ebook img

A Remark on an Integral Characterization of the Dual of BV PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Remark on an Integral Characterization of the Dual of BV

A REMARK ON AN INTEGRAL CHARACTERIZATION OF THE DUAL OF BV NICOLAFUSCO 7 1 DipartimentodiMatematicaeApplicazioniRenatoCaccioppoli,Universita`degliStudidi 0 NapoliFedericoII,Napoli,Italia 2 n a J DANIELSPECTOR 3 DepartmentofAppliedMathematics,NationalChiaoTungUniversity,Hsinchu,Taiwan 1 ] A ABSTRACT. Inthispaper,weshowhowunderthecontinuumhypothesisonecan obtainanintegralrepresentationforelementsofthetopologicaldualofthespace F offunctionsofboundedvariationintermsofLebesgueandKolmogorov-Burkill . integrals. h t a m 1. INTRODUCTIONANDMAINRESULTS [ Let Ω Rd be open and denote by BV(Ω) the set of functions of bounded ⊂ 1 variationinΩ,thatis,thosefunctionsu L1(Ω)withfinitetotalvariation: ∈ v 4 (1.1) Du(Ω):= sup udivΦ<+ . | | ˆ ∞ 7 Φ∈Cc1(Ω;Rd), Ω 5 kΦkC0(Ω;Rd)≤1 3 Whenequippedwiththenorm 0 1. kukBV(Ω) :=kukL1(Ω)+|Du|(Ω), 0 BV(Ω) is a Banach space, though in contrast to the Sobolev case, smooth com- 7 pactlysupportedfunctionsfailtobedenseinthenormtopology,noristhespace 1 even separable. Its importance then lies in the fact that it is in some sense the : v naturalspaceinavarietyofproblemsinthecalculusofvariationswhereenergies i exhibitlinearboundsinthegradientofthefield-anotableexampleisinthestudy X ofminimalsurfaces(see[4]forthesystematicstudyofthespaceinthiscontext). r Akeytoolinitsstudyisthecompactnessofboundedsetswithrespecttothe a weak-starconvergenceofmeasuresprovidedbytheBanach-Alaoglutheorem,as BV(Ω)canbeembeddedintheproductspaceofintegrablefunctionscrossedwith Rd-valuedfiniteRadonmeasuresL1(Ω) Mb(Ω;Rd).Morethanthis,BV(Ω)isit- × selfadualspace(aresultwedescribeinSection2inmoredetail)forwhichone hasanintegralrepresentationofthedualitypairing. However,aproblemwhich hasnotbeenclearlyexplainedisthatofgivinganintegralcharacterizationofits dual. Wewerecurioustoseeifthiscouldbedone,astheliteratureonthespace itselfhasonlypartialknownresults.Theproblemcanbedatedtoatleastthe1977 paperofMeyersandZiemer[8]onPoincare´-Wirtingerinequalitiesthatprovidesa characterizationofthepositivemeasuresinthedualofBV(Ω),whilesuchaques- tionisraisedexplicitlyinthe1984AMSsummermeetingonGeometricMeasure E-mailaddresses:[email protected], [email protected]. 1 2 TheoryandtheCalculusofVariations(see[2], Problem7.4onp.458). Itisagain statedinthe1998paperofDePauw[3],whogivesanintegralrepresentationfor thedualofthespaceofspecialfunctionsofboundedvariation.Morerecently,the problemhasbeendiscussedinthepapersofPhucandTorres[9]andTorres[10]. ItturnsoutthatonecangiveanintegralrepresentationofthedualofBV(Ω), andthatthesolutionexistedmoreorlessbeforeanyreferencetosuchaproblem. Indeed,inthepapers[6,7],assumingthecontinuumhypothesis,Mauldincharac- terizedthedualofspacesoffiniteRadonmeasuresinthecasethesetofallRadon measuresonthespacehascardinalityatmost2ℵ0. Asaconsequenceofhisresult andtheHahn-Banachtheorem,onecaneasilygetthefollowingintegralrepresen- tation for the dual of the BV(Ω). To this end, let us recall that given a function u BV(Ω),themeasurederivativeDucanbewrittenas ∈ Du= u d+Dju+Dcu, ∇ L where uisabsolutelycontinuouswithrespecttotheLebesguemeasure d,Dju= ∇ L νu(u+ u−) d−1 JuwithJua(d 1)-rectifiableset,andDcu=Dsu Djufor − H − − DsutheportionofDuwhichissingularwithrespecttotheLebesguemeasure. Theorem1.1. LetΩ Rd beopenandL (BV(Ω))0. UnderZFCsettheoryandthe ⊂ ∈ ContinuumHypothesis, thereexistsg L∞(Ω), G0 L∞(Ω;Rd), an d−1 bounded ∈ ∈ H andmeasurablefunctionG1 :Ω RdandΨ: (Ω) Rabounded,Borelsetfunction → B → forwhich L(u)= gudx+ G udx+ G dDju+(K) Ψ dDcu ˆ ˆ 0·∇ ˆ 1· ˆ · Ω Ω Ju for all u BV(Ω). Here, the last integral on the right hand side is understood in the ∈ Kolmogorov-Burkill sense. Conversely, any such integral functional is in the dual of BV(Ω). HereweobservethattheintegralrepresentationisintermsofbothLebesgue andKolmogorov-Burkillintegrals. Werecallthatgivenasetfunctionψ : (Ω) B → R and a countably additive set function µ : (Ω) [ , ], the Kolmogorov- B → −∞ ∞ Burkill integral is defined as follows. We say that ψ is Kolmogorov-Burkill inte- grablewithrespecttoµifthereexistsanumberI Rsuchthatforeveryε > 0 ∈ thereisafinitepartitionofΩintoBorelsetsDsuchthatifD0isanyrefinementof D, ψ(B)µ(B) I <ε. (cid:12) − (cid:12) (cid:12)(cid:12)BX∈D0 (cid:12)(cid:12) AsdiscussedbyKolmogoro(cid:12)vin[5], thisnotion(cid:12)ofintegrationencompassesboth (cid:12) (cid:12) LebesgueandRiemannintegration. Indeed,theKolmogorovintegralgeneralizes the idea of Leibniz on areas as set functions, a sort of Riemann integral for the set function ψ µ. Notice that while µ is countably additive, ψ satisfies no such · property. Moreover, for any fixed µ M (Ω), the Kolmogorov-Burkill integral b ∈ projectsontoaLebesgueintegral. Infact,ifψ : (Ω) RisKolmogorov-Burkill B → integral with respect to µ, then there exists gµ L∞(Ω, (Ω), µ) such that for ∈ B | | everyf L1(Ω, (Ω), µ) ∈ B | | (K) ψd(fµ)= fg dµ. ˆ ˆ µ Ω Moregenerally, sucharepresentationformulaholdswhenever(Ω, (Ω),µ)isan B almostdecomposablemeasurespace.Thisisanimmediateconsequenceofaresult byDePauw(seeLemma3.4in[3]). 3 Althoughwearenotabletoprovethatthecontinuumhypothesisisnecessary to give the integral representation in Theorem 1.1, Theorem 3.14 in [3] suggests thatitmightbeso.However,itisinterestingtoobservethatinonedimensionone cancharacterizethedualofSBV(a,b)withoutthecontinuumhypothesis.Indeed, given L (SBV(a,b))0, we can separate its action on u,u0 L1(Ω) and Dju = ∈ ∈ Pfunx∈ctJiuonus(xg+,g)−0aun(xd−a)f.uTnhcitsiodnecgo1u:p(lain,bg)i→mpRliessutchhatththaterseupexx∈is(tas,bt)w|go1(bxo)u|n<de+d∞B,ofroerl which L(u)=ˆ gudx+ˆ g0u0 dx+ g1(x)(u(x+)−u(x−)), Ω Ω xX∈Ju forallu SBV(a,b). ∈ 2. PROOFSOFTHEMAINRESULTS IntheintroductionwementionthatBV(Ω)isadualspace. Wehereprovidea prooffortheconvenienceofthereader.Ifonedefinesthespaceofdistributions d ∂ V(Ω):={T ∈D0(Ω):T =ϕ0+ ∂x ϕj :ϕj ∈C0(Ω)} j j=1 X equippedwiththenorm d g := ϕ + ϕ , k kV(Ω) k 0k∞ k jk∞ j=1 X thenweshow Proposition2.1. LetL (V(Ω))0.ThenthereexistsuL BV(Ω)suchthat ∈ ∈ L(T)= u ϕ dx+ Φ dDu ˆ L 0 ˆ · L Ω Ω foreveryT V(Ω)suchthat ∈ T =ϕ +divΦ. 0 Proof. WerecallthatL (V(Ω))0means ∈ L(αT +βS)=αL(T)+βL(S), L(T) C T , | |≤ k kV(Ω) forallα,β R,S,T V(Ω). LetL (V(Ω))0begiven. ThentakingT =ϕwhere ∈ ∈ ∈ ϕ C (Ω)wehave 0 ∈ L(ϕ) C ϕ , | |≤ k k∞ sothatbytheRieszrepresentationtheoremwehaveL M (Ω)and b ∈ L(ϕ)= ϕdµ . ˆ L Ω ThenforeveryΦ∈Cc1(Ω;Rd),wehavebycontinuityandthisrepresentation L(divΦ) C Φ | |≤ k k∞ Thus,µ M (Ω)issuchthatitsdistributionalderivatives ∂µL M (Ω),sothat L ∈ b ∂xj ∈ b µL =uL BV(Ω). (cid:3) ∈ InordertoproveTheorem1.1,werequirearesultofMauldin. Thenextstate- mentisaspecialcaseofTheorem10in[7]. 4 Theorem2.2. LetΣbeaσ-algebrainΩ Rdsuchthatthesetofallcountablyadditive ⊂ real-valuedmeasuresonΣhascardinalityatmost2ℵ0.Assumethecontinuumhypothesis, 2ℵ0 = 1.ThenforeveryL (Mb(Ω,Σ))0thereexistsaboundedsetfunctionψ:Σ R ℵ ∈ → suchthat L(µ)=(K) ψdµ ˆ foreveryµ Mb(Ω,Σ). ∈ WiththistheoremwecannowgivetheproofofTheorem1.1. Proof. FirstletusobservethatwemayidentifyBV(Ω)withaclosedsubspaceof L1(Ω) Mb(Ω;Rd). Indeed, the space of distributional gradients is curl-free, in × thesenseofdistributions,andsoisclosedwithrespecttosequentialconvergence in L1(Ω), and so in particular it is closed with respect to the norm topology on BV(Ω).Thus,foranyL (BV(Ω))0,wemaybytheHahn-Banachtheoremextend ∈ LtoafunctionalL (L1(Ω) Mb(Ω;Rd))0suchthat ∈ × L(u)=L(u,Du) for all u BV(Ω). Now, for any L (L1(Ω) Mb(Ω;Rd))0, we may separate ∈ ∈ × its action on L1(Ω) and Mb(Ω;Rd). Thus, by the classical Riesz representation theoremwehave L(f,µ)= fgdx+L˜(µ) ˆ Ω for some g L∞(Ω), L˜ (Mb(Ω;Rd))0, and all f L1(Ω) and µ Mb(Ω;Rd). ∈ ∈ ∈ ∈ We can now invoke Theorem 2.2, since the cardinality of the space of countably additivereal-valuedmeasureson (Ω)is2ℵ0. B To see this, it is enough to show that a finite non-negative Borel measure is determined by its values on open balls B(x,r) Ω where x Qd and r Q+. ⊂ ∈ ∈ Indeed,iftwofinitenon-negativeBorelmeasuresµ,νcoincideonsuchballs,then byapproximationtheyalsocoincideonanyclosedballB(x,r) Ωforx Ωand ⊂ ∈ r>0.ItnowsufficestoshowthatµandνcoincideonallopensubsetsofΩ,since byapproximationtheywillcoincideonanyBorelsubsetofΩ. Thus,letU Ωbe ⊂ open.AnapplicationoftheVitali-Besicovitchcoveringtheorem(see,forinstance, Theorem2.19in[1])tothemeasureµ+νyieldsasequenceofdisjointclosedballs B(x ,r ) U suchthat n n ⊂ (µ+ν) U B(x ,r ) =0. n n n \∪ Thus, (cid:0) (cid:1) µ U B(x ,r ) =ν U B(x ,r ) =0, n n n n n n \∪ \∪ sothat (cid:0) (cid:1) (cid:0) (cid:1) µ(U)=µ B(x ,r ) =ν B(x ,r ) =ν(U). n n n n n n ∪ ∪ Thusthereexistbound(cid:0)edBorelfunc(cid:1)tions(cid:0)ψj : (Ω) (cid:1)R,j =1...dsuchthat B → d L˜(µ)= (K) ψ dµ ˆ j j j=1 X foranyµ Mb(Ω;Rd),wherewehaveµ=(µ1,µ2,...,µd).DefineΨ:=(ψ1,ψ2,...,ψd), ∈ sothatwemaywritetheprecedingmorecompactlyas L(f,µ)= fgdx+(K) Ψ dµ. ˆ ˆ · Ω 5 NowobservethattherestrictionofL˜ : L1(Ω;Rd) Rislinearandcontinuous, → andthereforeagainbytheclassicalRieszrepresentationtheoremthereexistsG 0 ∈ L∞(Ω;Rd)suchthat (K) Ψ d(F d)= G Fdx ˆ · L ˆ 0· Ω forallF L1(Ω;Rd).WecantreatinasimilarmannertherestrictionL˜ :L1(Ω, (Ω), d−1;Rd) ∈ B H → R, since (Ω, (Ω), d−1) is an almost decomposable measure space, and so by B H Lemma3.4in[3]themap :L∞(Ω, (Ω), d−1) (L1(Ω, (Ω), d−1))0 Y B H → B H givenby Y(g)(f)=ˆ gf dHd−1 Ω is onto. Therefore there exists an d−1 bounded and measurable function G1 : H Ω Rdsuchthat → (K)ˆ Ψ·d(FHd−1)=ˆ G1·F dHd−1. Ω forallF L1(Ω, (Ω), d−1). ∈ B H Thenrestrictingtherepresentationtou BV(Ω),alongwiththedecomposition ∈ Du= u d+Dju+Dcu, ∇ L andlinearityoftheKolmogorov-Burkillintegralwithrespecttothemeasure,we finallydeducethat L(u)= gudx+ G udx+ G dDju+(K) Ψ dDcu. ˆ ˆ 0·∇ ˆ 1· ˆ · Ω Ω Ω (cid:3) ACKNOWLEDGEMENTS The authors would like to thank Cindy Chen for her assistance in obtaining some of the articles utilized in the researching of this paper. N.F. supported by PRIN2015PA5MP7’CalcolodelleVariazioni‘,D.S.supportedbytheTaiwanMin- istry of Science and Technology under research grant 105-2115-M-009-004-MY2. Part of this work was written while N.F. was visiting NCTU with support from theTaiwanMinistryofScienceandTechnologythroughtheMathematicsResearch PromotionCenter. REFERENCES [1] L.Ambrosio,N.Fusco,andD.Pallara,Functionsofboundedvariationandfreediscontinuityproblems, OxfordMathematicalMonographs,TheClarendonPress,OxfordUniversityPress,NewYork, 2000.MR1857292 [2] J.E.Brothers,Someopenproblemsingeometricmeasuretheoryanditsapplicationssuggestedbypartic- ipantsofthe1984amssummerinstitute,Proc.Symp.PureMath.44(1984),441–464.Experimental mathematics:computationalissuesinnonlinearscience(LosAlamos,NM,1991). [3] T.DePauw,OnSBVdual,IndianaUniv.Math.J.47(1998),no.1,99–121.MR1631541 [4] E.a.Giusti,Minimalsurfacesandfunctionsofboundedvariation,DepartmentofPureMathematics, AustralianNationalUniversity,Canberra,1977.WithnotesbyGrahamH.Williams,NotesonPure Mathematics,10.MR0638362 [5] A.N.Kolmogorovandand,SelectedworksofA.N.Kolmogorov.Vol.I,MathematicsanditsApplica- tions(SovietSeries),vol.25,KluwerAcademicPublishersGroup,Dordrecht,1991.Mathematics andmechanics,WithcommentariesbyV.I.Arnold,V.A.Skvortsov,P.L.Ulyanovetal,Trans- 0 0 latedfromtheRussianoriginalbyV.M.Volosov,Editedandwithapreface,forewordandbrief biographybyV.M.Tikhomirov.MR1175399 6 [6] R.D.Mauldin,ArepresentationtheoremfortheseconddualofC[0,1],StudiaMath.46(1973),197– 200.MR0346506 [7] ,Thecontinuumhypothesis,integrationanddualsofmeasurespaces,IllinoisJ.Math.19(1975), 33–40.MR0377008 [8] N.G.MeyersandW.P.Ziemer,IntegralinequalitiesofPoincare´andWirtingertypeforBVfunctions, Amer.J.Math.99(1977),no.6,1345–1360.MR0507433 [9] N.C.PhucandM.Torres,CharacterizationofsignedmeasuresinthedualofBVandrelatedisometric isomorphisms,AnnalidellaScuolaNormaleSuperiorediPisaXVII(2017),no.2,arXiv:1503.06208. [10] M.Torres,OnthedualofBV,ContemporaryMathematics(toappear).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.