ebook img

A scattering model of 1D quantum wire regular polygons PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A scattering model of 1D quantum wire regular polygons

Journal Logo 00(2015)1–8 5 A scattering model of 1D quantum wire regular polygons 1 0 2 n Cristian Estarellasa, Llorenc¸ Serraa,b, ∗ a J aInstitutdeF´ısicaInterdisciplina`riaideSistemesComplexosIFISC(CSIC-UIB),E-07122PalmadeMallorca,Spain 0 bDepartamentdeF´ısica,UniversitatdelesIllesBalears,E-07122PalmadeMallorca,Spain 3 ] l l a h Abstract - s Wecalculatethequantumstatesofregularpolygonsmadeof1Dquantumwirestreatingeachpolygonvertexasascatterer. The e vertexscatteringmatrixisanalyticallyobtainedfromthemodelofacircularbendofagivenangleofa2Dnanowire.Inthesingle m modelimitthespectrumisclassifiedindoubletsofvanishingcirculation,twofoldsplitbythesmallvertexreflection,andsinglets . withcirculationdegeneracy. Simpleanalyticexpressions oftheenergyeigenvalues aregiven. Itisshown howeachpolygon is t a characterizedbyaspecificspectrum. m Keywords: quantumwires,scatteringtheory - d n 1. Introduction o c [ Nanowiresarealong-lastingtopicofinterestinnanosciencefortwomainreasons.Oneis,undoubtedly,theiruse aselectronwaveguidesindevicesandtechnologicalapplications. Theotheristhepossibilityofusingnanowiresto 1 artificiallycontrolquantumpropertiesatthenanoscale,thusimprovingourfundamentalunderstandingandprediction v capabilities. Innanowiresmadewith2DelectrongasesofsemiconductorslikeGaAsquantumbehaviormanifestsat 8 0 amesoscopicscale,beyondtheatomisticdescription,anditcanbedescribedwitheffectivemassmodelsandsmooth 7 potentials[1,2]. 7 The quantum states on nanowire bends attracted much interest some years ago [3, 4, 5, 6, 7, 8, 9, 10]. It was 0 shownthatboundstatesformonthebend,andthetransmissionandreflectionpropertiesasafunctionoftheenergy . 1 andwidth ofthewire werethoroughlyinvestigated. Inthesingle-modelimitofa 2D wirea bendcan bedescribed 0 withaneffective1Dmodelcontaininganenergy-dependentpotential[6]. Inthecaseofacircularbend,thesituation 5 becomessimplerandanalyticalapproximationsusinga squarewell whosedepthand lengthare fixedbythe radius 1 : andangleofthebendweresuggested[5]. v Motivatedbythe abovementionedinterestonnanowirebendswestudyin thisworkpolygonalstructuresmade i X of 1D quantum wires (Fig. 1). We focus on the single-mode limit and describe each vertex as a scatterer. The r vertexscatteringmatrixistakenfromthemodelofcircularbendsin2Dnanowires. Wefindthatthespectrumfully a characterizesthe polygonstructure. Two kindsof states are present: a) doublets, with a small energysplitting due toreflectionandwithavanishingcirculationalongtheperimeterofthepolygon;andb)singlets,withanunderlying degeneracybywhichthecirculationcantakearbitraryvalueswithinagivenrange.Theenergysplittingofthedoublets depends on the reflection probability of the vertex, while the number of singlets between consecutive doublets (in Correspondingauthor. ∗ Emailaddress:[email protected](Llorenc¸Serra) 1 C.EstarellasandL.Serra/ 00(2015)1–8 2 a) 3 ℓ ... 1 x 2 b) i+1 a(i) r a(li) b(ri) i−1 b(i) i l Figure1. a)Sketchoftheregularpolygonsmadeof1Dnanowires.Thevertexlabelingandthedefinitionofalongitudinalcoordinatexisindicated onlyforthetriangle.b)Scatteringamplitudesasdefinedforagivenvertexi. energy)canbeusedtoinferthenumberofvertices. Theenergyscale,settingtheseparationbetweenstates,isfixed bythelengthofthenanowireformingthesidesofthepolygon. We finally remark that, although our approachis on physicalmodeling of nanostructures, there is a connection withthemoremathematicallyorientedstudyofquantumgraphs[11].Indeed,fromthisperspectiveourresultscanbe viewedasaparticularapplicationtothecaseofregularpolygonsofthemoregeneralquestionofreconstructingthe graphtopologyfromtheknowledgeofthespectrum. 2. Theoreticalmodelandmethod We consider a regular polygonwith N vertices, made of 1D quantum wires of length ℓ (Fig. 1). The distance v along the perimeter is measured by variable x, with origin arbitrarily taken on the first vertex. The wave function betweenverticesiandi+1isasuperpositionofleft-andright-wardpropagatingplanewaves ψ(x) = a(ri)e−ip(x−xi)+b(ri)eip(x−xi) = a(li+1)eip(x−xi+1)+b(li+1)e−ip(x−xi+1) , (1) where the first and secondequalities take the referencepointon verticesi and i+1, respectively. The a(i) and b(i) l/r l/r coefficientsarethecharacteristicinputandoutputscatteringamplitudesdefinedinFig.1b. Weareassumingasingle propagatingmodeofwavenumberp(seeAppendix A)andthesetofvertexpositionsis x,i=1,...,N . i v { } Thei-thvertexscatteringequationrelatesoutputandinputamplitudesas b(i) r t a(i) l = l , (2)  b(ri)  t r ! a(ri)  where t and r are the usual transmission and reflection complex coefficients. The scattering matrix in Eq. (2) is summarizing the physical effect of the vertex by means of two complex quantities, t and r. As they are required inputsinourmodel,wewilltakethesevaluesfromtheknownscatteringmatricesofcircularbendsin2Dnanowires. Actually,asdiscussedinAppendix A,inthesingle-modelimitthereisananalyticaldescriptionofthescatteringby acircularbendintermsofaneffectivesquarewelldependingontheradiusandangleofthebend[5]. Thereisarelationbetweeninputandoutputamplitudesofsuccessivevertices, b(i) = a(i 1)e ipℓ , (3) l r− − b(i) = a(i+1)e ipℓ . (4) r l − Thephasee ipℓ inEqs.(3)and(4)appearsduetotheassumptionoftwodifferentreferencepointswhenconsidering − thescatteringprocessesfromtwoconsecutivevertices. 2 C.EstarellasandL.Serra/ 00(2015)1–8 3 (cid:0)(cid:3)(cid:4)(cid:5) (cid:15) (cid:0)(cid:3)(cid:4)(cid:16) (cid:2) (cid:14) (cid:1) (cid:0)(cid:3)(cid:4)(cid:12) (cid:0)(cid:3)(cid:4)(cid:17) (cid:2) (cid:1) (cid:12)(cid:13)(cid:1)(cid:1) (cid:12)(cid:13)(cid:1)(cid:12) (cid:12)(cid:13)(cid:2)(cid:1) (cid:12)(cid:13)(cid:2)(cid:12) (cid:12)(cid:13)(cid:1)(cid:12) (cid:12)(cid:13)(cid:2)(cid:1) (cid:12)(cid:13)(cid:2)(cid:12) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) Figure2. Energydependenceofthe measureinarbitraryunits(black)andthecirculation inunitsof~p/m(gray-red). Theunitofenergyis ~2/md2. Thewavenumber pandtheFwireparameterdaredefinedinSec.2. Asindicated,eCachpanelcorrespondstoapolygonwithadifferent numberofverticesNvbutthesamearmlengthℓ =30d. Thefigureshowsthepresenceofdoubletswithvanishingcirculationandsingletswith maximalpositivecirculation 0. Noticethatattheenergiesofthesingletsthecirculationcantakevaluesfrom 0 to+ 0. Otherparameters: R=1.3d. C −C C Wedefinethecirculation ~p a(i)2 b(i)2 N ℓ, (5) C≡ m (cid:18)(cid:12) l (cid:12) −(cid:12) l (cid:12) (cid:19) v (cid:12) (cid:12) (cid:12) (cid:12) independentonthechoiceofvertexiduetofluxconse(cid:12)rva(cid:12)tion.(cid:12)Th(cid:12)ecirculationisalsothesameifonechoosestheright coefficients(a(i) and b(i)) instead of the leftonesin Eq. (5). Physically, the circulationis measuringthe probability r r currentflowingalongthepolygoninaparticularstate,characterizedbyasetofaandbcoefficientsandawavenumber p(correspondingtoanenergyE). InAppendix Bwedefineanenergy-dependentmeasure (E),suchthatitvanishesfortheeigenenergiesofthe F polygon. Inpractice,wescannumericallythevaluesof (E)inordertodeterminetheeigenenergieswithinagiven F energyinterval. 3. Results Figure2 showstheenergydependenceof and forpolygonalstructuresfrom3 to 6 verticesfora represen- F C tative set of parameters. As mentionedabove, the energiesfor which vanishes are the physicaleigenenergiesof the polygon. We considered a representative energy interval above thFe threshold ε = ~2π2/(2md2). The energy 1 ε correspondsto the first transverse mode of the 2D nanowire of width d from which our 1D model derives (see 1 Appendix A). From Fig. 2 we notice that the polygonspectra are characterized by a sequence of doublets, with small energy splittingsandwithvanishingcirculation . Inadditiontothedoublets,thereareavaryingnumberofsingle-energy modes(singlets) with finite lying in beCtween doublets. For N = 3, for instance, doublets around5.02 and 5.13 v C withtwointermediatesingletsareseenintheupperleftpanel. Remarkably,doubletsatthesameenergiesarepresent in polygons with odd and even number of vertices. Polygons with an even number of vertices, however, possess additionaldoubletsatintermediateenergies. Singlets in Fig. 2 are characterized by having N ~p/m . Notice, however, that different values of v 0 C ≈ ≡ C thecirculationarepossibleforeachsingletenergy.Indeed,withthealgorithmofAppendix Bwefindthatapositive circulation isobtainedifrequiringa(i) =1(foranarbitraryi)andnegativecirculation ifrequiringa(i) =1.This C0 l −C0 r indicatesthatforeachsingletthecirculationcanactuallytakeanyvaluewithintherange < < byadequately 0 0 −C C C superposingthesolutionsforpositiveandnegativecirculations. Wehaveexplicitlycheckedthispossibilityfromthe 3 C.EstarellasandL.Serra/ 00(2015)1–8 4 Table1.Differenttypesofmodesinvanishing-circulationdoublets.Thepairsformingdoubletsare(I,II)and(III,IV). type left-right successivevertices equation I a =a a(i) =a(i+1) t+r=e ipℓ l r − II a = a a(i) =a(i+1) t r=e ipℓ l r − − − III a =a a(i) = a(i+1) t+r= e ipℓ l r − − − IV a = a a(i) = a(i+1) t r= e ipℓ l r − − − − − numericalsolutions. Thisbehaviormanifeststheconnectionbetweenthe symmetrybreakingandthe -degeneracy C ofthesinglets. A qualitative difference is seen when comparingleft and right panels of Fig. 2. Polygonswith an odd number of verticeshave N 1 singletsin between vanishing-circulationdoublets, while polygonswith an evennumberof v − verticesonlyhaveN /2 1. Thisexplicitlyshowsthatbyknowingthespectrumonemaycharacterizethepolygonal v − structure. Forinstance,aspectrumconsistingofasequenceofmodedoubletswiththreeintermediatesingletswould correspondtoanoctagon. Forthespectrawithanevennumberofintermediatesingletsaconfusionmightarisebetweenthepolygonswith N and2N vertices. Forinstance, boththetriangleandthehexagoninFig. 2havetwo intermediatesinglets. Still, v v onemay differentiatethe two situationswith the discussion on doubletsof nextsubsection. In essence, forodd-N v polygons all doublets are similar in that each polygon side contains an even number of half wavelengths. On the contrary,foreven-N polygonsconsecutivedoubletsalternatefromaneventoanoddnumberofhalfwavelengths.As v shownbelow,thisdifferencecanbeseencountingthenumberofdensitymaximaonasideofthepolygon. 3.1. Doublets Thestates with vanishingcirculationare characterizedby having a = b on eachside ofthe polygon. Besides | | | | vanishingcirculation,doubletshaveadensitythatremainsinvariantbyatranslationfromonepolygonsidetothenext one(Figs.3and4). Thishappensbecausethescatteringamplitudesofsuccessiveverticesfulfilleithera(i) =a(i+1) or a(i) = a(i+1). Atthesametime, foragivenvertexthecoefficientsalsofulfilla = a . Therefore,thesevanishing- l r − ± circulationstatescanbeclassifiedinfourtypesassummarizedinTab.1. Table1alsogivesthesecularequationdeterminingthewavenumber pandtheenergyoftheeigenmodeforeach typeofmode. Notice thatsolutionsof typesI andIIIare associatedto stateswith maximaldensityoneachvertex, while types II and IV have minimal density on the vertex, cf. Figs. 3 and 4. The split pair forming a doublet are thereforecomposedbysolutionsoftypes(I,II)and(III,IV).ItisalsoworthstressingthatsolutionsoftypeIIIandIV arenotallowedinpolygonswithanoddnumberofsides. Thereasonismosteasilyunderstoodassumingr 0and t 1. Inthiscase, thesecularequationfortypesIIIandIVsimplifiesto eipl = 1; thatisℓ = (2n+1)λ/2≈andan ≈ − odd numberof half wavelengthsshould fit in a polygonside. For odd valuesof N this is not compatiblewith the v additionalconditionthatthefullperimetershouldcontainandintegernumbern ofwavelengths,N ℓ=nλ. ′ v ′ SimpleanalyticalapproximationsforthedoubletsplittingscanbeobtainedfromthesecularequationsinTab.1 assumingt 1andr r eiφ. Thisleadstotheconditions(n=1,2,3...) 0 ≈ ≈ pℓ=2nπ r sinφ, (I,II), pℓ=(2n+∓1)0π r sinφ, (III,IV). (6) 0 ∓ For both kinds of pairs the splitting in wave numbers is ∆p = 2r sinφ/ℓ, with an associated energy splitting 0 ∆ = (~2/m)p∆p. Equation (6) clearly shows that in (I,II) doublets, the solution of type I decreases its energydue toreflectionwhilethatoftypeIIincreases,andanalogouslyfor(III,IV)doublets. WerecallthattypeIandIIIsolu- tionsarethosewithamaximaldensityoneachvertex. Finally,we noticethatastheenergyincreasesthereflection coefficientisreduced,andsothedoubletsplittingisalsoreduced,ashintedalsoinFig.2. Summarizing,theenergiesofthezero-circulationdoubletsareapproximately ~2π2n2 n=1,2,3,...(evenN ), E =ε + ∆, v (7) n± 1 2mℓ2 ± ( n=2,4,6,...(oddNv). 4 C.EstarellasandL.Serra/ 00(2015)1–8 5 Physically, our result of Eq. (7) says that the arm length ℓ determines the separation between successive doublets, whilethereflectionpropertiesofthevertexdeterminethesplitting∆ofthepairformingadoublet. 3.2. Singlets Themostremarkablefeatureofsingletsisthatthedensityisnotequivalentondifferentsidesofthepolygon. As mentionedabove,foreachsingletdifferentsolutionswithcirculationrangingfrom to+ ,where N ~p/m, 0 0 0 v −C C C ≈ arepossible.TheintermediatepanelsofFigs.3(energiesof5.049and5.086)andinFig4(5.042and5.097)showthe densitiescorrespondingtosingletsforthetriangleandsquare.Continuumanddashedlinesareforstateswithmaximal andvanishingcirculation,respectively. We notice thatforstates with nonvanishing , the densityfor positiveand C negativecirculationscoincide. For nonvanishingcirculation the density doesnotvanish at any point, but oscillates aroundafinitemeanvalue.Inallsinglets,differentbehaviorsareseenonthesidesofthepolygon. Thesingletenergiesandtheirunderlying -degeneracycanbeeasilyunderstoodinthelimitofvanishingreflec- C tion. Indeed,whenr 0andt 1thesolutionstoEqs.(2)and(3)decoupleforpositiveandnegativecirculations. Theinputcoefficients≈forvertex≈kreadinthiscase a(k) = αeipℓ(k 1) , ( <0), r − C (8) a(k) = βe ipℓ(k 1) , ( >0), l − − C whereαandβarearbitraryindependentconstantsthatcanbefixedbynormalization. Amaximalcirculationstateis obtainedwheneitherαorβvanish.Arbitrarysuperpositionscanbeformedforα,0andβ,0,includingavanishing circulationstateforα=β. ThecyclicconditioninEq.(8),eipℓNv =1,leadstotheenergies ~2π2(2n)2 E =ε + , (n=1,2,3,...). (9) n 1 2mℓ2N2 v Theseenergiescoincidewithadoubletcondition[Eq.(7)for∆=0]eachtimenisanintegernumberoftimesN . It v canbeeasilyverifiedthatEq.(9)impliesthatforodd-N polygonsthereareN 1singletsbetweentwosuccessive v v − doubletsandthatforeven-N polygonsthereareN /2 1,inagreementwiththeresultsofFig.2 v v − 4. Conclusions Amodelofclosedpolygonsmadeof1Dquantumwireshasbeenpresentedwhereeachvertexisdescribedasa scatterer. The vertex transmission and reflection coefficients have been described with the model of circular bends in 2D wires. The polygon spectra are characterized by a sequence of doublets, with a small energy splitting, and a typicalnumberof singlets lyingin betweendoublets. Odd-N polygonshave N 1 singlets while even N have v v v − N /2 1singletsinbetweentwodoublets. Thedoubletsplittingsarecausedbythereflectiononvertices. Doublets v − have a vanishing circulation and singlets can have circulations ranging from a negative to positive characteristic values.Approximateanalyticalexpressionsforthesingletanddoubletenergieshavebeengivenandthecorresponding densitiesdiscussed. Ourresultsexplicitlyshowhowthepolygoncharacteristicscanbeinferredfromthespectrum. Acknowledgement C.E. gratefully acknowledges a SURF@IFISC fellowship. This work was funded by MINECO-Spain (grant FIS2011-23526),CAIB-Spain(Conselleriad’Educacio´,CulturaiUniversitats)andFEDER. Appendix A. Scatteringbya2Dcircularbend We considera 2D nanowirewith a circularbend of angle2θ and radiusR, as sketchedin Fig. A.5. Notice that θ,definedashalfthebendangle,isrelatedinourmodeltothenumberofpolygonverticesbyθ = π/N . Thelateral v extensionofthenanowireisd, settingtheenergyofthefirsttransversemodetoε = ~2π2/(2md2). FollowingRef. 1 [5],itispossibletoderiveananalyticalexpressionforthereflectionandtransmissioncoefficientsofthecircularbend inthesingle-modelimit. 5 C.EstarellasandL.Serra/ 00(2015)1–8 6 5.019 5.021 (cid:18)(cid:19)(cid:18)(cid:21) (cid:18)(cid:19)(cid:18)(cid:20) (cid:18)(cid:19)(cid:18)(cid:18) 5.049 5.086 (cid:18)(cid:19)(cid:18)(cid:21) (cid:25)(cid:26)(cid:27)(cid:28) (cid:23)(cid:24) (cid:22) (cid:18)(cid:19)(cid:18)(cid:18) 5.126 5.132 (cid:18)(cid:19)(cid:18)(cid:21) (cid:18)(cid:19)(cid:18)(cid:20) (cid:18)(cid:19)(cid:18)(cid:18) (cid:18) (cid:30)(cid:18) (cid:31)(cid:18) (cid:18)(cid:18) (cid:30)(cid:18) (cid:31)(cid:18) (cid:18) (cid:29) (cid:29) Figure3. DensitiesforthetrianglemodesofFig.2. Alldistancesaremeasuredinunitsofd(definedinAppendix A).Upperandlowerpanels areforvanishing-circulationdoubletsoftype(I,II).Intermediatepanelsaresingletswithmaximal(solid)andvanishing(dashed)circulation. The energyofthemode(asinFig.2)isindicatedineachpanel.Thepositionofverticesisgivenbytheverticallines.RestoftheparametersasinFig. 2. Defininga = R¯θ,whereR¯ = √R(R+d)isanaverageradius,the2Dscatteringprobleminthesinglemodelimit isapproximatedbya1Dquantumwellofwidth2aanddepthV = ~2/(8mR¯2). Theanalyticalexpressionsofthet 0 andrcomplexcoefficientsaregivenintermsoftwowavenumbers(E−>ε ) 1 2m p = (E ε ), (A.1) r~2 − 1 2m q = (E ε V ). (A.2) r~2 − 1− 0 Specifically,theyread 4pq t = , (A.3) (p+q)2e2i(p q)a (p q)2e2i(p+q)a − − − 2i(p q)(p+q)sin(2qa) r = − . (A.4) −(p+q)2e2i(p q)a (p q)2e2i(p+q)a − − − Noticethat,asexpected,forlargeenergiesitis p qandEqs.(A.3)and(A.4)thenyieldt 1andr 0. Wealso stress that, due to symmetry, the transmission and≈reflection coefficients for left and right i≈ncidences≈are identical, t =t,r =r,leadingtothescatteringmatrixofEq.(2). ′ ′ Appendix B. Algorithm Equations(2),(3)and(4)aresetupasahomogoneouslinearsystem a M =0, (B.1) b ! 6 C.EstarellasandL.Serra/ 00(2015)1–8 7 0.02 5.016 5.022 0.01 0.00 5.042 5.097 y nsit 0.01 de 0.00 5.066 5.071 0.01 0.00 0 30 60 90 1200 30 60 90 120 x x Figure4.SameasFig.3forthesquaremodes.Upperpanelsarethefirstpair[type(I,II)],whilelowerpanelsarethesecondpair[type(III,IV)]in theresultsofFig.2forthesquare.Thetwocentralpanelsaresingletswithmaximal(solid)andvanishing(dashed)circulation. d 2θ y R x R+d FigureA.5.Circularbendina2Dnanowire. wherewedefinethevector aT a(1)...a(Nv)a(1)...a(Nv) , (B.2) ≡ l l r r (cid:16) (cid:17) withananalogousdefinitionforb. NontrivialsolutionsofEq.(B.1)occuronlyforenergiessuchthatthedeterminant ofMvanishes,det(M)=0. Inpractice,wearbitrarilypickoneofthecomponentsofa,saya(β),andfixitto1,transformingEq.(B.1)intothe α inhomogeneousproblem a M =R, (B.3) ′ b ! where RT (0...010...0...0), (B.4) ≡ withthevalue1onthepositionofthechosencomponenta(β). MatricesMandM areidenticalexceptfortherowof α ′ thechosencomponent,whichisdiagonalforM. Equation(B.3)canbeeasilysolvedbystandardnumericalroutines. ′ Thesolutionisthenusedtoevaluatethefollowingnorm a =norm M . (B.5) F ( b !) Obviously,when = 0thesolutionobtainedfromEq.(B.3)isactuallyasolutionoftheoriginalproblem(B.1). F Thevalidityofthemethodisguaranteedbythelinearity,forwhenasolutionof(B.1)existsitcanalwaysbescaled 7 C.EstarellasandL.Serra/ 00(2015)1–8 8 suchthat a chosen componentis equalto 1, providedonlythat it doesnotvanish. A simple energyscan of will F signalthepositionoftheeigenenergiesasthenodesofthefunction.Wehavecheckedthat,asexpected,thenodesare independentofthechosencomponenta(β)andthattheynumericallycoincidewiththenodesofdet(M)=0. α References [1] S.Datta,Electronictransportinmesoscopicsystems,CambridgeUniversityPress,1997. [2] D.K.Ferry,G.S.M.,B.Jonathan,Transportinnanostructures,CambridgeUniversityPress,2009. [3] C.S.Lent,Transmissionthroughabendinanelectronwaveguide,Appl.Phys.Lett.56(1990)2554. [4] F.Sols,M.Macucci,Circularbendsinelectronwaveguides,Phys.Rev.B41(1990)11887–11891. [5] D.W.L.Sprung,H.Wu,J.Martorell,Understandingquantumwireswithcircularbends,J.Appl.Phys.71(1992)515–517. [6] H.Wu,D.W.L.Sprung,J.Martorell,Effectiveone-dimensionalsquarewellfortwo-dimensionalquantumwires,Phys.Rev.B45(1992) 11960–11967. [7] H.Wu,D.W.L.Sprung,J.Martorell,Electronicpropertiesofaquantumwirewitharbitrarybendingangle,J.Appl.Phys.72(1992)151–154. [8] H.Wu,D.W.L.Sprung,Theoreticalstudyofmultiple-bendquantumwires,Phys.Rev.B47(1993)1500–1505. [9] K.Vacek,A.Okiji,H.Kasai,Multichannelballisticmagnetotransportthroughquantumwireswithdoublecircularbends,Phys.Rev.B47 (1993)3695–3705. [10] H.Xu,Ballistictransportinquantumchannelsmodulatedwithdouble-bendstructures,Phys.Rev.B47(1993)9537–9544. [11] G.Berkolaiko,P.Kuchment,Introductiontoquantumgraphs,AmericanMathematicalSociety,2012. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.