ebook img

A representative survey of the dynamics and energetics of FRII radio galaxies PDF

0.52 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A representative survey of the dynamics and energetics of FRII radio galaxies

MNRAS000,1–17(2016) Preprint23January2017 CompiledusingMNRASLATEXstylefilev3.0 A representative survey of the dynamics and energetics of FRII radio galaxies J. Ineson,1⋆ J. H. Croston,1 M. J. Hardcastle,2 and B. Mingo3 1SchoolofPhysicsandAstronomy,UniversityofSouthampton,SouthamptonS171BJ,UK 2CentreforAstrophysicsResearch.SchoolofPhysics,AstronomyandMathematics,UniversityofHertfordshire,Hatfield,HertfordshireAL109AB,UK 7 3DepartmentofPhysicsandAstronomy,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UK 1 0 2 AcceptedXXX.ReceivedYYY;inoriginalformZZZ n a J ABSTRACT 9 We report the first large, systematic study of the dynamics and energetics of a representa- 1 tive sample of FRII radio galaxies with well-characterized group/cluster environments. We used X-rayinverse-Comptonandradio synchrotronmeasurementsto determinethe internal ] radio-lobeconditions,andthese werecomparedwithexternalpressuresactingonthelobes, A determinedfrom measurementsof the thermalX-ray emission of the group/cluster.Consis- G tentwithpreviouswork,wefoundthatFRIIradiolobesaretypicallyelectron-dominatedby . asmallfactorrelativetoequipartition,andareover-pressuredrelativetotheexternalmedium h in their outer parts. These results suggest that there is typically no energetically significant p protonpopulationinthelobesofFRIIradiogalaxies(unlikeforFRIs),andsoforthispopula- - o tion,inverse-Comptonmodellingprovidesanaccuratewayofmeasuringtotalenergycontent r andestimatingjetpower.WeestimatedthedistributionofMachnumbersforthepopulation t s ofexpandingradiolobes,findingthatatleasthalfoftheradiogalaxiesarecurrentlydriving a strongshocksintotheirgroup/clusterenvironments.Finally,wedeterminedajetpower–radio [ luminosity relation for FRII radio galaxies based on our estimates of lobe internal energy 1 andMachnumber.Theslopeandnormalisationofthisrelationareconsistentwiththeoretical v expectations, given the departure from equipartition and environmentaldistribution for our 2 sample. 1 6 Keywords: galaxies:active,galaxies:clusters:intraclustermedium,galaxies:jets 5 0 . 1 0 1 INTRODUCTION formationthatispredictedbyevolutionarymodelsbutnotseenin 7 observations(e.g.Dunn&Fabian2006;Raffertyetal.2006). 1 Thejetsofradio-loudAGNconsistofplasmadrawnatrelativistic Thedynamicsofthelobesofradio-loudAGNaredependent : speedsfromthecentralregionsoftheAGN.Theplasmaistrans- v ontheirpressurerelativetothatofthesurroundingICM(Scheuer portedintothesurroundinggalaxygrouporclusterwhereitforms Xi intolobes,whichdisplacetheintra-clustermedium(ICM).Cavities 1974). In Scheuer’s models A and B the lobes are highly over- pressuredand soexpand atsupersonic rates;inmodel Ctheyare r carvedintheICMbythelobeshavebeenobservedinclustersout a toredshiftsgreaterthan0.5(Hlavacek-Larrondoetal.2012),while nearpressurebalanceandsoexpandmoregentlyandarecapable ofbeingmouldedbytheICM.Thelattermodelismoreinkeeping detailed studies of local sources have shown complex substruc- withobservedlobeshapes,butthetipmustremainover-pressured turesintheICM(e.g.Karovskaetal.2002;Fabianetal.2003)and forthelobetocontinuetogrowandsotheremaystillbesupersonic shockfrontsdrivenbythelobeexpansion(e.g.Crostonetal.2009; movementoutthroughtheICM. Shelton2011).Thesefeaturesprovidedirectevidencethatthera- dio jets are disturbing the ICM on a large scale and transferring If the expansion is supersonic, the lobes will input en- energyfromtheAGNtotheICM.Estimatesoftheenergyrequired ergy through shocks as well as through gas displacement (e.g. tocreatethecavitiesaroundthelobes,andhenceoftheenergytobe Bîrzanetal. 2004; Hlavacek-Larrondoetal. 2012). Lobe shocks dissipatedintotheICM,varywiththemethodused(e.g.Gittietal. have been seen in some observational studies, and estimates of 2012),butenthalpiestendtoliebetween1055and1061ergdepend- their Mach numbers range from 1.2 to 8.4 (e.g. Wilsonetal. ingontherichnessofthecluster(e.g.Bîrzanetal.2004).Thishas 2006; Bîrzanetal. 2008; Crostonetal. 2009; Sheltonetal. beenestimatedtobesufficienttooffsettheICMcoolingandstar 2011; Crostonetal. 2011; Worralletal. 2012; Kraftetal. 2012; Nulsenetal.2013).However,inmanycasestheuncertaintiesinthe methodsusedtoestimateMachnumbersmeanthatthesearelikely tobelowerlimitsandsothetruevaluescouldbehigher.Therate ⋆ E-mail:[email protected] of lobe expansion is therefore important in determing heat input (cid:13)c 2016TheAuthors 2 J. Inesonet al. intotheICM.Sanders&Fabian(2007)havemadeadetailedstudy surements of external and internal conditions along the jet show ofripplespropagatingthroughthePerseuscluster,andsuggestthat thatthesearemostlikelytocomefromentrainment. 20–40 per cent of thecavitypower goesintosound waveswhich FRII sources tend to be more distant so there are fewer carrytheenergyoutwardsfromthecavitiesandheattheICM.For detailed studies, but they also appear under-pressured with re- themorepowerfulFRIIlobes,estimatesoftheenergyinputtothe spect to the environment when the pressure is estimated assum- environmentthatarebasedoncavityvolumearelikelytounderes- ing equipartition (e.g. Hardcastle&Worrall 2000). Unlike FRI timatethetotalenergyinputmuchmoreseverelyandsotheusual lobes, however, many FRII lobes show X-ray emission indica- pV estimatesofcavitypowershouldbetakenaslowerlimits(e.g. tive of IC and when this used to better model the electron en- Gittietal.2012;Hardcastle&Krause2013;Peruchoetal.2014). ergy density in the lobes (assuming that the lobes are electron- dominated), the lobes tend to appear close to pressure balance Therelativisticleptonsintheradiojetsemitsynchrotronradi- with their environment (e.g. Hardcastleetal. 2002; Crostonetal. ationacrossarangeofradiofrequencies.Thetotalenergyemitted 2004;Kataoka&Stawarz2005;Crostonetal.2005;Belsoleetal. depends onboth theparticleand magnetic fieldenergies, andwe 2007). This suggests that the assumption that the lobes are pre- cannotseparatethesefactorsanddeterminetheinternallobecon- dominantly populated by relativistic electrons is likely to be rea- ditions from just the radio flux observations (e.g. Longair 2011, sonable;theremaystillbesomelowerenergybaryonspresentbut Section 16.5). We can however calculate the lobe conditions re- theycanonlyaccountforasmallamountoftheenergybudget(e.g. quiredtoproducetheobservedfluxbyassumingthatthetwofac- Hardcastle&Croston2010). torsmakesimilarcontributionstothetotalenergy–theassumption There are however two major assumptions made in the syn- ofequipartition.Thisissimilartotheminimumenergyconditions chrotron and IC calculations that we cannot resolve from ob- requiredtoproducetheobservedfluxandsowecanobtainalower servations – that the dominant relativistic particles are elec- limitontheinternallobepressure(Burbidge1956). trons/positrons, and the proportion of the lobe that is filled AsecondsourceofemissionisinverseCompton(IC),where by the particles. As discussed by Hardcastle&Worrall (2000); the relativistic particles boost photons in the lobes to X-ray fre- Hardcastleetal.(2002)andCrostonetal.(2005),iftheseassump- quencies and above, and this can be seen in X-ray observations tions are incorrect then, assuming that the synchrotron-emitting of the lobes of many FRII sources. The dominant photon field is leptons are interspersed with non-radiating particles, the internal fromCMBphotonsinthebodyofthelobes,withasmallcontribu- pressuresofthelobesarelikelytobeunder-estimated.Thiswould tion from synchrotron self-Compton (SSC) (e.g. Hardcastleetal. resultinlobesthataremorehighlyover-pressuredwithrespectto 2002). SSC is stronger at lobe hot-spots, in the knots of FRI theirenvironment. jets and very occasionally in small, compact lobes where photon As described above, lobe-tip shocks have been observed in densitiesand electron energiesarehigher (Hardcastleetal.2004; somestudies,butthetemperaturevariationsacrosstheshock can Kataoka&Stawarz 2005; Hardcastle&Croston 2010). Some IC only be isolated for strong, nearby sources. Mach numbers can emission from nuclear photons has also been observed in a few however be estimated from the ratio between internal and exter- lobesandwhenstrongthiscould makeanimportant contribution nal lobe pressure (e.g. Worrall&Birkinshaw 2006).Thismethod totheICemission.3C207,forexample,hasmuchstrongerX-ray doeshoweverneglecttherampressure,soMachnumbersobtained emissionnearthenucleusthanintherestofthelobe(Brunettietal. in this way should be regarded as lower limits, but, importantly, 2002). However, in other potential examples of nuclear emission theyallowlimitstobesetontheenergyinputfromthelobes. theeffectisnotsoclearlyvisibleandanycontributiontotheover- InthispaperwereporttheinitialresultsofaninverseComp- allX-rayfluxinthelobeisthoughttobesmall(e.g.Crostonetal. ton study of FRII radio lobes in which we look at theradio lobe 2004;Belsoleetal.2004;Crostonetal.2005). dynamics, look for evidence of energy being input into theICM, If IC emission isobserved across the lobe, this allows us to and see whether the ICM in its turn has an effect on the devel- estimatetheelectrondensityandsogainabetterestimateofinter- opmentofthelobes.InInesonetal.(2013,2015)wemodelledthe nallobeconditionsthantheassumptionofequipartition.Anumber large-scaleenvironmentsoftwosamplesofradio-loudAGNatred- ofobservational studiesandsimulationshaveconsidered howthe shifts∼0.5and∼0.1,andhereweusethesemodelstocalculatethe internalconditionsoflobesdifferfromequipartition;theirinferred ICMpressuresaroundtheradiolobesoftheFRIIgalaxiesinthose particlecontent;howtheirinternalpressurecompareswiththatof samples.WethenuseradioandX-rayobservationstomeasurethe theICM;andhowenergyistransferredfromthelobetotheICM. synchrotron and IC fluxes in the lobes. These allow estimates of ICX-rayemissionhasnotbeendetectedfromFRIlobesand internallobepressuresandlobetipMachnumberstobemadefor sotheirlobepressuresaregenerallycalculatedassumingequipar- alarge,representativesampleofFRIIlobesforthefirsttime. tition.Thesepressureestimatestendtobelessthanthatofthesur- ThroughoutthispaperweuseacosmologyinwhichH0=70 roundingICM(e.g.Hardcastleetal.1998c;Worrall&Birkinshaw kms−1 Mpc−1,Ωm=0.3andΩΛ=0.7.Unlessotherwisestated, 2000;Dunnetal.2005)whichindicatesthepresenceofapopula- errorsarequotedatthe1σlevel. tionofnon-radiatingparticlestoboostthepressure.Crostonetal. (2008) looked at the morphologies of a sample of FRI galaxies and found that those where the jets were in direct contact with 2 SAMPLE the ICMshowed a larger pressure deficit, suggesting that the ad- ditional particles are likely to come from entrainment of mate- ThesampleconsistsofthelobesoftheFRIIgalaxiesinthesamples rial from the ICM. Some detailed studies of local sources (e.g. ofradio-loudAGNatredshifts∼0.5and∼0.1usedinInesonetal. Hardcastle&Croston 2010; Croston&Hardcastle 2014) use X- (2013,2015).Table1liststheFRIIgalaxiesusedinthisstudy,and rayobservations toobtainupper limitsonthelobeICfluxwhich theirbasicproperties.Thetablesarearrangedwiththez∼0.1sub- placeslimitsonthepopulationofrelativisticleptons.Thispopula- sampleprecedingthez∼0.5subsample,andwithinthesesubsam- tionisinsufficienttoprovidetherequiredlobepressures,suggest- plesthesourcesintheindividual radiosurveysarelistedinorder ing there must also be a significant population of baryons. Mea- ofRA. MNRAS000,1–17(2016) Thedynamicsand energeticsof FRIIradiogalaxies 3 Thetwosubsamplesareasfollows: We used radio maps to define the shapes of the radio lobes, sothat wecould measure theradio and X-ray fluxfrom the syn- • The ERA sample (0.4 < z < 0.6) is a subset of the sam- chrotronandICemissionandestimatelobevolume.Again,these ple used by McLureetal. (2004), which was taken from the mapswereusedbyInesonetal.(2013,2015),andTable3contains 3CRR (Laingetal. 1983),6CE (Ealesetal. 1997; Rawlingsetal. detailsoftheradiomaps,includingreferences. 2001), 7CRS (Lacyetal. 1999; Willottetal. 2003), and TexOx- 1000 (Hill&Rawlings 2003) radio surveys. It contains 21 FRII sourcesrangingfrom3.5×1025 to4.8×1027 WHz−1 sr−1 inra- 4 ANALYSIS dio luminosity. Of these, 15 are High Excitation radio Galaxies (HERGs)and6areLowExcitationradioGalaxies(LERGs). Theaimoftheanalysiswastoinvestigatethelobedynamicsand • The z0.1 sample (0.01<z<0.2) was taken from the 3CRR particlecontentbycomparingtheobservedandminimum(equipar- survey (Laingetal. 1983) and the subsample of the 2Jy sur- tition)lobepressures,andthentousetheseresultstocomparecon- vey (Wall&Peacock 1985; Tadhunteretal. 1993) defined by ditionswithintheradiolobeswiththoseofthesurroundingICM. Dickenetal.(2008).Itcontains 32FRIIsources(23 HERGsand We needed therefore to find the internal lobe pressures, compare 9 LERGs), with radio luminosities between 1.2×1025 and 3.3× them with ICM pressures, and estimate a lower limit on the ad- 1026WHz−1sr−1. vancespeedsofthelobetips. Tofindtheinternallobeconditions,weneededtoestimatethe Anumberoflobeswereexcludedfromtheanalysisforprac- lobevolume,radioflux(fromthesynchrotronemission)andX-ray ticalreasons:becausethelobeimageswereincomplete–partially flux(fromtheICemission). off the chip or lying across chip boundaries; because they were small in angular extent and masked by nuclear emission or by a richICM;becausetheICMwasstrongandhighlydisturbedsothe 4.1 LobeshapesandICMpressures resultswerehighlydependentonchoiceofbackground;orbecause themapwasofpoorqualityorlowresolutionandthelobeshapes WeusedtheradiomapslistedinTable3tofindthepositionsofthe couldnotbedefinedwithsufficientaccuracy.Inonecasethelobes lobetips,themid-point ofthelobesandestimatethelobeshapes wereso largethat theyextended wellbeyond both themaximum andvolumes.Weexcluded thenucleus, jetsandhot-spots(which detectedICMradiusandtheR overdensityradius,makingesti- willhavedifferent electrondensitiesand magneticfieldstrengths 200 matesoftheICMpressureproblematic.Table2liststhelobesthat from the lobes) and background X-ray sources. Where possible, wereexcluded,andthepossibilityofbiasesinourconclusionsasa wemadeseparatefluxmeasurementsandvolumeestimatesforthe resultoftheseexclusionsarediscussedinSection5.7.6below.This individuallobes.FortheERAsample,however,theX-rayfluxwas left atotal sample of 37 FRIIgalaxies, 14from theERA sample generallyverylowsoweusedfluxesforthecombinedlobes.Also, (11HERGs,3LERGs)and23fromthez0.1sample(19HERGs,4 forsomesourcestherewasnocleardivisionbetweenthetwolobes, LERGs). soagainwecombinedthelobes.Detailsofthelobesarelistedin Oneofthesourcesexcludedbecauseitliesinadisturbeden- Table5. vironment,PKS2211−17(3C444),hasasurfacebrightnessdrop As can be seen from Table 3, we did not have a consistent around the lobes. A detailed study of the source (Crostonetal. set of radio maps for the sources in the samples. When possi- 2011) shows cavities and a temperature drop corresponding to a ble,weusedmapsatthelowestavailablefrequency todefinethe Machnumberof∼1.7.Wehaveincludedthissourceinthesection lobeshapes, volumesand excluded regions. However, ifthelow- where we consider Mach numbers (Sections 5.3) but not in any frequencymapswereoflowresolution,weusedhigherfrequency analysisbasedonlobeinternalconditions. maps to define the shapes, but checked with the low resolution PKS0625−53wasclassifiedasanFRIIgalaxyinInesonetal. mapstoseeiftherewereanyregionsofextendedfluxmissingfrom (2015). It was originally classified as having a Wide Angle Tail thehigherfrequencymaps. morphology(Morgantietal.1999),andconsequentlyislikelytobe WethencalculatedtheICMpressures.InInesonetal.(2013, anFRIgalaxy,butwaslaterlistedasanFRII(Dickenetal.2008). 2015), we fitted the ICM surface brightness profiles with ei- WehavefollowedMingoetal.(inpreparation)andrevertedtothe ther single β models (e.g. Cavaliere&Fusco-Femiano 1976; FRIclassification and soPKS0625−53 has not been included in Jones&Forman1984)or,whenthehostgalaxyextendedbeyond thecurrentsample. thePSFfromthenucleus, double β modelswhich takealine-of- Wherepossible,weanalysedthetwolobesfromeachsource sight projection of the single β models fitted to the two compo- separately. However, as discussed inSection 4.1, thiswasnot al- nents(Crostonetal.2008).Hereweusedthosemodelstofindthe ways possible so for some sources we combined the lobes. The electrondensityatthelobetipsandmid-points.Pressurewasthen totalnumberoflobesinthesamplewas47.14werefromtheERA obtained following the methods of Birkinshaw&Worrall (1993) sample(11HERGs,3LERGs)and33werefromthez0.1sample andCrostonetal.(2008),byconvertingtheelectrondensitytogas (26HERGs,7LERGs). densityandapplyingtheidealgaslaw–forthisweusedtheICM temperatures from Inesonetal. (2013, 2015) (Table5). The ICM mid-lobeandlobetippressuresarelistedinTable5. ThesepressuresaredependentontheICMtemperaturemea- 3 OBSERVATIONSANDDATAPREPARATION surementsandtheβ-modelfits.Sincepressurescaleswithtempera- ture,errorsinthetemperaturewouldproduceproportionallysimilar 3.1 X-rayandradiodata errorsinthepressure.Thetemperatureswereobtainedwherepos- WeusedX-rayobservationstomeasurethefluxproducedbyICin siblebyspectralanalysis.Forthez0.1sample,thesehave1σerrors theradiolobes.TheobservationscamefromChandraandXMM- thataremostlylessthan20percentofthecalculatedtemperature, Newtonandwereprocessed duringprevious studies(Inesonetal. withthehighestbeing∼50percent.TheerrorsfortheERAsample 2013,2015).ObservationdetailsarelistedinTable3. tendtobelarger,with5sourcesat∼50−70percentandonesource MNRAS000,1–17(2016) 4 J. Inesonet al. (3C427.1)withanuppererrorof∼1.6timesthecalculatedtem- possible,weusedarectangleofthesamelengthasthelobe,start- perature.Forsourceswherewecouldnotobtainatemperaturefrom ingatthesamedistancefromthenucleusasthelobeandextend- thespectrum,weestimatedthetemperatureusingthetemperature- ing radially out from the nucleus. This method was suitable for luminosityscalingrelationofPrattetal.(2009).Whenthespectral well-definedlobesindentednearthenucleus.Forsmalllobesand temperaturewasknown,theestimatewasusuallycompatiblewith lobes where the emission spread about the nucleus, we modelled itsotheestimatedtemperaturesareunlikelytobemuchinerror. thebackgroundusinganellipsesurroundingthelobe. For the majority of the sources, the β-models are a good fit We modelled the IC emission in XSPEC, using a power law to the surface brightness profiles. Thus if the electron density is coreectedforGalacticabsorption(WABS(POWER)).Wealsotried being estimated within themaximum detected radius of theICM tofitathermalmodel(APEC)incasetherewasacontributionfrom then it is likely be accurate. This is the case at mid-lobe for all theshockedICM,butthisonlygaveanimprovedfitforonesource but 7 lobes, and 3 of those are less than 10 per cent beyond the –3C452.ThissourcehasbeenstudiedindetailbySheltonetal. detectedradius.11lobeshavethelobetipbeyondtheICMdetected (2011)usinganXMM-Newtonobservation;weobtainedcompati- radius (although 4 of these are less than 15 per cent beyond the bleresults.Wethenobtainedthefluxdensityat1keVbyrefitting detectedradius).Thusthemajorityofthedensityestimatesshould themodelusingtheCFLUXcomponent convolvedwiththepower beestimatedwellfromthesurfacedensityprofile. lawmodel. Forthelobesexteningbeyondthemaximumdetectedradius, Weassumedforallsourcesthattheelectrondistributionfol- thedensityestimatesdependonthequalityofthefitoftheβ-model lowedapowerlawwithanelectronenergyindexδ=2.4(spectral extrapolation.Ifthisispoorthenthedensitycouldbeconsiderably indexα=0.7)andminimumandmaximumenergiesdefinedbythe inerror.For9oftheselobes,thelower1σerrorboundiscloseto Lorentzfactorsγmin=10andγmax=105.Theseassumptionsare zero.Theworstcaseis3C321,whichhassmalllobeswiththemid- discussedinSections5.7.2and5.7.3. lobe position at nearly threetimesthe maximum detected radius, Forsomeofthesourceswithlowcounts,wecouldgetanac- andisalsoinasparseICMwithasteepβ-modelwhichhaserrors ceptable fit from either a power law or a thermal model, but the on both β and the core radius that cover most of their expected temperaturefromthethermalfitwasalwayslow–usuallylessthan ranges.Ifwereplacetheβ-modelparametersfor3C321withthe theICMtemperature–sowasunlikely tobeacontributionfrom medianvalues,whichgiveamuchlesssteepβ-model,thedensity shockedgas.Inthesecasesweusedthepowerlawfit.Itispossible estimateisinceasedbyafactorof∼7. thattherecouldbeathermalcontributionfromtheICMduetoin- Tosummarise,sincethemajorityofthelobesinoursamplelie completebackgroundsubtraction,particularlyforthesourceswith withinthemaximumdetectedradiusoftheICM,theerrorsintro- lobe emission around the nucleus. Neglecting this could result in ducedbyuncertaintiesintheICMtemperatureanddensityshould the power law normalisation being too high, leading to high flux besmall.However,ICMpressureestimatesforthefewlobeslying andinternalpressureestimates.Wethereforelookedatthequality wellbeyondthedetectedradiuscouldbesubstantiallyinerror. ofthebackgroundsubtractionforaselectionofsourceswithgood powerlawfits,andfoundonlytwosourcesforwhichwecouldfit alowtemperaturebackgroundcontribution–oneoftheselowered 4.2 Radioflux thefluxbyslightlymorethanthe1σerror;theotherhadamuch smaller effect. This suggests that our background modelling was Wemeasuredtheradiofluxdensitywithinthedefinedlobeshape ingeneralgoodanderrorsinthemodellingshouldnothavemuch withthenucleus,jetsandhot-spotsexcluded.Forthebackground, effectonthelowcountsources. weselectedaregionofsimilarlengthtothelobeinanareaofthe Formanysources,therewereinsufficientcountstogetagood mapclosetothelobebutoutsidethelobeemission. fitforthepower law.ForthesewefollowedCrostonetal.(2005) Since the the commonest map frequency was 1.4 GHz, we in assuming a photon index of 1.5. If the photon index from the usedmapsatthisfrequencywhenavailabletoobtaintheradioflux fit was much different from this we fixed it at 1.5 and fitted the density.Whenweonlyhadhigherfrequencymaps,weusedpub- modeltoobtainthenormalisation.Iftherewereinsufficientcounts lishedfluxdensitymeasurementsat408MHzfromtheMolonglo ReferenceCatalogofRadioSources1 orat178MHzfromtheon- to fit the model, we used an unbinned spectrum with the photon line3CRRcatalogue2.Nuclearandhot-spotemissionhasnotbeen indexagainfixedto1.5.Finally,ifthenetcountsinthelobewere lessthanthreetimesthebackgrounderrorweusedthreetimesthe excluded fromthesemeasurements, but thefluxmeasurements at frequencies below ∼500 MHz are expected to be dominated by backgrounderrorasanupperlimitonthecountsandagainuseda photon index of 1.5toobtain thenormalisation. Table6contains lobe emission for the LERGs and NLRGs. We split the low flux the radio and X-ray flux densities for the sources, together with density measurements between the lobes in the same ratio as the detailsofthepowerlawfitsfortheX-rayemission. fluxdensitiesfromthehigherfrequencymeasurementsaswasdone Inall,weobtainedagoodfitforthephotonindexfor23ofthe by Crostonetal. (2005). The frequencies used for the radio flux 47lobes,andobtainedanormalisationwithanindexof1.5for18 densitymeasurementsaregiveninTable6. lobes.WedidnotdetectX-rayemissionintheremaining6lobes. 4.3 X-rayflux 4.4 Internallobeconditions To obtain the X-ray flux densities, we generated spectra for the WeusedtheradioandX-rayfluxdensities,togetherwiththelobe lobesusingSPECEXTRACT.Forthebackground,weneededtosam- volumes,toobtaintheequipartitionandobserved(inverseComp- pleregionsoftheX-raybackgroundandICMrepresentativeofthe ton)magneticfieldsandelectronenergydensities.Forthiswefol- loberegion,andinsomecases,thewingsoftheAGNPSF.Where lowed the method described by Crostonetal. (2005), using the SYNCH code (Hardcastleetal. 1998a) to find the magnetic and 1 http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=VIII/16 electronenergydensitieswithinthelobes.SYNCHmodelsthepop- 2 http://3crr.extragalactic.info/ ulationofrelativisticelectronsexpectedfromtheinputradiospec- MNRAS000,1–17(2016) Thedynamicsand energeticsof FRIIradiogalaxies 5 trum,calculatingtheequipartitionconditionsandtheICX-rayflux inTable7–thevalueforeachsourceisthesumoftheindividual expectedfromthesynchrotronandCMBphotonfields.Havingde- jetpowersforthatsource.Theerrorswereobtainedbypropagating finedtheequipartitionconditions,theusercanthenmodifythelobe theinternallobepressureandtheMachnumbererrors. magneticfield,iteratinguntilthepredictedX-rayfluxmatchesthe ThelobetipMachnumbervariesduringthelifetimeofthera- observed flux within the lobe. The electron density from SYNCH diojets–thisisdescribedbrieflyinSection5.3andinmoredetail then gives the magnetic field strength and internal lobe pressure. in, for example, Hardcastle&Krause (2013) – so the timescales Themodelassumesthattheparticlecontentofthelobesisdomi- calculatedhereareestimates.Moreaccurateestimatescouldbeob- natedbyrelativisticelectrons:thisassumptionisdiscussedinSec- tainedbytakingintoaccount howtheMachnumbersvaryduring tion5.1. thelifetimeofthesource. Table 7 contains the equipartition and observed magnetic fieldsandpressureswithinthelobes.Thequotederrorsontheob- served fieldand pressure are derived from theX-ray flux density error,sodonotincludethesystematicerrorsdiscussedbelow(Sec- 5 RESULTSANDDISCUSSION tion5.7). 5.1 Deviationfromequipartition Figures 1 and 2 show the ratio between the observed (IC) and 4.5 Lobe-tipMachnumber equipartitionmeasurementsofthemagneticfieldstrengthsandof Wethenusedacomparisonoftheinternalandexternallobepres- the total internal energies for the sample, with and without the sures at the tip to estimate the lobe tip Mach number M using upper limits. The observed magnetic field strength is lower than theRankine-Hugoniotconditions,whicharederivedfromthecon- theequipartitionfieldstrengthfor allsources, suggesting thatthe servationofmass,momentumandenergyacrossthediscontinuity lobescontainelectronenergydensitiesgreaterthanwouldbeim- (e.g.Worrall&Birkinshaw2006).Usingtheequationforthespeed plied by the minimum energy condition. All lobes are however of sound inanideal gas, assuming equal pressurethroughout the within one order of magnitude of equipartition in terms of field lobeinterior,andassumingthattheshockedshellsurroundingthe strengthwithamedianratioofobservedtoequipartitionfieldsof lobe isinpressure balance withthelobe sothat the internal lobe 0.4.Hardcastleetal.(2002)andCrostonetal.(2005)foundsimilar pressurecanbeusedasaproxyfortheshockedgaspressure,this results;wehavenowconfirmedthesewithalarger,morerepresen- gives tativesample. Similarly, the observed internal energy is higher than the equipartition internal energy for all sources and all the observed 1 P M2= (Γ+1) i −(1−Γ) (1) energiesarewithinoneorderofmagnitudeoftheequipartitionen- 2Γ Po ! ergies.Themedianoftheratioofobservedtoequipartitioninternal whereΓistheadiabaticindex(5/3foramonatomicgas),andP and energies is 2.4. As with all the calculations in this chapter, these i Po arethepressuresinsideandoutsidethelobe.Asnoted above, resultsassume that there are no protons inthe lobes and that the thejetrampressureisnotincludedinthecalculationsoM willbe lobesarecompletelyfilledwithsynchrotron-emittingparticles.As alower limit–thisisdiscussed inSection5.7.9. Inaddition, the discussed by Crostonetal. (2005), the relativelyclose agreement lobe internal pressure calculations assume that there are no non- betweentheequipartitionandobservedmagneticfieldscalculated radiatingparticles(e.g.protons)inthelobes.Iftherewereasignif- assumingthelobesaredominatedbyrelativisticelectronssuggests icantprotonpopulation,thiswouldalsoincreasetheinternalpres- thatthelobesarenotenergeticallydominatedbyprotons.Ifthere sureandconsequentlytheMachnumber. wereprotons inthe lobes, the observed internal energy would be TheMachnumbersareincludedinTable7.Theerrorswere higherthanthevaluescalculatedhereandthelobeswouldbemore obtained by propogating the internal and external lobe pressure over-pressuredrelativetotheexternalenvironment. errors, which in their turn come from the X-ray flux density er- rors and the Bayesian estimates of the ICM β-model parameters (Inesonetal.2015)respectively. 5.2 Lobepressurebalance Wehaveexcluded sources withupper limitsfor theexternal ICMpressurePo.Notethatbecausenearlytwo-thirdsofthelowlu- Figure3showstheobservedpressureplottedagainsttheexternal minosityLERGsinouroriginalsamplesareFRIsources,wehave pressureatthelobetipandatmid-lobe.Pressurebalanceisshown Machnumbersforonly6LERGsources(9lobes,including2with as a dotted line. If the lobes are growing they should be over- upperlimitsforP). pressured atthetip,andthisisthecaseforall thesources inour i sampleexcept 3C 326(whichhasthelargestlobesinour sample byseveralhundredkpc,sotheexternalpressureisfromanextrap- 4.6 Jetpower olatedβ-model).Sincetheeffectsofthejetrampressurehavenot been included, the internal lobe-tip pressure will be higher than Having obtained the Mach number, we calculated the speed of the observed lobe pressure calculated here, and so the observed soundintheICMusingcs= ΓmkT wherekistheBoltzmancon- pressures at the tip should be regarded as lower limits. The true q stant,andtheparticlemassmis0.6timesthemassofthehydrogen tippressure could plausibly beabove pressure balance forall the atom (Worrall&Birkinshaw 2006). This then gives the advance sources.Ourmedianlobe-tippressureratioof4.3lieswellwithin speedofthelobeand,fromthelengthofthejet,anestimateofτ, therangefoundinthesimulationsofHardcastle&Krause(2013); theageofthejet.AssumingtheworkdoneindisplacingtheICM our spread is greater but we have a wider range of environments issimilar totheinternal energy of thelobe(Hardcastle&Krause thanwereusedinthesimulations. 2013,2014),thetime-averagedjetpoweristhenQ ∼2E/τwhere Atmid-lobe,thelobesaredistributedaboutthepressurebal- jet i Ei istheinternalenergydensityofthelobe.Jetpowersarelisted ancelinewithamedianPobs/Pextof1.8–Crostonetal.(2005)and MNRAS000,1–17(2016) 6 J. Inesonet al. 16 16 HERG HERG LERG 14 14 Median 12 12 10 10 es es c c our 8 our 8 o. s o. s N N 6 6 4 4 2 2 0 0 0.2 0.5 1 0.2 0.5 1 Observed/equipartition magnetic field Observed/equipartition magnetic field (no lower limits) Figure1.Theratioofobserved(calculatedfromtheICemission)toequipartitionmagneticfieldstrengths,separatedintoexcitationclasses.HERGsareshown insolidblack,LERGsshaded.Thedottedlineshowsthemedianratio.Thelefthistogramincludesallsources;therighthistogramexcludeslowerlimits. 16 16 HERG LERG Median 14 14 12 12 10 10 es es c c ur ur o. so 8 o. so 8 N N 6 6 4 4 2 2 0 0 1 10 1 10 Observed/equipartition internal energy Observed/equipartition internal energy (no upper limits) Figure2.Theratioofobserved(calculatedfromtheICemission)toequipartitioninternalenergiesforthelobes,separatedintoexcitationclasses.HERGsare showninblack,LERGsshaded.Thedottedlineshowsthemedianratio.Thelefthistogramincludesallsources;therighthistogramexcludesupperlimits. Belsoleetal.(2007)alsofoundFRIIlobestobenearpressurebal- contain non-radiating particles such as protons to provide addi- anceatmid-lobe.Thelowestratioofobservedtoexternalpressure tionalpressure.However,althoughweusedthesameobservations is0.18for3C326,whichalsohasthelowestlobe-tippressureratio. forthesesourcesasBelsoleetal.(2007),weobtainedlowerexter- Thereareonlythreelobesmorethanoneorderofmagnitudeabove nalpressures,andalthoughthesetwoLERGsoccupyricherenvi- pressurebalance. ThelowerlimitPKS0034−01 (Pobs/Pext=41) ronmentsthananyoftheHERGsinoursample,ourpressureratios hassmalllobes(42kpclong)somaybeayoungsource.3C321, forthemdonotstandoutfromtherestofthesample. which has very high pressure ratios of well over 100, has small Thelowestpressureratiolobesinoursamplearealsofroma lobes(50and90kpclong) 280kpcfromthenucleus. Itismerg- LERG source (3C 326), although the pressure ratios of the other ingwithaneighbouring galaxyandisinadisturbedenvironment LERG sources (except the lower limit PKS 0034−01 mentioned (Evansetal.2008).Theβ-modelhassteep,poorlyconstrainedpa- above)liewithintherangeofresultsfortheHERGs.Themedian rameters, giving very low ICM pressures at mid-lobe and so the pressureratiosare1.9and0.9fortheHERGsandLERGsrespec- extrapolationofthemodeltoobtaintheexternallobepressuresis tively and a median test shows no evidence for a difference be- likely tobe imprecise. Asdiscussed inSection 4.1, replacing the tween the HERG and LERG mid-lobe pressure ratios (χ2 =0.7, β-model parameters withthe median model parameters increases p=0.4).Ourpressureestimatesassumethattheradiatingparticles themid-lobeexternalpressureestimateconsiderably. inthelobesareleptons;thefactthatourLERGresultsdonotstand Belsoleetal. (2007) had only two LERGs in their sample out from the HERG results suggests that the two types of radio (3C427.1and3C200),butfoundthatbothoftheseappearedun- galaxyhavesimilarlobecontents,andthereforethattheapparent derpressured at mid-lobe, giving the possibility that LERG lobes differenceinFRIandFRIIparticlecontentdiscussedinSection1 MNRAS000,1–17(2016) Thedynamicsand energeticsof FRIIradiogalaxies 7 isrelatedtolarge-scalemorphologyandenvironmentalinteraction For example, the highest Mach number in the examples listed in ratherthandifferencesincentralengine. Section1(8.4,Crostonetal.2009)comesfromtheinnerlobesof Ourresultsthereforeshownoevidenceofasystematicdiffer- CentaurusA,whichareonlyafewkpclong. encebetweenHERGandLERGlobes,butitshouldbenotedthat, Takingthesepointsintoaccount,itisunderstandablethatthe sincethemajorityofFRIIgalaxiesinoursampleareHERGs,there Machnumbersforour matureFRIIsampleshouldhaveasimilar areonly10LERGlobes(including3upper limits)inour sample rangetothoseobservedinlocalFRIgalaxies. of44lobes. 5.3.2 HERG/LERGsubsamples 5.3 LobetipMachnumber OurHERGsubsamplehasawiderrangeofMachnumbersthanthe LERGsubsample,andthemedianMachnumberfortheLERGsis TheMachnumbersareplottedinFigure4.AsmentionedinSec- lowerthanthatoftheHERGs.However,amediantestdoesnotre- tion4.5,these Mach numbers neglect the jetram pressure. How- jectthenullhypothesisthatthemediansarethesame(χ2=0.26, ever,wediscussthepossiblemagnitudeoftherampressureinSec- p=0.6),andasmentionedabove, thisgivesusnoreasontosup- tion5.7.9andconcludethatitislikelytobesmallcomparedwith pose that the lobes of the two types of radio galaxy should have thelobeinternalpressure.WethereforeregardtheseMachnumbers differentdynamics.ThedifferenceinrangeofMachnumbersprob- asareasonableestimateofthetruevalue. Ourresultsfor3C452 ablyreflectsthedifferentdistributionofenvironments(Inesonetal. aresimilartothoseofSheltonetal.(2011),whoobtainedaMach 2015). numberof1.6forthecombinedlobesofthatsource. The two lobes with Mach numbers greater than 10 are both from 3C 321, which, as mentioned above, has very low, uncer- 5.3.3 Particlecontent tain ICM pressures. Replacing the ICM pressures with pressures estimatedusingthemedianβ-modelparametersreducestheMach As stated before, these Mach numbers assume that the lobes do numbersofthetwolobesto∼5and∼7–stillhighbutnotunrea- not contain protons. Thepresence of asignificant proton popula- sonable.Wehavenotincluded3C321inanyfurtherplots,butall tionsuchasisthoughttoexistinFRIlobeswouldincreasethelobe statisticshavebeencalculatedwithandwithout3C321. internalpressuresubstantially.Wethereforelookedattheeffectof Without 3C 321, themaximum Mach number is4.8and the aten-foldincreaseininternalpressureonourmedianMachnum- medianis1.8,sotheresultsofourlargesampleliewithinthoseof ber andfound that thiswould raiseit to5.7–near thetopof the theindividualandsmall-samplestudieslistedinSection1–ofthe range of Mach numbers found in the observational studies listed eightexampleslistedthere,onlytwosourceshavelobesadvancing in Section 1. It is unlikely that our sample median would be so atmorethanMach2.Ourmedianalsolieswithintherangeofsim- highcompared withtheMachnumbers calculated fromobserved ulation results of Peruchoetal. (2014) for well developed lobes, shocks,whichwouldsuggest thatanyprotoncontentislowcom- supportingtheirchoicesofconditions. paredwiththatofFRIlobes. 5.3.4 Machnumberandradioluminosity 5.3.1 MagnitudeoftheMachnumber It would be useful if the lobe dynamics, and consequently ener- Themajorityoftheexamples inSection1areFRIgalaxies, with getic input could be inferred directly from the radio and/or envi- twoofmixedmorphologyandonlyonepureFRII.Itmightbeex- ronmentproperties.Asafirststepwesearchedforanyrelationship pected that the more powerful FRII galaxies should have higher between radio luminosity and Mach number (Figure 5). The plot Mach numbers, but both backflowing plasma and changes in jet shows no sign of acorrelation, and this isconfirmed by a gener- direction would disperse the jet momentum over a wider region alisedKendall’sτtest(Table8). than thejet radiusand would reduce the Mach number fromthat expected for a static jet. Evidence that the latter process is com- monplaceisfoundinobservationsofmultiplehot-spotsandofoff- 5.3.5 MachnumberandICMrichness setsbetweenthehot-spotsatdifferentfrequencies(e.g.Laing1981; Hardcastleetal.2007),andMingoetal.(inpreparation),looking We then compared Mach number with ICM richness (Figure 7, attheextendedemissioninthe2Jysources,foundseveralexamples left),usingtheICMX-rayluminositiesfromTable5.Inthiscase inthesourcesusedinthisstudy. Machnumber appearstodeclinewithincreasingICMluminosity WhencomparingthepropertiesofFRIandFRIIradiogalax- fortheHERGsubsample, whiletheLERGsourcesarelimitedto ies,italsoneedstoberememberedthat,asmentionedinSection1, abandofICMluminositiesatlowMachnumber.Thegeneralised FRIgalaxiesarethoughttoentrainmaterialfromtheICMwiththe Kendall’s τtests(Table 8) show astrong negative correlation for amountofentrainmentbeingrelatedtotherichnessoftheenviron- boththefullsampleandtheHERGsubsample.Thecorrelationis ment. Thisintroduces anon-radiating proton population, increas- weakened slightlywhentheuncertain 3C 321Mach numbers are ingtheinternalpressureofthejetandresultinginanFRIgalaxy removed, but isstillstrong. There isquite substantial scatter –at having a higher jet power than an FRII galaxy of the same radio leastsomeofthisislikelytobeduetosystematicerrorswhichare luminosity.ThusitistobeexpectedthatFRIIMachnumberswill discussedinSection5.7below. ingeneralbelowerthanthoseofFRIswithsimilarluminosities. ItmustbenotedhoweverthatICMexternalpressurewasused Inaddition,theexpansionspeedofaradiolobewilldependon intheMachnumberestimates.Ascanbeseenfromtheright-hand itsstageofevolution(e.g.Heinzetal.1998;Hardcastle&Krause plotinFigure7,lobe-tipexternalpressurecorrelatesverystrongly 2013).Thejetextendsrapidlyinitsearlystagesbeforeexpanding withICMluminosity.Sincebothfactorshaveadependenceonred- sideways as the shocked material at the tip starts to spread. The shift,weusedapartialKendall’sτtesttoconfirmthatthecorrela- Machnumber isthereforeexpectedtobehighforyoungsources. tionwasnotdrivenbyredshift(Table8). MNRAS000,1–17(2016) 8 J. Inesonet al. 10−11 10−11 a) a) P P e ( e ( ur ur ess10−12 ess10−12 pr pr e e b b o o C) l C) l d (I10−13 d (I10−13 e e v v er er Obs z0.1 LERG Obs z0.1 LERG z0.1 HERG z0.1 HERG 10−14 EERRAA LHEERRGG 10−14 EERRAA LHEERRGG LERG u/l LERG u/l HERG u/l HERG u/l Pext=Pobs Pext=Pobs 10−15 10−14 10−13 10−12 10−11 10−15 10−14 10−13 10−12 10−11 External lobe-tip pressure (Pa) External mid-lobe pressure (Pa) Figure3.Internallobepressurevsexternal(ICM)pressure,atthelobetip(left)andatmid-lobe(right).EmptysymbolsareLERGs,withdiamondsshowing thez0.1samplesourcesandcrossestheERAsources.BlacksymbolsareHERGswithcirclesshowingthez0.1sourcesandstarstheERAsources.Arrows denoteupperlimits. 16 HERG z0.1 LERG HERG u/l z0.1 HERG 14 LERG ERA LERG LERG u/l ERA HERG Median LERG u/l HERG median HERG u/l 12 LERG median 10 z0.1 HERG p 10 be ti No. sources 8 number at lo 6 h PKS 2211-17 c a M 4 1 2 0 1 10 0 0.1 0.2 0.3 0.4 0.5 0.6 Mach no. at lobe tip Redshift Figure4.Ontheleft,Machnumberatthelobetip.HERGsareshowninsolidblackandLERGsshaded,HERGupperlimitsaresolidgrey,LERGupper limitsarewhite.TheHERGandLERGmedianMachnumbersareshownbydashedanddash-dottedlinesrespectively,andtheoverallmedianbythedotted line.Ontheright,Machnumberatthelobetipplottedagainstredshift.SymbolsasinFigure3.ThetwoMachnumbersgreaterthan10arefromthelobesof 3C321,discussedinSection5.3 Itseemslikelythatlobe-tipexternalpressureisthefactordriv- Machnumberandenvironmentrichness,butmoreworkisneeded ing the correlation between Mach number and ICM luminosity. toeliminatepotentialconfoundingfactors. However, ICM temperature is related to ICM luminosity and is also used in the pressure calculations so is a potential confound- Thatthereshouldbesomedependenceoflobeadvancespeed ing factor. Temperatures were obtained wherever possible from onthedensityoftheenvironmentistobeexpectedandsoitseems the ICM spectrum, but when there were insufficient counts they reasonablethatalobeinaweakenvironmentshouldadvancemore were estimated using the luminosity-temperature scaling relation quicklythanoneinarichenvironment.However,theenvironment of Prattetal. (2009). Wetherefore removed these estimated tem- densityreduceswithdistancefromthecentreofthecluster.Inthe peraturesfromthesampleincasetheybiassedtheresults;thecor- simulations discussed in Hardcastle&Krause (2013), the jet ini- relation between Mach number and luminosity was considerably tiallyextendsrapidlyandthenslowsasitstartsforminglobes.Then weakenedbutwasstillpresent(Table8).Thenwecheckedtosee asthejettipreachesthesparserenvironmentbeyondtheICMcore ifMachnumberwasrelatedtothespectrum-derivedICMtemper- radiusitspeedsupagain.Thusevenifallotherfactorsremainthe atures.AscanbeseenfromFigure6,thereisnosignofacorre- sametheMachnumberwillnotbeconstantthroughoutthelifeof lation.Thusitseemspossiblethatthereisarelationshipbetween theradiogalaxy.Moreworkisthereforeneededtolookathowthe Machnumbersofjetsinenvironmentsofdifferentrichnesschange MNRAS000,1–17(2016) Thedynamicsand energeticsof FRIIradiogalaxies 9 5 jet powers found by Bîrzanetal. (2008),Cavagnoloetal. (2010) z0.1 LERG z0.1 HERG andO’Sullivanetal.(2011),andhaveaverysimilarrangetothe EERRAA LHEERRGG FRII sample of Godfrey&Shabala (2013) and the lower regions LERG u/l ofthesampleofpowerfulFRIIsofDalyetal.(2012).Oftheseven 4 HERG u/l sources we have incommon withGodfrey&Shabala (2013) and p Dalyetal. (2012), we obtained similar Qjet estimates for all but e ti onesource(3C321–seeSections5.2and5.3). b o 3 at l InFigure8(right)weshowtherelationshipbetweenjetpower o. andradiopower.Acorrelationisexpectedasthetwoquantitiesare n ch not completely independent: thejet power estimateshave acom- a M 2 plicateddependenceonthemeasuredradiofluxandredshift.How- PKS 2211-17 ever, weare interestedin comparing the jet power measurements andtheslopeandnormalisationoftherelationwithothermethods. Wefindastrongcorrelationinthepresenceofacommonrelation- 1 shipwithredshift(z=4.11,p<0.0001–Table8).Sincetherewere onlytwoupperlimits,weexcludedtheseandcalculatedtheregres- 1025 1026 1027 sionlineusingtheBCESregressionmethod(Akritas&Bershady Radio luminosity (W/Hz/sr) 1996) so that we could include the efect of the calculated errors. ThisgaveQ =5×1039L0.89±0.09whereQ isinWattsandL Figure5.Radio luminosityplotted againstMachnumber.Symbolsasin jet 151 jet 151 is the 151 MHz radio luminosity in units of 1028 W Hz−1 sr−1. Figure3. Willottetal.(1999),assumingtheFRIIlobeswereself-similarand atminimumenergy,obtainedtherelation Q =3×1038f3/2L6/7 jet 151 where f is a factor expected to depend on the properties of the z0.1 5 ERA sourceanditsenvironmentandpredictedtoliebetween1and20. ThusourQ −L relationshiphasaverysimilarslopetothatob- jet 151 tainedbyWillottetal.,butitrequires f ∼6.5tomatchthenormal- isation.Dalyetal.(2012)foundafactorof f ∼4fortheirsample 4 of FRII galaxies, and Turner&Shabala (2015) found that a fac- torof f =5wasneededtofittheirdynamicalmodelresultstothe no. theoreticalmodel. ch 3 a Since the equation derived by Willottetal. (1999) assumed M minimum energy conditions for the lobes, which give very simi- lartotalinternalenergiestotheequipartitionconditions,wecalcu- 2 latedthejetpowersresultingfromanassumptionofequipartition PKS 2211-17 andobtainedaregressionlineQ =2×1039L1.0±0.07.Thediffer- jet 151 enceinthenormalisationsofourtworelationsiscompatiblewith 1 ourmedianratioofobservedtoequipartioninternallobeenergyof 2.38.Thenormalisationforourequipartitionequationishowever 1 10 stillhigherthanthatofWillottetal.byafactorof6.7(f ∼3.5). Temperature (keV) Another potential contribution to f comes from the viewing Figure6.MachnumbervsICMtemperatureforthesourceswithtempera- angleofthelobes;assumingthisisrandomgivesameanfactorof turescalculatedfromtheICMspectrum.Solidsquaresaresourcesfromthe ∼1.4(Willottetal.1999)andreducestheunexplainedcontribution z0.1sampleandemptysquaresfromtheERAsample. to f to∼2.5. At least some of this can be attributed to the environments of the radio galaxies. Willottetal. (1999) use a sample of rela- asthelobesgrowandage,andhowtheyareaffectedbyotherfac- tivelydistantquasarswhichhaverelativelyrichenvironments;us- torssuchasjetpower. ing a particle density more typical of low redshift FRII galaxies Ifthisnegativecorrelationisgenuine,itwillhavecontributed reducestheirestimateoftheageofthesystembyafactorof∼0.5, to the lack of high Mach number LERGs – since ICM luminos- thusincreasingthejetpowerbyafactorof2.Hardcastle&Krause itycorrelateswithradioluminosityforLERGs(Inesonetal.2013, (2013) report a similar dependency on environment in their sim- 2015)andthelowradioluminosityLERGsmostlyhaveFRImor- ulations. Although the slope of their time/jet length relationship phology,theLERGlobesremaininginthesampleareforthemost eventually matches the slope of the theoretical relationship used part in relatively rich environments and so would be expected to by Willot et al, the normalisation is dependent on the properties havelowMachnumbers. oftheICM.Willottetal.useasimplepowerlawrelationshipfor the change in ICM density with radius rather than the now more commonly usedisothermal β-model, sotheir time/jet-lengthrela- 5.4 Jetpower tionshipdoesnotincludetheeffectsofthechangesinICMdensity Figure8(left)showsjetpower plottedagainst redshift.Sincethe profilearoundthecoreradius.Soforasourcewithβsimilartoour sample istaken fromflux-limitedsurveys, thestrong redshift de- median(andtothevalueofβusedbyWillotetal.),Hardcastleand pendence is expected. Our jet powers, being for FRII morphol- Krausseobtained sourceagesclosetothetheoreticalrelationship ogysources, lieinandabove theupper partof theranges ofFRI fortheir80kpccoreradiusbuttheagewasreducedbyalmostone- MNRAS000,1–17(2016) 10 J. Inesonet al. 5 z0.1 LERG z0.1 LERG z0.1 HERG 10−11 z0.1 HERG ERA LERG ERA LERG ERA HERG ERA HERG LERG u/l LERG u/l HERG u/l HERG u/l 4 a) e (P10−12 ur Mach no. 3 be-tip press10−13 o al l 2 n PKS 2211-17 xter E10−14 1 10−15 1041 1042 1043 1044 1045 1041 1042 1043 1044 1045 ICM luminosity (erg/s) ICM luminosity (erg/s) Figure7.ICMX-rayluminosityplottedagainstMachnumber(left)andlobe-tippressure(right).SymbolsasinFigure3. thirdfora40kpccoreradius–themedianforoursample–which ted in Figure 9. Note that 3C 321, which has two small lobes a wouldraisethejetpowerbyafactorof1.5. great distance from thenucleus, hasbeen excluded –the ratioof However, the normalisations obtained in the simulations in- lobe length to lobe tip distance for the rest of the sample ranges cludetheeffectoftheinitialrapidgrowthofthejet,which,asdis- from0.18to0.25whereasthoseforthe3C321lobesare0.05and cussedinHardcastle&Krause(2013),isnotmodelledaccurately, 0.08. sothisfactorof1.5maynotbeaccurate.Butthesesimulationsdo Thereisaclear correlation betweenthetwofactors. Theer- confirmthatthejetagesofFRIIgalaxiesinweakerenvironments rorsareunknownbutarepresentinbothfactors,sowecalculated thanthoseusedbyWillottetal.(1999)arelikelytobeshorterthan Ordinary Least Squares (OLS) regression lines for both volume theirtheoreticalpredictionandsowillcontributetoourhighernor- vslengthandlengthvsvolumeandtookthebisector (Isobeetal. malisationoftheQ −L relationship.Also,sinceourcoreradii 1990) – this gives V ∝L2.51±0.02. The three regression lines are jet 151 coverawiderange(seeTable4),thedifferencesinthedistancethat shown in Figure 9. They all have a slope of less than 3 which thejettravelsbeforetheICMdensitydropswillcontributetothe suggeststhelobesdeviateslightlyfromself-similarity.Departures scatterinourrelationship. fromself-similarityhavealsobeenreportedbyMullinetal.(2008), OurestimatesofjetagearebasedonthecurrentMachnum- whofoundthattheaxialratioreduceswithincreasinglobelength. berofthelobetipandsodonottakeintoaccounteithertheearly This result fits with our previous results showing that the lobes growthofthejetorthevariationsduetotheICMdensityprofile. areonly partiallyover-pressured, and once again supports Model Nevertheless,ourestimatesofjetpowerfromlobeinternalenergy C from Scheuer (1974). It also supports the simulation results of andlobe-tipMachnumber producea Qjet−L151 relationshipthat Hardcastle&Krause(2013). issimilartothetheoreticalrelationshipdevelopedbyWillottetal. oncetheeffectsofthehigherelectronenergydensitiesandthedif- ferentrichnessoftheICMenvironmentshavebeentakenintoac- count. 5.6 Implications We caution that radio luminosity isonly expected, from nu- mericalmodelling,toberoughlyconstantwithtimeoncethesource As found by other researchers (e.g. Hardcastleetal. 2002; hasgrowntoasizecomparabletothehostenvironmentcoreradius Isobeetal. 2002; Crostonetal. 2004; Isobeetal. 2005; (e.g. Heinzetal. 1998; Hardcastle&Krause 2013; Englishetal. Kataoka&Stawarz 2005; Crostonetal. 2005), the internal 2016). During the early stages of a source’s evolution the radio energies and pressures of the lobes are near but slightly above luminosity must necessarily depend on source age as well as jet equipartition, reflecting the contribution of a higher electron power.Thenatureofourselectionmeansthatwearebiasedagainst density than required by the minimum energy conditions. If small, young, faint sources and so we would expect to recover a there were a sizeable population of non-radiating particles in the simplejetpower/radioluminosityrelationshipinoursample. lobes, as typically seen in FRI radio galaxies (e.g. Crostonetal. 2008),wewouldexpectalargerdeparturefromequipartition(e.g. the electon energy densities in FRI lobes are typically a large factorbelowequipartition).Thelobeswereallwithinonedecade 5.5 Lobevolumes of equipartition, which suggests both that there is not a large Finally, we compared the length and volume of the radio lobes. populationofenergeticprotonsandthatthefillingfactormustbe If the lobes are self-similar, V ∝L3 where V is the lobe volume close to unity. Importantly, this means that (i) inverse-Compton and Litslength(Kaiser&Alexander 1997);ifhowever thelobes analysisprovidesareliablemeasureofthetotalinternalenergyfor arebeingpartiallymodifiedandconstrainedbytheICM,thenself- individual FRIIradiogalaxies, and(ii) for samplesof FRIIradio similaritywouldbebroken(Hardcastle&Krause2013). galaxies without X-ray data, the total energy (and magnetic field Theaveragelobelengthandvolumeforeachsourceareplot- strength)canbeestimatedreliablyfromradioobservationsalone, MNRAS000,1–17(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.