ebook img

A rotating disk around the very young massive star AFGL 490 PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A rotating disk around the very young massive star AFGL 490

BASEDONOBSERVATIONSCARRIEDOUTWITHTHEIRAMPLATEAUDEBUREINTERFEROMETER.IRAMISSUPPORTEDBYINSU/CNRS(FRANCE), MPG(GERMANY)ANDIGN(SPAIN). PreprinttypesetusingLATEXstyleemulateapjv.6/22/04 AROTATINGDISKAROUNDTHEVERYYOUNGMASSIVESTARAFGL490 K.SCHREYER AstrophysikalischesInstitutundUniversitätssternwarte,Schillergäßchen2–3,D–07745Jena,Germany D.SEMENOV,TH. HENNING Max–Planck–InstitutfürAstronomie,Königstuhl17,D–69117Heidelberg,Germany AND J.FORBRICH 6 Max–Planck–InstitutfürRadioastronomieBonn,AufdemHügel69,D-53121Bonn,Germany 0 (Accepted28.12.05atApJL) 0 BasedonobservationscarriedoutwiththeIRAMPlateaudeBureInterferometer.IRAMissupportedbyINSU/CNRS(France),MPG(Germany)andIGN(Spain). 2 ABSTRACT n Weobservedtheembedded,young8–10M starAFGL490atsubarcsecondresolutionwiththePlateaude a ⊙ BureInterferometerintheC17O(2–1)transitionandfoundconvincingevidencethatAFGL490issurrounded J by a rotating disk. Using two-dimensionalmodeling of the physical and chemical disk structure coupled to 2 lineradiativetransfer,weconstrainitsbasicparameters. Weobtainarelativelyhighdiskmassof1M anda 1 ⊙ radiusof∼1500AU.Aplausibleexplanationfortheapparentasymmetryofthediskmorphologyisgiven. 1 Subjectheadings:circumstellarmatter—line:profiles—radiativetransfer—planetarysystems: protoplane- v tarydisks—stars: formation—stars: individual:AFGL490 0 7 2 1. INTRODUCTION diativetransfermodeling. 1 The study of very young massive stars is of partic- 0 ular importance for star formation since it is not yet 2. OBSERVATIONSWITHTHEPLATEAUDEBURE 6 firmly established by what process, disk accretion or stel- INTERFEROMETER 0 larmerging,suchstarsform(e.g.,Yorke&Sonnhalter2002; WeobservedAFGL490inC17O(2–1)at224.714389GHz / h Dobbs,Bonnell,&Clark 2005). Previous authors have usingthePdBIinitsBconfigurationinDecember2003(base- p demonstratedthatmassivestarscanbeformedviaaccretion, lines61.5m–330.5m).Thephasereferencecenterofourmea- - leadingtotheformationoflarge(.10000AU)andmassive surementswasα =03h27m38s.55,δ =+58◦46′59′′.8, ro (.1 M⊙) circumstellar disks. However, most of these stars andthesourceve2l0o0c0itywassettoVlsr=-201030.4kms- 1. Forthe t are located more than 2 kpc away, which makesit challeng- line measurements, we used one correlator unit with a total s a ingtoconfirmunambiguouslythepresenceofaccretiondisks bandwidthof 20MHz and512channels(velocityresolution : aroundsingleobjectswithradiointerferometryduetothelack of0.052kms- 1).Twoothercorrelatorunitswithabandwidth v ofspatialresolution. of320MHzeachwereutilizedtomeasurethecontinuum. i X We focus on AFGL 490 – one of the best-studied young The bandpass and phase calibration were performed on stars that are in a transition stage to Herbig Be stars. This the objects 3C454.3 and 2145+067. The additional calibra- r a very young star is located nearby (1±0.3 kpc, Snelletal. tions of the phase and amplitude were obtained by observ- 1984), has a mass of 8–10 M , a bolometric luminos- ing the objects 0355+508 and 0224+671 every 20 minutes. ⊙ ity of ∼ 2×103 L (B2–3 star, Panagia 1973), is still ForthefinalphasecalibrationanddatareductiontheGreno- ⊙ embedded in its parent molecular cloud (A ∼ 40 mag, bleSoftwareenvironmentGILDASwasapplied.Themapsof V Alonso-Costa&Kwan1989),anddrivesahigh-velocityout- 512×512squarepixelswith0.1′′pixelsizewereproducedby flow(Mitchelletal.1995). Interferometricmeasurementsby the Fourier transform of the calibrated visibilities using nat- e.g. Schreyeretal. (2002, hereafter Paper I) as well as IR uralweighting. The synthesized beam size is 0.89′′×0.77′′ observations of Campbell,Persson,&McGregor (1986) and (=890AU×770AUat1kpc)withapositionalangleof73◦. Bunn,Hoare,&Drew(1995)haverevealedthatthestarislo- Forreductionofthecontinuum,weexcludedthelineemission catedinsideanionized∼100AUcavityclearedupbyafast fromthedata.Finally,thecontinuumwassubtractedfromthe stellar wind and surroundedby a .500 AU disk-like struc- original data in the uv-plane, as it was detected only at the ture, which is enshrouded in a 22000 AU × 6000 AU en- sourceposition. velope. Allthesestructuresarefurtherembeddedinaneven moreextendedenvelope. 3. RESULTS InthisLetter,wepresentsubarcsecond-resolutionPdBIob- 3.1. Continuummeasurements servationsofAFGL490thatprovetheexistenceofarotating diskaroundAFGL490anddetermineitsorientation,size,and Within the 22′′ primaryPdBI beam at 1.3mm, AFGL 490 massbyusingcomprehensivephysical,chemical,andlinera- was detected point source with a total flux of 1.41 Jy (peak valueis0.68Jybeam- 1). Thecontinuumisdominatedbythe Electronicaddress:[email protected] thermaldust emission because at 1.3mm the free-freeradia- Electronicaddress:semenov,[email protected] tioncontributeslessthan5%tothetotalflux(≈69±3mJy, Electronicaddress:[email protected] seeCampbelletal.1986). 2 Schreyeretal. 3.2. C17O(2–1)linemeasurements istheH abundancerelativetotheamountofC17Omolecules 2 TheintegratedC17O(2–1)lineintensitymapoverlaidwith (H2/CO=104, 16O/17O=2500),andD=1kpcisthe distance tothesource.Themassesofthered-andblue-shiftedgasare the 1.3mm continuum is shown in Fig. 1a. The continuum isbarelyresolvedatthe5σ levelwithinthe.2000AUarea 1.0and0.6M⊙,respectively,givingatotalvalueof≈1.5M⊙ whichmatchestheestimateobtainedabove. aroundthe star, and has a beam-like circular shape. In con- trast,thelineintensitymaprevealsa∼4000AUarcofemis- sionthatiscenteredonthecontinuumpeakandhasaPAof∼ 3.2.2. Diskvelocityfield 15◦.Furthermore,theC17Oemissionabovethe50%intensity The gas velocity distribution across the red- and blue- level appears as a ≈ 700 AU × 2000 AU bar-like structure shiftedC17Oemission(solidlineinFig.1b)ispresentedinthe with the main axis shifted by 400 AU to the northeast from position-velocity(PV)diagraminFig.2. ThePVmapshows thecenter. anumberofsinglegasclumps,indicatinganinhomogeneous The red- and blue-shifted parts of the integrated C17O diskstructure.Thisdistributionisnotcausedbyopticaldepth (2–1) line intensity overlaid with an H-band speckle image effectsasdemonstratedbyradiativetransfercalculations(see (Alvarezetal. 2004) and the 1.3mm continuum is presented Sect. 3.3). To fit the PV diagram, we adopt a simple model inFig.1b.Bothlobeshavetheirmaximum700AUawayfrom of a Keplerian disk with a mass that linearly increases with the 1.3mm continuum point source, and the line connecting radius(Vogeletal.1985)andastellarmassof8±1M . We ⊙ them is shifted 260 AU to the northeast(PA of the axis per- assume a disk radius of 1600 AU based on the spatial ex- pendiculartotheconnectinglineis≈26◦). Duetothesimul- tent of the C17O emission and a disk mass between 0.5 and taneousmeasurementofbothlineandcontinuuminthesame 2M⊙. Withthismodel,wefittheinnerclumps(R<±0′′.7) bandpass,thepositionaloffsetiscertainlyreal. Remarkably, of the the PV map and obtain the best-fit inclination angle the position of the red- and blue-shifted C17O (2–1) peaks of35◦±5◦ (Fig. 2, solid curve). The fit to the most intense perfectlycoincideswiththepositionoftheCS(2–1)peaksre- clumps in the PV map at R=±0′′.7 is not as good. It gives portedinPaperI.ThePAoftheC17Oemissionissmallerthan i=25◦±5◦ and super-Keplerian gas velocities in the inner the∼45◦positionalangleofthe20000AUbar-likestructure disk. In contrastto massive disks aroundactive galactic nu- (see Paper I), but the emission structure is orthogonalto the cleithatshowamodifiedKeplerianlawwithanexponentof∼ large-scale CO outflow (Mitchelletal. 1995) and coincides - 0.35 (e.g., Kondratkoetal. 2005), the correspondingcurve withthePAobtainedfromtheinfraredpolarizedmapandthe forAFGL490(Fig.2,dottedcurve)wouldonlyfittotheouter 2cmradioemission(Campbelletal.1986;Haasetal.1992). diskpart. However,itdoesnotfittheinnerclumps. Further- NotethattheC17Oemissionpattern(Fig.1b)ischaracteristic more, the four most intense clumps in the PV map around ofoutflowsorrotatingdisk-likeconfigurations.Todistinguish - 12.6kms- 1 can be best fitted by a rotating gas ring with a betweenthesetwopossibilities,weanalyzethecorresponding radiusof700AUandsimilari=35◦±5◦(dashedline). Such position-velocitydiagrambelow. a small inclination angle is in contrast to the apparentC17O morphologyimplyinganinclinationanglelargerthan60◦for 3.2.1. Diskmass any circularly-symmetric configuration, e.g. a disk (see el- We estimate the mass of the AFGL 490 “inner disk” lipseinFig.1a).Howeverrotationcurvesforanydiskorring from the 1.3mm continuum emission, using Eq. 2 from modelwithlargerinclinationangles,i>40◦,canonlybewell Henningetal. (2000). We assume the standard gas-to-dust fittedassumingalow-masscentralstar,M⋆≤2M⊙ whichis mass ratio of 100, a mean disk temperatureof 100 K, and a definitelynotthecaseforAFGL490. Thus,weproposethat dust mass absorption coefficient κd at 1.3mm between 1.99 thereisamassive,clumpydiskaroundAFGL490withnearly and 5.86 cm2g- 1 (grains without imcy mantles, gas densities face-onorientation(i∼30◦)andKeplerianrotation. 106 and 108 cm- 3, respectively, see Ossenkopf&Henning 1994). The resulting H gas mass is between 0.8 and 3.3. Diskmodeling 2 2.3M⊙ and,thus,thesource-averagedH2 columndensityis ThePdBI C17O (2–1)spectralmapof the AFGL 490disk N(H2)(1.3mm)=1÷20·1023cm- 2. is presented in Fig. 3. We fit these spectra using the “step- ThegasmasscanbealsoderivedfromtheC17Odata. Due by-step”modelingapproach(Semenovetal.2005,fordetails to missingflux of ∼30%in the vicinityof AFGL 490, even see Semenov et al. 2006, in preparation). Briefly, we apply in the reverse map side of the red- and the blue-shifted line the2Dflared-diskmodelofDullemond&Dominik(2004)to emission, the total integrated flux value is smaller than the simulatethediskphysicalstructure,agas-grainchemicalnet- sumofindividualcontributionsfromthered-andblue-shifted workto calculatetime-dependentabundances,anda 2Dline emission.Thesidelobesofthesynthesizedbeamarenotcon- radiativetransfercodeofPavlyuchenkov&Shustov(2004)to tributingtothelowintegratedfluxesduetotheirlowintensi- synthesize the C17O spectra. We assume that the disk has ties(<20%). Thus,wefocusonthesumofthered-andthe the power-law surface density Σ(r)=Σ (r /r)p and the ve- 0 0 blue-shiftedemission. locity profile V(r)=V (r /r)s. The dust grains have MRN- 0 0 Assuming opticallythin C17O line emission, the gasmass like size distribution and the gas-to-dust mass ratio is 100. canbederivedby Moreover,weassumeanageof∼0.1Myrduetothelackof reliable estimates. Churchwell (1999) reported the dynami- τ (T +0.9)exp(16.18/T ) M(H2)[M⊙]=1.5810- 10 ex (1- exp(- τ)) ex (1) Hcaelnonuintflgoewtatli.m2e00o0f).1.T8h1e0b4esytrfiwtthoicthheisobasnerlvoewdeCr 1li7mOit(2(–se1e) linesisobtainedwiththefollowingdiskparameters:(1)incli- ×X(C17O)(D[kpc])2Z Sν∆v[Jykms- 1], nationandpositionalanglesof≈30◦,(2)innerandouterradii line of.400AUand1400AU,respectively,(3)asurfacedensity where τ =0.01 is the optical depth of the C17O (2–1) line, gradient p∼- 1.5, and (4) a Keplerian-like velocity profile, T =100Kistheexcitationtemperature,X(C17O)=2.5·107 s≈- 0.5. The best-fit disk mass ranges between ∼0.2 and ex ArotatingdiskaroundAFGL490 3 1 M . Note that the modeled line profiles are indeed opti- nerthinKepleriandiskfedbyathickerself-gravitatingtorus ⊙ callythin,τ .0.01.Allthesevaluesareinagoodagreement with nearly uniform rotation. Finally, a clumpy disk struc- withtheobservationalresults,andthevaluesderivedfromthe turecouldbearesultofarecentencounterwithanearbystar PVdiagram. or due to the gravitationalinteraction with a wide low-mass companion. The complex multiple outflow systems seen in 4. DISCUSSIONANDCONCLUSIONS theclosevicinityofAFGL490stronglysupportthisidea(see Why do we see such a clumpy disk structure? This ob- Fig.4binPaperI). ject seems to be relativelyyoungand could still be in a per- InthisLetter,wepresentclearevidencethat∼10M⊙stars turbedstatethatremainsfromanearlier,non-steadyaccretion can be surrounded by Keplerian disks in their earliest evo- phase. The viscous dissipation timescale for the AFGL 490 lutionallyphase(seealsoShepherd,Claussen&Kurtz2001). diskisestimatedtobe∼1Myr(Pringle1981),whichfarex- Incontrasttothepreviouslyreportedhugedisksaroundsuch ceedsitsage. Thishypothesisisfurthersupportedbythefact stars with radii of .10000 AU (e.g., Chini et al. 2004, but that the ∼104 years old, large-scale CO outflow consists of see Sako et al. 2005) the AFGL 490 disk is much smaller, singlemovinggasclumps,andthusaccretionisindeednon- R∼1500AU.Usingadvancedtheoreticalmodeling,wecon- steady (Mitchelletal. 1995). Another explanation could be strainbasicdiskparameters:(1)theinclinationandpositional that the C17O (2–1) emission traces the densest parts of the anglesare∼30◦,(2)thesurfacedensityprofileis∼- 1.5,(3) spiral arms that are easily excited in massive disks by grav- themassis∼1.5M⊙ (≈50%uncertainty),and(4)thedisk itational instabilities. Indeed, the morphology of the C17O rotationisclosetoKepler’slaw. emissionresemblesthedensitystructureofaself-gravitating diskwithdoublearms(uppercornerinFig.1a)calculatedby Fromangetal.(2004a). Moreover,thenumericalsimulations by Fromang,Balbus,&DeVilliers (2004b) imply that such We acknowledge the help of the IRAM staff both of the disksshouldalsodevelopadualstructurecomposedofanin- PlateaudeBureandGrenoble. REFERENCES Alonso-Costa,J.L.,&Kwan,J.1989,ApJ,338,403 Mundy,L.G.,&Adelman,G.A.1988,ApJ,329,907 Alvarez,C.,Hoare,M.,Glindemann,A.,&Richichi,A.,2004,A&A,427, Nakamura,A.,Kawabe,R.,Kitamura,Y.,Ishiguro,M.,Murata,Y.,&Ohashi, 505 N.1991,ApJ383,L81 Bunn,J.C.,Hoare,M.G.,&Drew,J.E.,1995,MNRAS272,346 Ossenkopf,V.,&Henning,Th.1994,A&A,291,943 Campbell,B.,Persson,S.E.,&McGregor,P.J.,1986,ApJ305,336 Panagia,N.1973,AJ,78,929 Chini,R.,Hoffmeister,V.,Kimeswenger,S.,Nielbock,M.,Nürnberger,D., Pavlyuchenkov,Ya.N.,&Shustov,B.M.2004,Astron.Rep.,48,315 Schmidtobreick,L.,&Sterzik,M.2004,Nature,429,155 Pringle,J.E.1981,ARA&A,19,137 Churchwell, E.,1999,MassiveStarFormation,inTheOriginofStarsand Sako,S.,Yamashita,T.,Kataza,H.,Miyata,T.,Okamoto,Y.K.,Honda,M., Planetary Systems, eds. C.J. Lada, & N.D. Kylafis (Kluwer Academic Fujiyoshi,T.,Terada,H.,Kamazaki,T.,Jiang,Z.,Hanawa,T.,Onaka,T. Publishers),515 2005,Nature,434,995 Dobbs,C.L.,Bonnell,I.A.,&Clark,P.C.2005,MNRAS,360,2 Schreyer,K.,Helmich,F.P.,vanDishoeck,E.F.,&Henning,Th.1997,A&A, Dullemond,C.,&Dominik,C.2004,A&A,417,159 326,347(PaperI) Fromang,S.,Balbus,S.A.,&DeVilliers,J.-P.2004,ApJ,616,357 Semenov,D.,Pavlyuchenkov,Y.,Schreyer,K.,Henning,Th.,Dullemond,C., Fromang,S.,Balbus,S.A.,Terquem,C.,&DeVilliers,J.-P.2004,ApJ,616, &Bacmann,A.2005,ApJ,621,853 364 Shepherd,D.S.,Claussen,M.J.,&Kurtz,S.E.2001,Science,292,1513 Gear, W.K., Robsons, E.I., Gee, G., Ade, P.A.R., & Duncan, W.D. 1986, Snell,R.L.,Scoville,N.Z.,Sanders,D.B.,&Erickson,N.R.1984,ApJ,284, MNRAS,219,835 176 Greenhill,L.J.,Gwinn,C.R.,Antonucci,R.,&Barvainis,R.1996,ApJ,472, Vogel,S.N.,Bieging,J.H.,Plambeck,R.L.,Welch,W.J.,&Wright,M.C.H. L21 1985,ApJ,296,600 Haas,M.,Leinert,Ch.,&Lenzen,R.1992,å,261,130 Yorke,H.W.,&Sonnhalter,C.2002,ApJ,569,846 Henning,Th.,Schreyer,K.,Launhardt,L.,&Burkert,A.2000,A&A,353, 211 Kondratko,P.T.,Greenhill,L.J.,&Moran,J.M.2005,ApJ,618,618 Mitchell, G.F., Lee, S.W., Maillard, J., Matthews, H., Hasegawa, T.I., & Harris,A.I.1995,ApJ,438,794 4 Schreyeretal. FIG. 1.— (a)MapofthetotalintegratedC17O(2–1)intensity(thinlines)overlaidwiththe1.3mmcontinuum(grayimagewithdottedlines). Thecontours oftheintegratedC17Oemissioncoverintensitylevelsfrom20%(1.5σrms)to90%ofthepeakvalue(0.25Jykms- 1beam- 1)in10%steps;the50%contouris shownbyathickline. Thecontourlinesofthecontinuumemissioncorrespondto20%(3σrms),50%,and90%ofthepeakvalue(0.6Jybeam- 1). (Topleft) Thischartshowsthemidplanedensitydistributionofaself-gravitating massivedisk(Fromangetal.2004a,Fig.9)inclinedto35◦. Theellipseindicatesthe skyareacoveredbysuchaninclineddisk. (b)Integratedred-andblue-shiftedC17Olineemissionoverlaidwiththelowestcontourasshownintheleftpanel. Fortheblue-shiftedlobe,solidthickcontourscorrespondtogaswithvelocitiesbetween- 15.5and- 13.4kms- 1,whileforthered-shiftedlobe,dashed-thick contoursindicategaswithvelocitiesbetween- 12.5and- 9.5kms- 1. Levelsare30,50,70,&90%oftheemissionpeaks(blue: 0.09Jybeam- 1kms- 1;red: 0.12Jybeam- 1kms- 1).ThegrayareaistheH-bandspeckleimagefromAlvarezetal.(2004).Thestraightsolidlineindicatesthecutfortheposition-velocity diagramshowninFig.2.Thedashedlinesshowthemajorandtheminoraxesoftheemissiondistributionsintheskyplane,wherebytheminoraxiswithdifferent positionangles(PA)isassumedtobeinlinewiththeoutflowaxis. ArotatingdiskaroundAFGL490 5 FIG.2.—Theposition-velocitydiagramoftheC17O(2–1)emissionalongthestraightlineshowninFig.1b.ThethicksolidlinerepresentstheKepleriandisk modelwithMdisk=1M⊙andi=35◦,whilethedashedlinecorrespondstoamodelofa700AUgasringwiththesameorientation. Thethickdottedcurve indicatesthediskmodelwithnon-Keplerianrotation,V(r)∝r- 0.35. 6 Schreyeretal. FIG.3.—TheobservedPdBIC17Ospectra(thinline)arecomparedtothesyntheticones(thickline)obtainedwiththebest-fitmodeloftheAFGL490disk.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.