmayexhibitpolarisationvari- Thedistributionoferrorbarsforthemetallinemeasurements abilityontimescalesofminutes(Yudin&Evans1998).Although issomewhatbroaderthanfortheBalmerlineorfullspectrumre- HD101412isnotassociatedwithareflectionnebula(Ray&Eis- gressions.AspointedoutbyBagnuloetal.(2006),thisisduetothe loeffel 1994), Vieira et al. (2003) were able to associated it with factthatBalmerlineshavesimilarstrengthinmostofthesestars, theDC295.0+1.3starformingregion(SFR)intheCentaurusand whereasmetallineschangegreatlyfromstartostar.Althoughitis Cruxcomplex.ItthereforeappearsthatHD101412isabonafide truethatthediversityofBalmerlineprofilesinspectraofHAeBe HAeBestarandthereforeapre-mainsequencestarofintermediate stars is somewhat greater than for main sequence A and B stars, mass. the responsible emission effects are mostly visible in Hα, and to ThesurfacetemperatureofHD101412reportedbyVieiraet alesserdegreeinHβ.AttheresolutionofFORS1,theprofilesof al.(2003)isabout9500K,toocoolforHD101412tobeamisclas- highermembersoftheseriesareverysimilartothoseofmainse- sifiedBestar.Noparallax dataisavailablefor thisstar, although quencestars. basedonthereporteddistancetotheDC295.0+1.3SFR(500-700 The magnetic field diagnoses obtained for the programme pc;Corradietal.1997),Wadeetal.(2005)estimateditspositionon starsaresummarisedinFig.4,whereweshow histogramsofthe theHRdiagram.Thisposition,interpretedusingthemodelevolu- detection significance z = |hBi|/σ . Each frame in Fig. 4 corre- tionarytracksofPalla&Stahler(1993),indicatesthatHD101412 z B spondstooneofthe4measurementsreportedinTable2.Only12 hasamassof2.6±0.3M ,andappearedatthebirthlineonlyabout ⊙ of the272 programme star measurements (corresponding to only 2Myrago.Thissuggeststhatthisstarisstillaccretingmaterialand 4 stars) indicate a magnetic field detection significant at greater burning deuterium as its main source of energy, and its structure thanorequaltothe3σlevel.ThesestarsareBFOri(whichcon- shouldbesignificantlydifferentthanthatofmainsequenceAstars. tributesdetectionsbetween3.2σand6.9σtoall4frames,“dddd”), HD101412wasobservedduringtheP72observingrun.Un- HD 101412 (which contributes detections from 4.0σ to 4.6σ to fortunately, observations of this star were obtained while clouds 3frames,“DddD”),CPD-53295(whichcontributesdetectionsof were passing, and only 4 exposures were obtained, resulting in 4.0σto2frames,“nDDn”),andHD36112(whichcontributesde- some frames with low S/N and others that were partially satu- tectionsfrom3.0σ-3.6σto3frames,“nddn”).Accordingtotheflag rated. Thereduced spectrum(which haslower (1350:1) S/N,and 8 G.A. Wade,S. Bagnulo,D. Drouin,J.D. Landstreet,D. Monin is illustrated in Fig. 5) shows strong Balmer lines which in gen- Klines,consistentwiththelatespectraltype.Neitherthegrism600 eralshow littleevidenceof emission.Hβshowsanasymmetryin northe1200gspectrumStokesVspectrumshowsanysignatures. the inner blue wing which is presumably due to emission. The Thelongitudinalmagneticfieldhasbeendiagnosedusingboth Balmer lines are much broader than those of HD 94660 (which Balmerlinesandmetalliclines(flags“nnnn”and“nDDn”,thelat- has T = 10750 K according to uvbyβ photometry), supporting terwithgrism1200g). Accordingtobothofthedetectioncriteria eff the cooler temperature derived by Vieira et al. (2003). If we as- ofBagnuloetal.(2006),nofieldatallisdetectedinthe600Bob- sume this temperature, the wings of the Hγ and Hδ profiles are servation.Ontheotherhand,afieldisdetectedinthemetallines well-fitusingATLAS9Balmerprofilescomputedforlogg = 4.0. andfullspectruminthe1200gobservation,bothatthe4.0σlevel The metallic-line spectrum is substantially weaker than that of (139±35G,129±32G).Whenthisspectrumisexaminedbyeye, HD94660, although theCaKline(firstpanel ofFig.5) isrel- nosignificantsignaturesareevident. ativelystrong.TheMgλ4481lineandFelinesofmultiplet42 Although we are unable to simply discard the apparent (λλλ4923,5018,5169)arealsoprominent. metallic-linedetectioninthe1200gspectrum,giventhatbothob- Thelongitudinalmagneticfieldhasbeendiagnosedusingboth servations of thisstar were obtained within about 1 hour of each Balmerlinesandmetalliclines(flag“DddD”).Accordingtoboth other,andthattheBalmerlinediagnosisofthe1200gobservation ofthedetectioncriteriaofBagnuloetal.(2006),afieldisdetected isinconsistentwiththemetalliclinediagnosis,wedonotconsider intheBalmerlines:atthe4.6σlevel(512±111G)fromtheBalmer thedetectionofCPD-53295tobeconvincingevidenceofthepres- lineregressionbasedonthefinalreducedStokesI andV spectra, enceofamagneticfield. andthe3.2σlevelbasedontheweightedaverageofregressionre- sultsobtainedfromthe4pairsofStokesI/Vspectra(572±181).In BFORI addition,eachofthe4pairsofspectraproduceBalmerlineregres- sionresultsthatareconsistenttowithin1σwiththeresultreported BFOri(BD-06◦1259)wasselectedfromthecatalogueofThe´ in Table 2. Although no clear Stokes V signatures are evident in etal.(1994). Thisobjectisawell-knownandextensivelystudied BalmerlinesshowninFig.5,theredoesappeartobeareasonably pre-mainsequencestar,exhibitinglargeinfraredexcess,Hαemis- convincingtendancyforthecircularpolarisationtobe positivein sion,andpolarimetricvariability.Hillenbrandetal.(1992) derive thebluewing andnegativeintheredwingoftheline(consistent withapositivelongitudinalmagneticfield)2. an effective temperature of 6750 K, and a mass of 1.4 M⊙, sub- stantiallylowerthanindicatedbytheSIMBADspectraltype(A5 Thefullspectrumregressionalsoindicatesalongitudinalfield II-IIIevar)andderivedbyGrininetal.(2001: 8750K).Thechal- detection, but only according to one of the criteria. On the other lengeofclassifyingthisstarresults,atleastinpart,fromthepres- hand,theregressionusingonlymetalliclines,althoughcorrespond- enceofcomplexnon-photosphericabsorptionlines(Hernandezet ingtoasingle-criteriondetection,showssimilarmagnitudebutop- al.2004).BFOriiswithin1′ofanX-raysourceidentifiedbyDami- positesign.Althoughthiscouldbeattributedtothelargererrorbar ani et al. (1994). According to Boehm & Catala (1994), thisstar resultingfromtheweakandnoisymetallic-linespectrum,anddif- doesnotexhibitO[]λλ6300,6364emission. fersfromtheBalmer-lineresultbyonly2.3σ,itmotivatesustobe BFOriwasobservedduringtheP72observingrun.Eightex- more cautious about claiming theexistence of afieldin thisstar. posureswereobtained,yieldingaS/Nof2900:1.Thespectrum(il- Forthemoment,weconcludetentativelythatHD101412hostsa lustratedinFig.6)ischaracterisedbystrong,asymmetricBalmer photospheric magnetic fieldwithalongitudinal intensityof order lines (a systematic asymmetry can be followed down to at least 500G,butfurtherobservationsareclearlynecessary. H10,andpossiblyH11),andarich,strongmetallic-linespectrum. TheFelinesofmultiplet42areespeciallyprominent,andappear CPD-53295 toshowweakemissioninthewings.TheCaKlineisverystrong. Althoughitisattheveryedgeofourspectraldomain,weseequite CPD-53295(PDS002)wasselectedfromtheworkofVieira clearlyanabsorptionprofileofHeλ58763. etal.(2003),whowereunabletoassociateitwithaspecificstar- Themagneticdiagnosisforthisstarissummarisedbytheflag formingregion.SIMBADindicatesaspectraltypeofF2,andVieira “dddd”, indicatingadetectionaccordingtooneofthecriteriafor et al. report an effective temperature of 6750 K and a rotational each of the four measurements (−180±38 (4.7σ) from Balmer velocityof175kms−1.Otherwise,thisstarisverypoorlystudied, lines, −95±30 G (3.2σ) from metal lines, −144±21 G (6.9σ) appearinginonly5articlesintheADSsince1970. fromthefullspectrum, and−158±45G(3.5σ)fromallBalmer CPD-53 295 was observed on a single night during the P74 linesexcludingHβ.InFig.6,noisybutapprentlysignificantcircu- observing run withboth grisms,obtaining S/Nsof 2925:1 (grism larpolarisationispresentinallBalmerlines.Basedonthedetection 600B)and1800:1(grism1200g).Thespectraarerichinmetallic ofconsistentlongitudinalmagneticfieldsinbothBalmerlinesand lines,showBalmerlinesinabsorption,andverystrongCaHand metallines,wetentativelyconcludethatBFOrihostsamagnetic fieldwithalongitudinal intensityoforder 150G.However, asin thecaseofHD101412, furtherobservationsareclearlynecessar- ilyinordertounambiguouslyestablishthepresenceofamagnetic 2 AsexplainedattheendofSect.8andinFig.8ofBagnuloetal.(2006),in field. theirsurveyofclustermagneticApstarstheyencounterednumerouscases where a simple inspection of the V/I profiles did not show any obvious polarization signal, but in which the magnetic field was detected by the linearcorrelationbetweenV/Iandthequantity1/I ×dI/dλ.Thereliability of this result is supported by the histograms of Fig. 7 of Bagnulo et al. 3 Thedetection ofthis strongabsorption is confirmedfromexamination (2006),showingthatvirtuallynodetectionsarefoundin”normal”Astars, ofhigh-resolution spectra inourpossession. Thedetection ofH λ5876 wherewedonotexpect tofindanymagnetic field.Magnetic fieldswere is remarkable given the assumed temperature of this star, and it will be detectedonlyinApstars,i.e.,wheretheyareexpectedtobefound. exploredindetailinafuturepaper. A searchforstrong,ordered magneticfieldsin HerbigAe/Bestars 9 x 10−3 x 10−3 x 10−3 x 10−3 5 5 5 5 V/I 0 V/I 0 V/I 0 V/I 0 −5 −5 −5 −5 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) x 106 x 106 x 106 x 106 4 6 6 5 3 4 4 4 U) U) U) U) D2 D D D3 A A A A I ( I (2 I (2 I ( 1 2 0 0 0 1 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Figure6.StokesIandVprofilesinthespectrumofBFOri. HD36112 current,standardisedreductionandanalysispresentedinthispaper (according to the methodology reported by Bagnulo et al. 2006), which we believe to be more accurate and robust and to provide HD 36112 (PDS 183, MWC 758) is a well-studied HAeBe morerealisticerrorbars,doesnotresultinafielddetectionforthis star,selectedfromthecatalogueofThe´ etal.(1994).Vieiraetal. (2003) reportHαandO[]forbiddenlineemission.Thisstarhas star(longitudinalfieldsof166±70GinBalmerlinesand−11±91G in metal lines). Nor is a magnetic field detected in HD 72106B beenstudiedindetailbyBeskrovnayaetal.(1999),whodiscussthe (detection flag“nnnn”, hBi = 76±67 G fromthefull spectrum spectroscopic,photometricandpolarimetricproperties.Theypoint z analysis).ThedifferenceintheresultsforHD72106Acanbeex- outinparticularthestrongnear-IRexcessduetowarmcircumstel- plainedasanaturalresultofthesomewhatlargererrorbarsderived lardust,andpeculiar,rapidvariabilityofcircumstellarlineprofiles, here,coupledwiththeexpectedstatisticalfluctuationsinmeasure- whichtheyspeculatemaybeconnectedwithcircumstellarjet-like mentsobtainedfromindependentreductionsofthedata.However, inhomogeneities. TheHipparcosparallaxof4.89±1.16masyieldsadistance themagneticfieldofHD72106AwasdetectedrepeatedlybyWade of205+63 pc.IncombinationwiththeeffectivetemperatureT = etal.(2005)andFolsometal.(2006)usingtheESPaDOnShigh- 7700±−24000K(Beskrovnayaetal.1999)andthemodelevolutioneffary resolutionspectropolarimeter, withclearStokesV signaturesand tracksofPalla&Stahler(1993),thisyieldsamassof1.8±0.2M , longitudinalfielderrorbarsofabout60G:HD72106Aistherefore ⊙ aconfirmedmagneticobject. andanageof5-10Myr(consistentwiththeresultsofMannings& Sargent(2000),whofind6Myr).Theprojectedrotationalvelocity HD 72106B (PDS031S - thefainter southerncomponent of ofHD36112is60±6km/s(Beskrovnayaetal.1999). this0.8′′doublestar;Harkopfetal.1996;ESA1997)wasselected HD 36112 was observed during P74. Eight exposures were from the investigation of HAeBe group members and candidate obtained,foranetS/Nof3725:1.Thespectrum,illustratedinFig. starsbyVieiraetal.(2003). According tothoseauthors, thisstar 7,isrichinmetallinesandshowsclearcoreemissionatHβ,and exhibitsweakHαemissionandsignificantIRexcess,andmaybe emission at He λ5876. The Ca K and Mg λ4481 lines are anevolvedHAeBeobject,possiblynearingtheendofitsPMSevo- prominent.Themagneticdiagnosisofthisstar(“nddn”)yieldsno lution.Bothstarsexhibitlargepropermotionsandthereisnode- detectioninBalmerlines,butmarginaldetectionsaccordingtoone tectablerelativemotionofthepair(Harkopfetal.1996).According ofthecriteriaofBagnuloetal.(2006)inthemetalliclines(−166± toFolsometal.(2006),theradialvelocitiesareidenticalwithinthe 56G;3.0σ)andthefullspectrum(−149±41G;3.6σ).Although measurementsuncertainties.Thissuggeststhattheyarephysically thisdoesnotconstitutestrongevidenceforamagneticfield,given associated,whichimpliesthattheyarelikelyco-eval.Weobserved theactivitydiscussedbyBeskrovnayaetal.(1999),thisstarshould bothstarsindividually,underconditionsofexcellentseeing,using bereobserved. aslitsizeof0.5′′. Although no temperatures are available in the literature for the individual stars, based on the B−V colours of Fabricius & 4.2.3 Othertargetsofnote Marakov(2000)bothcomponentsappeartotheA-typestars.Our twoFORS1spectraconfirmthis,withwell-developedBalmerlines and similar metallic-line spectra. The Balmer lines have similar HD72106A depth in spectra of both stars, but they are considerably broader in the B component. The Mg λ4481 lines are well-developed Wade et al. (2005) reported the detection of a weak lon- (strongerinthespectrumoftheAcomponent),asistheCaKline gitudinal magnetic field in HD 72106A using both FORS1 and (substantiallystrongerintheBcomponent).Overall,theAcompo- ESPaDOnS. The FORS1 detection, which corresponded to 5.2σ nent’sspectrumissimilartothatofHD94660-themetallicspec- (Balmerlines) and5.8σ (fullspectrum) detections, wasbased on trum is weaker, and the Balmer lines marginally broader. On the anearlierreductionandanalysisofthesedata(Drouin2005).The otherhand,theBcomponent’sspectrumissuggestiveofacooler 10 G.A. Wade,S. Bagnulo,D. Drouin,J.D.Landstreet, D.Monin x 10−3 x 10−3 x 10−3 x 10−3 3 3 3 3 2 2 2 2 1 1 1 1 V/I 0 V/I 0 V/I 0 V/I 0 −1 −1 −1 −1 −2 −2 −2 −2 −3 −3 −3 −3 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) x 106 x 106 x 106 x 106 6 6 7 8 5 6 7 4 U) U) U) U) D D4 D5 D6 A A A A I (2 I ( I ( I ( 3 4 5 0 2 3 4 3850 3900 3950 4000 4060 4080 4100 4120 4140 4300 4320 4340 4360 4380 4800 4850 4900 Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Wavelength (angstrom) Figure7.StokesIandVprofilesinthespectrumofHD36112. HD144432,HD31648andHD144668 1.1 1 HD 144432, HD 31648 and HD 144668 are 3 HAeBe stars 0.9 that have been discussed by Hubrig et al. (2004, 2006a). These 0.8 authorsalsousedFORS1tosearchformagneticfieldsinBalmer malised flux00..67 l2tie2ncetGiso,(nr4ei.n0pσoHr)tDirneg1s4pm4ec6at6rigv8ie.nlOyal)fdipneatHreticDctuio1lan4rs4i4(n31t2e1r9aens±tdi3Hs8tDhGe3r1(e36p.41o8σr,t)abnayndHdnuo8b7drei±g- Nor0.5 etal.(2006b)ofstrongStokesVsignaturesinsomespectrallinesof 0.4 thesestars,whichtheyinterprettobedueto“circumstellar”mag- neticfields. 0.3 WehaveobservedHD144432,HD31468andHD144668as 0.2 partofthisprogramme.Noneofthesestarsyieldsanysignificant 0.1 4260 4280 4300 4320 4340 4360 4380 4400 4420 magneticfielddetectionintheirmetallicorBalmerlines,withun- Wavelength (angstrom) certainties comparable to those of Hubrig et al. (2004). We have alsocarefully examined our reduced spectra, and wefindno evi- Figure 8. Observed (symbols) and computed (lines) Hγ profiles of HD dence of strong Stokes V signatures in our observations of these 72106A (brighter northern component - Top) and HD 72106B (fainter stars. southerncomponent-Bottom). HD104237 star.WehaveemployedtheFORS1spectraofthetwocomponents, withtheirrobustcontinuaandBalmerlineprofiles,incombination withATLAS9Balmerlineprofiles(convolvedtothesameresolu- HD104237isacoolHerbigAestarwithasharpmetallic-line tionastheFORS1spectraassumingagaussianinstrumental pro- spectrum in which Donati et al. (1997) claimed the marginal de- file),toconstrainthetemperaturesofthetwocomponents.Wede- tectionofamagneticfieldusinghigh-resolutionspectropolarime- rivefromthecomparisonofobservedandtheoreticalprofilesthat tryandLeast-SquaresDeconvolution.Thisresultwassubsequently HD 72106A has T = 11000±1000 K, 3.5 6 logg 6 4.5 and confirmedbyDonati(2000),whodetectedStokesVsignaturesand eff HD72106BhasT =8000±500K,4.06logg64.5.Thebest- derived a longitudinal field of about 50 G (Donati, priv. comm.) eff fit results (for T = 11000 K, logg = 4.0 and T = 8000 K, using new data and similar techniques. Acke & Waelkens (2004) eff eff logg=4.5)areshowninFig.8. found approximately solar photospheric abundances based on an Vieira et al. (2003) associated HD 72106 with the Vela and equivalentwidthabundancesanalysis. GumNebulaSFRs.ThesystemhasacombinedHipparcosparal- HD 104237 was observed during both P72 and P74. Three lax of 3.47±1.43 mas, yielding a distance of 288+202 pc, which observations (corresponding to12, 10and 8 exposures) were ob- −84 isconsistentwiththatoftheSFR.Wadeetal.(2005)estimatedits tained,fornetS/Nsof2375:1,2800:1and2400:1. Thespectrum, position on the HR diagram. This position, interpreted using the illustrated in Fig. 10, exhibits significant emission at Hβ, which modelevolutionarytracksofPalla&Stahler(1993),indicatesthat showsastrongandvariableemissioncore,aswellasemissionin thecomponents of HD72106 havemassesof 1.75±0.25 M (B the multiplet 42 Fe lines. The magnetic diagnoses of this star ⊙ component)and2.4±0.4M (Acomponent),andaresituatedclose yieldnodetectionineitherBalmerormetallinesaccordingtoany ⊙ totheZAMS.Althoughuncertain,theseH-Rdiagrampositionsare ofthecriteriaofBagnuloetal.(2006),with besterrorbarsof64G consistentwithaco-evalsystem. (Balmerlines)and35G(metallines).Theuncertaintiesobtained