BASEDONOBSERVATIONSCARRIEDOUTWITHTHEIRAMPLATEAUDEBUREINTERFEROMETER.IRAMISSUPPORTEDBYINSU/CNRS(FRANCE), MPG(GERMANY)ANDIGN(SPAIN). PreprinttypesetusingLATEXstyleemulateapjv.6/22/04 AROTATINGDISKAROUNDTHEVERYYOUNGMASSIVESTARAFGL490 K.SCHREYER AstrophysikalischesInstitutundUniversitätssternwarte,Schillergäßchen2–3,D–07745Jena,Germany D.SEMENOV,TH. HENNING Max–Planck–InstitutfürAstronomie,Königstuhl17,D–69117Heidelberg,Germany AND J.FORBRICH 6 Max–Planck–InstitutfürRadioastronomieBonn,AufdemHügel69,D-53121Bonn,Germany 0 (Accepted28.12.05atApJL) 0 BasedonobservationscarriedoutwiththeIRAMPlateaudeBureInterferometer.IRAMissupportedbyINSU/CNRS(France),MPG(Germany)andIGN(Spain). 2 ABSTRACT n Weobservedtheembedded,young8–10M starAFGL490atsubarcsecondresolutionwiththePlateaude a ⊙ BureInterferometerintheC17O(2–1)transitionandfoundconvincingevidencethatAFGL490issurrounded J by a rotating disk. Using two-dimensionalmodeling of the physical and chemical disk structure coupled to 2 lineradiativetransfer,weconstrainitsbasicparameters. Weobtainarelativelyhighdiskmassof1M anda 1 ⊙ radiusof∼1500AU.Aplausibleexplanationfortheapparentasymmetryofthediskmorphologyisgiven. 1 Subjectheadings:circumstellarmatter—line:profiles—radiativetransfer—planetarysystems: protoplane- v tarydisks—stars: formation—stars: individual:AFGL490 0 7 2 1. INTRODUCTION diativetransfermodeling. 1 The study of very young massive stars is of partic- 0 ular importance for star formation since it is not yet 2. OBSERVATIONSWITHTHEPLATEAUDEBURE 6 firmly established by what process, disk accretion or stel- INTERFEROMETER 0 larmerging,suchstarsform(e.g.,Yorke&Sonnhalter2002; WeobservedAFGL490inC17O(2–1)at224.714389GHz / h Dobbs,Bonnell,&Clark 2005). Previous authors have usingthePdBIinitsBconfigurationinDecember2003(base- p demonstratedthatmassivestarscanbeformedviaaccretion, lines61.5m–330.5m).Thephasereferencecenterofourmea- - leadingtotheformationoflarge(.10000AU)andmassive surementswasα =03h27m38s.55,δ =+58◦46′59′′.8, ro (.1 M⊙) circumstellar disks. However, most of these stars andthesourceve2l0o0c0itywassettoVlsr=-201030.4kms- 1. Forthe t are located more than 2 kpc away, which makesit challeng- line measurements, we used one correlator unit with a total s a ingtoconfirmunambiguouslythepresenceofaccretiondisks bandwidthof 20MHz and512channels(velocityresolution : aroundsingleobjectswithradiointerferometryduetothelack of0.052kms- 1).Twoothercorrelatorunitswithabandwidth v ofspatialresolution. of320MHzeachwereutilizedtomeasurethecontinuum. i X We focus on AFGL 490 – one of the best-studied young The bandpass and phase calibration were performed on stars that are in a transition stage to Herbig Be stars. This the objects 3C454.3 and 2145+067. The additional calibra- r a very young star is located nearby (1±0.3 kpc, Snelletal. tions of the phase and amplitude were obtained by observ- 1984), has a mass of 8–10 M , a bolometric luminos- ing the objects 0355+508 and 0224+671 every 20 minutes. ⊙ ity of ∼ 2×103 L (B2–3 star, Panagia 1973), is still ForthefinalphasecalibrationanddatareductiontheGreno- ⊙ embedded in its parent molecular cloud (A ∼ 40 mag, bleSoftwareenvironmentGILDASwasapplied.Themapsof V Alonso-Costa&Kwan1989),anddrivesahigh-velocityout- 512×512squarepixelswith0.1′′pixelsizewereproducedby flow(Mitchelletal.1995). Interferometricmeasurementsby the Fourier transform of the calibrated visibilities using nat- e.g. Schreyeretal. (2002, hereafter Paper I) as well as IR uralweighting. The synthesized beam size is 0.89′′×0.77′′ observations of Campbell,Persson,&McGregor (1986) and (=890AU×770AUat1kpc)withapositionalangleof73◦. Bunn,Hoare,&Drew(1995)haverevealedthatthestarislo- Forreductionofthecontinuum,weexcludedthelineemission catedinsideanionized∼100AUcavityclearedupbyafast fromthedata.Finally,thecontinuumwassubtractedfromthe stellar wind and surroundedby a .500 AU disk-like struc- original data in the uv-plane, as it was detected only at the ture, which is enshrouded in a 22000 AU × 6000 AU en- sourceposition. velope. Allthesestructuresarefurtherembeddedinaneven moreextendedenvelope. 3. RESULTS InthisLetter,wepresentsubarcsecond-resolutionPdBIob- 3.1. Continuummeasurements servationsofAFGL490thatprovetheexistenceofarotating diskaroundAFGL490anddetermineitsorientation,size,and Within the 22′′ primaryPdBI beam at 1.3mm, AFGL 490 massbyusingcomprehensivephysical,chemical,andlinera- was detected point source with a total flux of 1.41 Jy (peak valueis0.68Jybeam- 1). Thecontinuumisdominatedbythe Electronicaddress:[email protected] thermaldust emission because at 1.3mm the free-freeradia- Electronicaddress:semenov,[email protected] tioncontributeslessthan5%tothetotalflux(≈69±3mJy, Electronicaddress:[email protected] seeCampbelletal.1986). 2 Schreyeretal. 3.2. C17O(2–1)linemeasurements istheH abundancerelativetotheamountofC17Omolecules 2 TheintegratedC17O(2–1)lineintensitymapoverlaidwith (H2/CO=104, 16O/17O=2500),andD=1kpcisthe distance tothesource.Themassesofthered-andblue-shiftedgasare the 1.3mm continuum is shown in Fig. 1a. The continuum isbarelyresolvedatthe5σ levelwithinthe.2000AUarea 1.0and0.6M⊙,respectively,givingatotalvalueof≈1.5M⊙ whichmatchestheestimateobtainedabove. aroundthe star, and has a beam-like circular shape. In con- trast,thelineintensitymaprevealsa∼4000AUarcofemis- sionthatiscenteredonthecontinuumpeakandhasaPAof∼ 3.2.2. Diskvelocityfield 15◦.Furthermore,theC17Oemissionabovethe50%intensity The gas velocity distribution across the red- and blue- level appears as a ≈ 700 AU × 2000 AU bar-like structure shiftedC17Oemission(solidlineinFig.1b)ispresentedinthe with the main axis shifted by 400 AU to the northeast from position-velocity(PV)diagraminFig.2. ThePVmapshows thecenter. anumberofsinglegasclumps,indicatinganinhomogeneous The red- and blue-shifted parts of the integrated C17O diskstructure.Thisdistributionisnotcausedbyopticaldepth (2–1) line intensity overlaid with an H-band speckle image effectsasdemonstratedbyradiativetransfercalculations(see (Alvarezetal. 2004) and the 1.3mm continuum is presented Sect. 3.3). To fit the PV diagram, we adopt a simple model inFig.1b.Bothlobeshavetheirmaximum700AUawayfrom of a Keplerian disk with a mass that linearly increases with the 1.3mm continuum point source, and the line connecting radius(Vogeletal.1985)andastellarmassof8±1M . We ⊙ them is shifted 260 AU to the northeast(PA of the axis per- assume a disk radius of 1600 AU based on the spatial ex- pendiculartotheconnectinglineis≈26◦). Duetothesimul- tent of the C17O emission and a disk mass between 0.5 and taneousmeasurementofbothlineandcontinuuminthesame 2M⊙. Withthismodel,wefittheinnerclumps(R<±0′′.7) bandpass,thepositionaloffsetiscertainlyreal. Remarkably, of the the PV map and obtain the best-fit inclination angle the position of the red- and blue-shifted C17O (2–1) peaks of35◦±5◦ (Fig. 2, solid curve). The fit to the most intense perfectlycoincideswiththepositionoftheCS(2–1)peaksre- clumps in the PV map at R=±0′′.7 is not as good. It gives portedinPaperI.ThePAoftheC17Oemissionissmallerthan i=25◦±5◦ and super-Keplerian gas velocities in the inner the∼45◦positionalangleofthe20000AUbar-likestructure disk. In contrastto massive disks aroundactive galactic nu- (see Paper I), but the emission structure is orthogonalto the cleithatshowamodifiedKeplerianlawwithanexponentof∼ large-scale CO outflow (Mitchelletal. 1995) and coincides - 0.35 (e.g., Kondratkoetal. 2005), the correspondingcurve withthePAobtainedfromtheinfraredpolarizedmapandthe forAFGL490(Fig.2,dottedcurve)wouldonlyfittotheouter 2cmradioemission(Campbelletal.1986;Haasetal.1992). diskpart. However,itdoesnotfittheinnerclumps. Further- NotethattheC17Oemissionpattern(Fig.1b)ischaracteristic more, the four most intense clumps in the PV map around ofoutflowsorrotatingdisk-likeconfigurations.Todistinguish - 12.6kms- 1 can be best fitted by a rotating gas ring with a betweenthesetwopossibilities,weanalyzethecorresponding radiusof700AUandsimilari=35◦±5◦(dashedline). Such position-velocitydiagrambelow. a small inclination angle is in contrast to the apparentC17O morphologyimplyinganinclinationanglelargerthan60◦for 3.2.1. Diskmass any circularly-symmetric configuration, e.g. a disk (see el- We estimate the mass of the AFGL 490 “inner disk” lipseinFig.1a).Howeverrotationcurvesforanydiskorring from the 1.3mm continuum emission, using Eq. 2 from modelwithlargerinclinationangles,i>40◦,canonlybewell Henningetal. (2000). We assume the standard gas-to-dust fittedassumingalow-masscentralstar,M⋆≤2M⊙ whichis mass ratio of 100, a mean disk temperatureof 100 K, and a definitelynotthecaseforAFGL490. Thus,weproposethat dust mass absorption coefficient κd at 1.3mm between 1.99 thereisamassive,clumpydiskaroundAFGL490withnearly and 5.86 cm2g- 1 (grains without imcy mantles, gas densities face-onorientation(i∼30◦)andKeplerianrotation. 106 and 108 cm- 3, respectively, see Ossenkopf&Henning 1994). The resulting H gas mass is between 0.8 and 3.3. Diskmodeling 2 2.3M⊙ and,thus,thesource-averagedH2 columndensityis ThePdBI C17O (2–1)spectralmapof the AFGL 490disk N(H2)(1.3mm)=1÷20·1023cm- 2. is presented in Fig. 3. We fit these spectra using the “step- ThegasmasscanbealsoderivedfromtheC17Odata. Due by-step”modelingapproach(Semenovetal.2005,fordetails to missingflux of ∼30%in the vicinityof AFGL 490, even see Semenov et al. 2006, in preparation). Briefly, we apply in the reverse map side of the red- and the blue-shifted line the2Dflared-diskmodelofDullemond&Dominik(2004)to emission, the total integrated flux value is smaller than the simulatethediskphysicalstructure,agas-grainchemicalnet- sumofindividualcontributionsfromthered-andblue-shifted workto calculatetime-dependentabundances,anda 2Dline emission.Thesidelobesofthesynthesizedbeamarenotcon- radiativetransfercodeofPavlyuchenkov&Shustov(2004)to tributingtothelowintegratedfluxesduetotheirlowintensi- synthesize the C17O spectra. We assume that the disk has ties(<20%). Thus,wefocusonthesumofthered-andthe the power-law surface density Σ(r)=Σ (r /r)p and the ve- 0 0 blue-shiftedemission. locity profile V(r)=V (r /r)s. The dust grains have MRN- 0 0 Assuming opticallythin C17O line emission, the gasmass like size distribution and the gas-to-dust mass ratio is 100. canbederivedby Moreover,weassumeanageof∼0.1Myrduetothelackof reliable estimates. Churchwell (1999) reported the dynami- τ (T +0.9)exp(16.18/T ) M(H2)[M⊙]=1.5810- 10 ex (1- exp(- τ)) ex (1) Hcaelnonuintflgoewtatli.m2e00o0f).1.T8h1e0b4esytrfiwtthoicthheisobasnerlvoewdeCr 1li7mOit(2(–se1e) linesisobtainedwiththefollowingdiskparameters:(1)incli- ×X(C17O)(D[kpc])2Z Sν∆v[Jykms- 1], nationandpositionalanglesof≈30◦,(2)innerandouterradii line of.400AUand1400AU,respectively,(3)asurfacedensity where τ =0.01 is the optical depth of the C17O (2–1) line, gradient p∼- 1.5, and (4) a Keplerian-like velocity profile, T =100Kistheexcitationtemperature,X(C17O)=2.5·107 s≈- 0.5. The best-fit disk mass ranges between ∼0.2 and ex ArotatingdiskaroundAFGL490 3 1 M . Note that the modeled line profiles are indeed opti- nerthinKepleriandiskfedbyathickerself-gravitatingtorus ⊙ callythin,τ .0.01.Allthesevaluesareinagoodagreement with nearly uniform rotation. Finally, a clumpy disk struc- withtheobservationalresults,andthevaluesderivedfromthe turecouldbearesultofarecentencounterwithanearbystar PVdiagram. or due to the gravitationalinteraction with a wide low-mass companion. The complex multiple outflow systems seen in 4. DISCUSSIONANDCONCLUSIONS theclosevicinityofAFGL490stronglysupportthisidea(see Why do we see such a clumpy disk structure? This ob- Fig.4binPaperI). ject seems to be relativelyyoungand could still be in a per- InthisLetter,wepresentclearevidencethat∼10M⊙stars turbedstatethatremainsfromanearlier,non-steadyaccretion can be surrounded by Keplerian disks in their earliest evo- phase. The viscous dissipation timescale for the AFGL 490 lutionallyphase(seealsoShepherd,Claussen&Kurtz2001). diskisestimatedtobe∼1Myr(Pringle1981),whichfarex- Incontrasttothepreviouslyreportedhugedisksaroundsuch ceedsitsage. Thishypothesisisfurthersupportedbythefact stars with radii of .10000 AU (e.g., Chini et al. 2004, but that the ∼104 years old, large-scale CO outflow consists of see Sako et al. 2005) the AFGL 490 disk is much smaller, singlemovinggasclumps,andthusaccretionisindeednon- R∼1500AU.Usingadvancedtheoreticalmodeling,wecon- steady (Mitchelletal. 1995). Another explanation could be strainbasicdiskparameters:(1)theinclinationandpositional that the C17O (2–1) emission traces the densest parts of the anglesare∼30◦,(2)thesurfacedensityprofileis∼- 1.5,(3) spiral arms that are easily excited in massive disks by grav- themassis∼1.5M⊙ (≈50%uncertainty),and(4)thedisk itational instabilities. Indeed, the morphology of the C17O rotationisclosetoKepler’slaw. emissionresemblesthedensitystructureofaself-gravitating diskwithdoublearms(uppercornerinFig.1a)calculatedby Fromangetal.(2004a). Moreover,thenumericalsimulations by Fromang,Balbus,&DeVilliers (2004b) imply that such We acknowledge the help of the IRAM staff both of the disksshouldalsodevelopadualstructurecomposedofanin- PlateaudeBureandGrenoble. REFERENCES Alonso-Costa,J.L.,&Kwan,J.1989,ApJ,338,403 Mundy,L.G.,&Adelman,G.A.1988,ApJ,329,907 Alvarez,C.,Hoare,M.,Glindemann,A.,&Richichi,A.,2004,A&A,427, Nakamura,A.,Kawabe,R.,Kitamura,Y.,Ishiguro,M.,Murata,Y.,&Ohashi, 505 N.1991,ApJ383,L81 Bunn,J.C.,Hoare,M.G.,&Drew,J.E.,1995,MNRAS272,346 Ossenkopf,V.,&Henning,Th.1994,A&A,291,943 Campbell,B.,Persson,S.E.,&McGregor,P.J.,1986,ApJ305,336 Panagia,N.1973,AJ,78,929 Chini,R.,Hoffmeister,V.,Kimeswenger,S.,Nielbock,M.,Nürnberger,D., Pavlyuchenkov,Ya.N.,&Shustov,B.M.2004,Astron.Rep.,48,315 Schmidtobreick,L.,&Sterzik,M.2004,Nature,429,155 Pringle,J.E.1981,ARA&A,19,137 Churchwell, E.,1999,MassiveStarFormation,inTheOriginofStarsand Sako,S.,Yamashita,T.,Kataza,H.,Miyata,T.,Okamoto,Y.K.,Honda,M., Planetary Systems, eds. C.J. Lada, & N.D. Kylafis (Kluwer Academic Fujiyoshi,T.,Terada,H.,Kamazaki,T.,Jiang,Z.,Hanawa,T.,Onaka,T. Publishers),515 2005,Nature,434,995 Dobbs,C.L.,Bonnell,I.A.,&Clark,P.C.2005,MNRAS,360,2 Schreyer,K.,Helmich,F.P.,vanDishoeck,E.F.,&Henning,Th.1997,A&A, Dullemond,C.,&Dominik,C.2004,A&A,417,159 326,347(PaperI) Fromang,S.,Balbus,S.A.,&DeVilliers,J.-P.2004,ApJ,616,357 Semenov,D.,Pavlyuchenkov,Y.,Schreyer,K.,Henning,Th.,Dullemond,C., Fromang,S.,Balbus,S.A.,Terquem,C.,&DeVilliers,J.-P.2004,ApJ,616, &Bacmann,A.2005,ApJ,621,853 364 Shepherd,D.S.,Claussen,M.J.,&Kurtz,S.E.2001,Science,292,1513 Gear, W.K., Robsons, E.I., Gee, G., Ade, P.A.R., & Duncan, W.D. 1986, Snell,R.L.,Scoville,N.Z.,Sanders,D.B.,&Erickson,N.R.1984,ApJ,284, MNRAS,219,835 176 Greenhill,L.J.,Gwinn,C.R.,Antonucci,R.,&Barvainis,R.1996,ApJ,472, Vogel,S.N.,Bieging,J.H.,Plambeck,R.L.,Welch,W.J.,&Wright,M.C.H. L21 1985,ApJ,296,600 Haas,M.,Leinert,Ch.,&Lenzen,R.1992,å,261,130 Yorke,H.W.,&Sonnhalter,C.2002,ApJ,569,846 Henning,Th.,Schreyer,K.,Launhardt,L.,&Burkert,A.2000,A&A,353, 211 Kondratko,P.T.,Greenhill,L.J.,&Moran,J.M.2005,ApJ,618,618 Mitchell, G.F., Lee, S.W., Maillard, J., Matthews, H., Hasegawa, T.I., & Harris,A.I.1995,ApJ,438,794 4 Schreyeretal. FIG. 1.— (a)MapofthetotalintegratedC17O(2–1)intensity(thinlines)overlaidwiththe1.3mmcontinuum(grayimagewithdottedlines). Thecontours oftheintegratedC17Oemissioncoverintensitylevelsfrom20%(1.5σrms)to90%ofthepeakvalue(0.25Jykms- 1beam- 1)in10%steps;the50%contouris shownbyathickline. Thecontourlinesofthecontinuumemissioncorrespondto20%(3σrms),50%,and90%ofthepeakvalue(0.6Jybeam- 1). (Topleft) Thischartshowsthemidplanedensitydistributionofaself-gravitating massivedisk(Fromangetal.2004a,Fig.9)inclinedto35◦. Theellipseindicatesthe skyareacoveredbysuchaninclineddisk. (b)Integratedred-andblue-shiftedC17Olineemissionoverlaidwiththelowestcontourasshownintheleftpanel. Fortheblue-shiftedlobe,solidthickcontourscorrespondtogaswithvelocitiesbetween- 15.5and- 13.4kms- 1,whileforthered-shiftedlobe,dashed-thick contoursindicategaswithvelocitiesbetween- 12.5and- 9.5kms- 1. Levelsare30,50,70,&90%oftheemissionpeaks(blue: 0.09Jybeam- 1kms- 1;red: 0.12Jybeam- 1kms- 1).ThegrayareaistheH-bandspeckleimagefromAlvarezetal.(2004).Thestraightsolidlineindicatesthecutfortheposition-velocity diagramshowninFig.2.Thedashedlinesshowthemajorandtheminoraxesoftheemissiondistributionsintheskyplane,wherebytheminoraxiswithdifferent positionangles(PA)isassumedtobeinlinewiththeoutflowaxis. ArotatingdiskaroundAFGL490 5 FIG.2.—Theposition-velocitydiagramoftheC17O(2–1)emissionalongthestraightlineshowninFig.1b.ThethicksolidlinerepresentstheKepleriandisk modelwithMdisk=1M⊙andi=35◦,whilethedashedlinecorrespondstoamodelofa700AUgasringwiththesameorientation. Thethickdottedcurve indicatesthediskmodelwithnon-Keplerianrotation,V(r)∝r- 0.35. 6 Schreyeretal. FIG.3.—TheobservedPdBIC17Ospectra(thinline)arecomparedtothesyntheticones(thickline)obtainedwiththebest-fitmodeloftheAFGL490disk.