ebook img

A Roche Model for Uniformly Rotating Rings PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Roche Model for Uniformly Rotating Rings

Mon.Not.R.Astron.Soc.000,1–6(2009) Printed13January2009 (MNLATEXstylefilev2.2) A Roche Model for Uniformly Rotating Rings Stefan Horatschek⋆ and David Petroff⋆ Theoretisch-PhysikalischesInstitut,UniversityofJena,Max-Wien-Platz1,07743Jena,Germany 9 0 13January2009 0 2 n ABSTRACT a ARochemodelfordescribinguniformlyrotatingringsispresentedandtheresultsarecom- J paredwithnumericalsolutionstothefullproblemforpolytropicrings.Inthethinringlimit, 3 thesurfacesofconstantpressureincludingthesurfaceoftheringitselfaregiveninanalytic 1 terms,eveninthemass-sheddingcase. ] Keywords: gravitation– methods:analytical– hydrodynamics– equationof state – stars: h rotation. p - o r t s a 1 INTRODUCTION 2 THEROCHEMODELWITHARINGSOURCE [ Auniformlyrotatingstarwithasufficientlysoftequationofstate 2.1 BasicEquations 2 can be described approximately using the Roche model (Roche If we use cylindrical coordinates (̺,z,ϕ), then the gravitational v 1873). In this model the matter is treated as a test fluid in a potentialofacircularlinecentredontheaxisofmassMandradius 9 1/r-potential, i.e. one considers the whole mass of the star to 6 be concentrated at the centre. By doing so, self-gravitating ef- breads 6 π fects of the outer mass shells are neglected. Such Roche mod- GM dϕ 3 U = (1) 8. eblysZhaevl’edobveiecnh&conNsoidveikreodv,(e1s9p7e1c)ia;lSlyhainpirtohe&mSahsisb-asthaed(2d0in0g2)l.imFoitr, − π Z0 b2+̺2+z2−2b̺cosϕ 0 polytropeswithindicesn & 2.5thisapproximationyieldsresults 2GpM 2√b̺ 8 that differ by less than about a percent from their correct values = K , (2) 0 −π (b+̺)2+z2 (b+̺)2+z2! (Meineletal.2008).Whereasmost analyticalsolutions tofigures v: ofequilibriumdescribebodieswithconstantmassdensity(e.g.the whereGisthegpravitationalconstantapndK denotesthecomplete i Maclaurin spheroids, Jacobi ellipsoids, etc.), the Roche model is ellipticintegralofthefirstkind, X veryusefulbecauseitisapplicabletonon-homogeneousmatter. π 2 r Aside from spheroidal figures of equilibrium, there exist dθ a K(k):= . (3) configurations with toroidal topology. Such rings have been 1 k2sin2θ studiedbothanalytically(Kowalewsky 1885;Poincare´ 1885a,b,c; Z0 − Dyson 1892, 1893; Ostriker 1964b; Petroff&Horatschek 2008) Sometimesitwillbeconvenientptousethepolar-likecoordinatesr and numerically (Wong 1974; Eriguchi&Sugimoto 1981; andχdefinedby Eriguchi&Hachisu 1985; Hachisu 1986; Ansorgetal. 2003b; ̺=b rcosχ and z=rsinχ. (4) Fischeretal.2005). − ForatestfluidrotatinguniformlywiththeangularvelocityΩ,Eu- Here we apply the basic idea of the Roche model to rings. ler’sequationcanbewrittenas Thus,wedonotchoosetohavethetestfluidrotateinthefieldofa pointmass,butinthatofacircularlineofmasswithconstantlinear 1 U+h Ω2̺2 =0, (5) massdensity.Inadditiontothemass,wethusalsohavetospecify ∇ − 2 „ « theradiusofthecircle. wherehisdefinedby ForthecomparisonofthesolutionsoftheRochemodelwith p those of the full problem for polytropes, we use a multi-domain dp′ spectral program, much like the one described in Ansorgetal. h:= µ(p′), (6) (2003a) and a similar one tailored to Newtonian bodies with Z0 toroidaltopologies(seeAnsorg&Petroff2005formoreinforma- andwherepisthepressure,µthemassdensityandU thepotential tion). givenabove1.Weintegrate(5)andget 1 U+h Ω2̺2=V , (7) − 2 0 ⋆ E-mail:[email protected](SH); [email protected](DP) 1 Forisentropicmatter,hissimplythespecificenthalpy. 2 S. Horatschek&D. Petroff whereV istheconstantofintegration.Evaluatingthisequationat where a comma indicates partial differentiation. The equatorial 0 thesurfaceofthering,alongwhichthefunctionhvanishes, then symmetryimpliesthatfirstderivativeswithrespecttoz vanishat leadsto z=0,thusleadingto 1 Us− 2Ω2̺2˛˛s =V0. (8) ̺=̺o, z=0: dzds(̺̺) =s−VV,,z̺z̺ =sΩ2msU−,zzU,̺̺. (16) Viathisequation,thesurfaceofthe˛ring,describedbyr = r(χ) ˛ s s Hencethefullangleis orz =z(̺),andthustheratioofinnerandouterradius̺ and̺ s s i o A:= ̺i, (9) δ= 2arctan Ω2ms−U,̺̺ ̺o s U,zz ˛ ˛̺=̺o,z=0 (17) aregivenimplicitlyforprescribedM,b,Ω2 and̺o.Analogously, 2 1 ¯b2 E ¯b˛˛ equation(7)canbeusedtofindsurfacesofconstanth. =1 − ˛ , − (1 ¯b2)K ¯b 2E ¯b Inwhatfollows,wesimplifytheequationsbyintroducingthe −` ´−` ´ dimensionlessquantities cf.Fig.4. ` ´ ` ´ r¯ ¯b ̺¯ z¯ 1 = = = = , (10a) r b ̺ z ̺ 2.3 TheShapeoftheSurface o Ω¯2 ̺3 U¯ V¯ h¯ ̺ = o , = 0 = = o , (10b) To treat both mass-shedding configurations and the general case, Ω2 GM U V0 h GM weparametrizetheangularvelocityby whichimplies̺¯ = Aand̺¯ = 1.Inthedimensionlessversions i o Ω2 =αΩ2 , α [0,1]. (18) of the above equations, GM cancels out. Except for two scaling ms ∈ constants(e.g.Mand̺ ),twoparametersarenecessarytodescribe Thischoiceofαarisesfromthefactthatthemass-sheddinglimit o aringintheRochemodel(e.g.¯bandΩ¯2). (α=1)posesanupperboundfortheangularvelocityandasolu- tionto(8)canbefoundforarbitrarilysmallΩ2. Evaluating(8)atthepoint(̺¯=̺¯ =1,z¯=0)yields o 2.2 Mass-SheddingConfigurations 1 αE ¯b Ofparticularinterestareconfigurationsatthemass-sheddinglimit. V¯ = +2K ¯b (19) Inthislimit,afluidparticleattheouterrimrotateswiththeKepler 0 −π "1−`¯b2´ # ` ´ frequency,whichmeansthatthegravitationalforceisbalancedby andatthepoint(̺¯=̺¯ =A,z¯=0)gives i thecentrifugalforcealone–thepressuregradientvanishes.Forthe squaredangularvelocityatthemass-sheddinglimitwefind 1 αA2E ¯b 2 A V¯ = + K . (20) Ω¯2 = ∂U¯ . (11) 0 −π " 1−¯b`2´ ¯b „¯b«# ms ∂̺¯ RequiringthatbothexpressionsforV agreeleadsto ˛̺¯=1,z¯=0 0 ˛ Withthepotential(2)thisgives ˛ 1 A α 1 A2 E ¯b ˛ K ¯b = K − . (21) Ω¯2ms = π21E−`¯b¯b´2 , (12) Atanarbitrary`su´rface¯bpoi„nt¯b(̺¯«,z¯−s(̺¯)`)2w`e1g−et´¯b2´` ´ whereEdenotesthecompleteell`ipticint´egralofthesecondkind, 1 α̺¯2E ¯b V¯ = + π2 0 −π" 1−¯b`2´ E(k):= 1 k2sin2θdθ. (13) (22) − 2 2 ¯b̺¯ Z K . 0 p π ¯b+̺¯ 2+z¯2 0 ¯b+p̺¯ 2+z¯21# Contrarytothegeneralcase,onlyoneparameterisfree,theother s s oneisfixedbyequation(11). Togetherwith(1q9)`thisis´animplicit@eqqua`tionfo´rthesurAfacefunc- Mass-shedding configurations haveacusp at theouter rim2, tionz¯(̺¯)orr¯(χ).Unfortunatelythisfunctioncannotbefoundin s s andwewillnowcalculatetheassociatedangle.Atthesurface,the analyticterms,however itisnotdifficulttohandleitnumerically. quantity Furthermore,itwillbetreatedanalyticallyforthinringsinthenext 1 subsection. V :=U− 2Ω2̺2 (14) For aprescribed α, the requirement A > 0 means that (21) canonlybesatisfiedfor¯blargerthansomeminimalvalue.Itturns isconstant,see(8),whichmeansthatalongthesurfacewehave outthatsmallervaluesof¯bnolongerdescriberings,butspheroidal d2V dz dz 2 d2z figures.Inthiscase,(20)and(21)mustbereplacedby 0= =V +2V s +V s +V s, (15) d̺2 ,̺̺ ,̺z d̺ ,zz d̺ ,z d̺2 1 „ « ̺¯=0, z¯=z¯ : V¯ = (23) p 0 − ¯b2+z¯2 p 2 Onecaneasilyshowthataconfigurationwithacuspmustbeatthemass- q and sheddinglimit.Theconversestatement,thatmass-sheddingconfigurations haveacusp,canbeprovedifonemakestheveryreasonable assumption π αE ¯b hthaalft-tshpeacpere(sPsa¨uhrtezd2o0e0s7n).otincreaseforincreasingvaluesofzintheupper K ¯b = 2 ¯b2+z¯p2 − 2 1−`¯b´2 , (24) ` ´ q ` ´ ARocheModelforUniformlyRotatingRings 3 wherez¯ =z /̺ denotesthedimensionlesspolarradius,inother p p o words,theratioofthepolartotheequatorialradius.Thetransition fromspheroidaltotoroidaltopologiesisdescribedwhenz¯ =0or p equivalentlyA = 0.Inthelimit¯b 0,thepotential(2)becomes → that of a point mass M at the star’s centre and one recovers the ‘standard’Rochemodel,cf.AppendixA. 2.4 ThinRings In the thinring limit in which A 1, clearly¯b also tends to1. → Thislimitisofparticularinterest,especiallysinceaself-gravitating thin ring is also tractable to analytical methods (Kowalewsky 1885; Poincare´ 1885b,c,d; Dyson 1892, 1893; Ostriker 1964b; Petroff&Horatschek2008).Byexpandingthesurfacefunction Figure 2. Lines of constant pressure (corresponding to constant h¯) are ∞ shownforthemass-sheddingringinthethinringlimit.Thefunctionth¯(χ) r¯s(χ)= si(χ) 1 ¯b i (25) withα=1isdepictedforvariousvaluesofh¯inpolarcoordinates,w1here − i=1 theaxisofrotationistotheleftofthecross-sectionandinfinitelyfaraway. aboutthethinringlimit¯b X1,equatio`n(8)y´ields Thesurface,whichcorrespondstoh¯ =0,ispreciselys1(χ)andcanalso → befoundinFig.1.Thevaluesofh¯ startingfromthesurfaceandmoving 0=α[1+s (χ)cosχ]+lns (χ), (26) inwardare0,0.001,0.01,0.05,0.1,0.2,0.5and1.Thevalueofh¯tendsto 1 1 infinityatthepoint,wherethesourceislocated. whichcanbesolvedbyusingtheLambertWfunction,whichfulfils theequationW(x)eW(x) =x: s (χ)=e−W(αe−αcosχ)−α= W(αe−αcosχ). (27) 3 COMPARISONWITHTHEFULLPROBLEM 1 αcosχ ThecomparisonoftheRochemodelwiththefullproblemrequires For α 0, we find s (χ) = 1 meaning that the cross-section the identification of various physical quantities. Whereas M, Ω, 1 tends to→ward a circle for ¯b 1. For α = 1 (and only for this V0,Aandzs(̺)areclearlydefinedinboth,thevalueofb,which value),s (χ)isnotdifferenti→ableatthepointχ=πalthoughboth describesthe locationof thesingular source intheRoche model, 1 one-sidedderivativesexist.Onefinds is not defined in the full problem. There, we choose b to be the positionofthecentreofmassofameridionalcross-sectionofthe ds (χ) ds (χ) lim 1 = lim 1 =1, (28) ring. χ↑π dχ −χ↓π dχ TheRochemodelcontainstwoscalingparameters,whichcan whichimpliesthattheangleat thispoint isδ = π/2, whichcan be‘eliminated’byusingthedimensionlessquantitiesintroducedin alsobederivedfrom(17)inthelimit¯b 1.Aseriesofpictures (10),andtwophysicalparameters.Ontheotherhand,foragiven → showingtheshapesofs1(χ)forvariousvaluesofαcanbefound equation of state, the full problem is determined by specifying a in Fig. 1. Higher terms si(χ) from the series (25) can be found scalingparameterandonlyonephysicalparameter.Whencompar- iterativelyandcontainpowersofln 1 ¯b . ingaspecificRochemodelwithasolutiontothefullproblem,one − Tocalculatesurfacesofconstan`th,r¯h¯´(χ),wecaneasilygen- thushasfreedomastohowtomakesuchacomparison.Onecan, eralizetheabovecalculation.Like(25),weexpandthesesurfaces forexample,choosetohave¯bandΩ¯ agreeandthencompareV¯ ,A 0 aboutthethinringlimit andtheshapeofthesurface.Onecouldalsochoosetohave¯band r¯h¯(χ)= ∞ thi¯(χ) 1−¯b i. (29) AagrTeheearnedmthuestnbceomsopmareewΩ¯e,lVl¯-0deafinndetdhewsahyapoefocfhothoesisnugrftahcee.addi- i=1 tionalparameterintheRochemodelifthefullproblemistotend X ` ´ As mentioned above, the function h vanishes at the surface, i.e. toitinsomelimit.Letusconsiderringsmadeupofmatterobeying r¯(χ)=r¯ (χ)ands =t0.Equation(5)thengives theequationofstate s 0 i i 0=α 1+th¯(χ)cosχ +lnth¯(χ)+π¯h, (30) p=Kµ1+1/n, (34) 1 1 andthus h i i.e.polytropes,whereKisthepolytropicconstantandnthepoly- tropic index. If such rings are expanded about the limit A 1, th¯(χ)=e−W(αe−α−πh¯cosχ)−α−πh¯ = W(αe−α−πh¯cosχ). thenasolutionresults,thefirstfewtermsofwhichprovidea→good 1 αcosχ approximation to the full problem over some range of values for (31) A(Ostriker1964b;Petroff&Horatschek2008).Thisrangeofval- ThisfunctionisdepictedinFig.2forα=1andvariousvaluesof uesshrinkstothesinglepointA = 1inthelimitn ,i.e.in h¯.Forlargevaluesofh¯,wehave the‘isothermallimit’.Thismeansthatthe‘isotherma→l’ri∞ngsmust be infinitelythin. Because we expect that only such rings can be lim th¯(χ)eα+πh¯ =1 (32) 1 treatedarbitrarilywellintheRochemodel,wedohaveawellde- h¯→∞ finedwayofchoosingthe‘additionalparameter’:namelyA = 1. meaningthatthecurvesofconstanthbecomecircularasthesource Theoneremainingfreephysicalparameter,e.g.α,correspondsto isapproached.Inthelimitα 0wefindthat → the single physical parameter one has in the full solution and in- GM 1 h= lnt, t (0,1] (33) terpolatesbetweenmass-shedringsandthosewithcircularcross- − b π ∈ sections.Wethusexpectthatthereexistisothermal(andnecessarily onlydependsonthecoordinatet:=r¯/(1 ¯b),butnotonχ. infinitelythin)ringswithnon-circularcross-sections,cf.Fig.1. − 4 S. Horatschek&D. Petroff α 0 0.3 0.6 0.8 0.95 1 Figure1.Cross-sectionsofringsinthethinringlimitscaledsuchthatthehorizontalextentofeachisequal.Thefunctions1(χ)isdepictedforvariousvalues ofαinpolarcoordinates,wheretheaxisofrotationistotheleftofeachcross-sectionandinfinitelyfaraway.Thedotsindicatetheorigin,wherethesourceof thepotentialislocated. Thosewithcircularcross-sectionswerestudiedinthepapers Table1.ComparisonbetweenpolytropicringswithA=0.7andthecor- mentionedinthelastparagraphandtheresultspresentedheremust respondingRocheconfigurationwiththesame¯b.∆denotesthedifference coincide with those for α = 0. Indeed expression (148) for the between thevalues ofthe Rocheconfiguration andthe values ofthefull potential and (35) with (151) for the angular velocity in Ostriker solution. (1964b)together withβ−1 ξ 1show thatΩ2b2 isnegligi- blecompared toU, asimpl≫iedby≫α = 0and(18).Furthermore, n κ ¯b ∆Ω/Ωnum ∆V0/V0num thelogarithmicbehaviour(33)canberecoveredfrom(120),(122), 1.0 6.3×10−1 8.48×10−1 2.6×10−2 7.4×10−3 (125) and (127) in Ostriker (1964b)3 (see also Ostriker 1964a; 1.5 4.9×10−1 8.46×10−1 1.9×10−2 6.0×10−3 3.0 2.7×10−1 8.42×10−1 8.2×10−3 3.1×10−3 Petroff&Horatschek2008) 5.0 1.3×10−1 8.34×10−1 2.6×10−3 1.2×10−3 ξ2 7.0 7.2×10−2 8.26×10−1 8.6×10−4 4.7×10−4 h =h 2Kln 1+ , ξ [0, ). (35) iso c− 8 ∈ ∞ „ « Inexpression(33)thefunctionhdivergesatthecentret = 0and the surface is located at the finite radius t = 1, whereas in (35) thenκisdefinedtobetheratioofthedistancebetweenthesetwo thecorrespondingfunctionremainsfiniteatthecentreξ = 0,but pointstothetotalwidthofthering’scross-section diverges at the surface ξ . To compare the expressions for ̺ ̺ h, we thus take a derivati→ve i∞n order to eliminate the physically κ:= b− a. (40) ̺ ̺ o i irrelevant constant andconsider onlytheregularportion ofthet- − interval, t > 0, which corresponds to infinite values of ξ. This Onlyforκ 1istheRochemodelexpectedtogivegoodresults. ≪ leadsto Wefindthatκ . 0.2forpolytropicringswithn & 3.Suchpoly- dh GM tropes always have values for the radius ratio A & 0.45, which t = (36) impliesthatRochemodelswithasmallerradiusratiodonotpro- dt − πb videaparticularlycloseapproximationtoanytoroidalpolytrope. and Theshapesofcross-sectionsofmass-sheddingringsforvar- dh lim ξ iso = 4K, (37) iouspolytropicindicesareplottedinFig.3.Here,thedifferences ξ→∞ dξ − thatariseduetodifferent prescriptionsof theparametersareevi- whichcanindeedbeseentobeinagreementupontakingintoac- dentforsmallvaluesofthepolytropicindex.WhenAischosento count coincidebetweentheRochemodelandthefullsolution,thenthe GM =4πKb, (38) two surfaces do not differ appreciably, even for n = 1. The ra- diusratioitself,andconsequentlytheshape,isquitedifferentfora see(146)andthedefinitions(97)inPetroff&Horatschek(2008). Rochemodelwith¯basprescribedfromthesolutiontothefullprob- Thesituationisanalogoustothatinthesphericallysymmetriccase lemwithn=1.Thesedifferencesvanishasnisincreasedandthe asdiscussedinAppendixA. twoprescriptivechoicesconvergetothefullsolutionastheymust. Ifwedepartfromthethinringlimit,thenthecomparisonwith Fig. 4 provides an interesting comparison between mass- numerical solutions to the full problem of a uniformly rotating, sheddingconfigurationsforpolytropesandtheRochemodel.The self-gravitatingringallowsustoaddresstheparticularlyimportant angleδ ofthecuspasgivenby(17)isplottedover thewholein- questionofhowgoodtheRochemodelis.Tables1and2showhow terval ¯b [0,1] as a solid line. This curve is compared to two thismodel convergestowardthefullsolutionforpolytropicrings ∈ distinctpolytropicmass-sheddingsequencesgeneratedbyvarying asthepolytropicindexnisincreased.Thefirstoftheseprovidesa thepolytropicindexn.Thedottedlinedescribesringsandmerges comparisonofringswiththeradiusratioA = 0.7andthesecond togetherwiththatoftheRochemodelinthethinringlimit,i.e.for formass-sheddingconfigurations(α=1fortheRochemodel).In ¯b 1.Onetheotherhand,thedashedlinedescribes(spheroidal) bothcases,thevalueof¯bfortheRochemodelwaschosentoagree sta→rsandmergestogetherwiththatoftheRochemodelfor¯b 0. withthenumericalone.Thesecondcolumn,κ,givesanindication → The change in topologies in the Roche model from toroidal to ofhow concentrated themassis.Ifweconsider thecross-section spheroidaltakesplacefor¯b 0.56ascanbecalculatedbysolving ofaring,anddefinethetwopointsintheequatorialplaneatwhich for¯bin(21)withA=0and≈α=1. thedensityfallsofftohalfofitsmaximalvalue Insummary, wecansaythataswithstars,theRochemodel µ µ(̺ ,z=0)=µ(̺ ,z=0)= max, ̺ >̺ , (39) presentedhereforringsisseentoyieldaverygoodapproximation a b b a 2 to the full problem in many cases. Moreover, it presumably pro- videsexactresultsintheappropriatelimitandoffersnewsolutions 3 Equation(122)inOstriker(1964b)shouldreadρ=λe−Ψ=ρ0e−Ψ. thathadnotbeenfoundusingperturbativeapproaches. ARocheModelforUniformlyRotatingRings 5 Table2.Comparisonbetweenpolytropicringsinmass-sheddingandthecorrespondingRocheconfigurationwiththesame¯b.∆denotesthedifferencebetween thevaluesoftheRocheconfigurationandthevaluesofthefullsolution. n κ ¯b ∆A/Anum ∆Ω/Ωnum ∆δ/δnum ∆V0/V0num 1.0 5.3×10−1 5.77×10−1 −3.7×10−1 −3.8×10−2 2.7×10−2 −4.1×10−2 1.5 4.0×10−1 6.04×10−1 −1.0×10−1 −2.0×10−2 1.3×10−2 −2.1×10−2 3.0 2.1×10−1 6.53×10−1 −1.2×10−2 −3.9×10−3 2.1×10−3 −4.4×10−3 5.0 1.1×10−1 6.92×10−1 −2.0×10−3 −7.7×10−4 3.4×10−4 −8.8×10−4 7.0 5.7×10−2 7.20×10−1 −4.7×10−4 −2.0×10−4 7.8×10−5 −2.4×10−4 n 120◦ 1.0 110◦ 1.5 δ 100◦ 3.0 5.0 90◦ 0.0 0.2 0.4 0.6 0.8 1.0 ¯ b 7.0 Figure4.Theangleδofthecuspforthemass-sheddingconfigurationsin 0 ̺ ̺o 0 ̺ ̺o theRochemodel(solidline)iscomparedwiththenumericalresultforpoly- tropicrings(dottedline)andpolytropicspheroidalconfigurations(dashed Figure3.Comparisonbetweenthecross-sectionsofpolytropicringsatthe line).Thelargerdotsdenotetheringconfigurationswithn=1/2,1,3/2, mass-shedding limit(dotted lines)andthoseofthecorresponding Roche 3,5andn=7,wheresmallervaluesofncorrespondtosmallervaluesof¯b, configurations,i.e.withα = 1(solidlines).IntheleftpanelstheRoche andthewhitesquaresdenotethespheroidalconfigurationswithn=1/2, modelwaschosensuchthat¯bagreeswiththenumericalvalue,whereasin 1,2,3andn = 4,wherelargervaluesofncorrespondtosmallervalues therightpanels,thevaluesofAwerechosentocoincide.Theticksinthe of¯b.Inthethinringlimit,whereweexpectthattheRochemodelprovides ‘centre’ indicate the values of¯b. WhenA is prescribed (right panels), it arbitrarilygoodresultstothefullproblemfor‘isothermal’rings(n→∞), turnsoutthat¯bnum<¯bRoche. wefindδ→90◦. ACKNOWLEDGMENTS We are grateful to Reinhard Meinel for a careful reading of this MeinelR.,AnsorgM.,Kleinwa¨chterA.,Neugebauer G.,Petroff paper.Wealsowanttothankourreferee,YoshiharuEriguchi,for D., 2008, Relativistic Figures of Equilibrium. Cambridge Uni- his helpful comments. This research was funded in part by the versityPress,Cambridge DeutscheForschungsgemeinschaft(SFB/TR7–B1). OstrikerJ.,1964a,Astrophys.J.,140,1056 OstrikerJ.,1964b,Astrophys.J.,140,1067 Pa¨htzT.,2007,UntersuchungendesMass-Shedding-Limitsrotie- REFERENCES renderFlu¨ssigkeiteninNewtonscherundEinsteinscherGravita- tionstheorie,Diplomarbeit,Friedrich-Schiller-Universita¨tJena Ansorg M., Kleinwa¨chter A., Meinel R., 2003a, Astron. Astro- PetroffD.,HoratschekS.,2008,Mon.Not.R.Astron.Soc.,389, phys.,405,711 156 AnsorgM.,Kleinwa¨chterA.,MeinelR.,2003b,Mon.Not.R.As- Poincare´H.,1885a,Actamathematica,7,259 tron.Soc.,339,515 Poincare´H.,1885b,C.R.Acad.Sci.,100,346 AnsorgM.,PetroffD.,2005,Phys.Rev.D,72,024019 Poincare´H.,1885c,Bull.Astr.,2,109 DysonF.W.,1892,Philos.Trans.R.Soc.London,Ser.A,184,43 Poincare´H.,1885d,Bull.Astr.,2,405 Dyson F.W.,1893, Philos. Trans. R. Soc. London, Ser.A, 184, RocheE´.,1873,Me´m.delasectiondessciences,Acad.dessci- 1041 encesetlettresdeMontpellier,1,235 EriguchiY.,HachisuI.,1985,Astron.Astrophys.,148,289 ShapiroS.L.,ShibataM.,2002,Astrophys.J.,577,904 EriguchiY.,SugimotoD.,1981,Prog.Theor.Phys.,65,1870 WongC.Y.,1974,Astrophys.J.,190,675 FischerT.,HoratschekS.,AnsorgM.,2005,Mon.Not.R.Astron. Zel’dovichY.B.,NovikovI.D.,1971,RelativisticAstrophysics. Soc.,364,943 Vol.1,TheUniversityofChicagoPress,Chicago HachisuI.,1986,Astrophys.J.Suppl.Ser.,61,479 KowalewskyS.,1885,AstronomischeNachrichten,111,37 6 S. Horatschek&D. Petroff APPENDIXA: THESTANDARDROCHEMODEL where x 3K As mentioned in the introduction, the Roche model with a 1/r- ξ= , l2 = (A13) potential was discussed by Roche (1873); Zel’dovich&Novikov l 2πGµ4c/5 (1971); Shapiro&Shibata (2002) and provides a unique surface isthedimensionlessradiusandxthetrueradius.Thesurfaceex- functiondescribing amass-shedding star.Toderivethisfunction, tendsouttoinfinityandsincetheregularportionoftheR-interval, wefollowMeineletal.(2008)andbeginbywritingdownequation R>0,correspondstoinfinitevaluesoftheradiusx,weconsider (8)withthepotentialU ofapointmass s dh V0+ ̺2G+Mz(̺)2 + 12Ω2̺2=0. (A1) xl→im∞x2 dx5 =−6√3Klµ1c/5. (A14) s Calculatingthemassforthefullproblem, Byconsideringtheppoint̺ = 0,wecanrelatetheconstantV0 to ∞ thepolarradiusz p GM =4πG µ x2dx=4π√3l3µ =6√3Klµ1/5, (A15) 5 c c GM Z V = . (A2) 0 0 − zp showstheequivalenceof(A10)and(A14). Formass-sheddingstars,therelation ∂U =̺ Ω2, (A3) o ∂̺ ˛̺=̺o,z=0 ˛ where̺ istheequatorial˛radius,leadsto o ˛ GM =̺3Ω2, (A4) o andthesurfaceequation(A1)becomes 1 ̺2 z + =1. (A5) p ̺2+z2 2̺3o! Evaluating thisexpresspion at theequator, z = 0, tellsus thatfor mass-sheddingfluidsintheRochemodel,theradiusratio zp = 2 (A6) ̺ 3 o follows.Withthisrelationship,thecurvedescribingthefluid’ssur- facecanberewrittenas 4̺2 ̺2 ̺2 ̺2 z = o − o − . (A7) s 3̺2 ̺2 p o −` ´ Itthenfollowsthat dz lim s = √3, (A8) z↓0 d̺ − whichmeanstheinteriorangleofthemass-sheddingcuspis120◦ (seeFig.4for¯b 0). → Ingeneral,theRochemodelisexpectedtoapproachthefull solutionwhenthematterisarbitrarilyconcentrated.Forstaticpoly- tropes,thefullproblemleadstotheLane-Emdenequation,which turnsouttodescribearbitrarilyconcentratedmatterifn = 5.We shallnowshowtheagreementbetweenthesestarsandtheresults givenbytheRochemodel. Inthestaticcase,theRochemodelgives 1 1 h=GM , R (0,R ] (A9) „R − R0« ∈ 0 andthus dh R2 = GM. (A10) dR − Thesolutiontothefullproblemis ξ2 −5/2 µ =µ 1+ , ξ [0, ) (A11) 5 c 3 ∈ ∞ „ « andthus h =6Kµ1/5, (A12) 5 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.