ebook img

A Relational Axiomatic Framework for the Foundations of Mathematics PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Relational Axiomatic Framework for the Foundations of Mathematics

A RELATIONAL AXIOMATIC FRAMEWORK FOR THE FOUNDATIONS OF MATHEMATICS 0 1 LIDIAOBOJSKA 0 2 n ABSTRACT. WeproposeaRelationalCalculusbasedontheconceptofunaryrelation.In thisRelationalCalculusdifferentaxiomaticsystemsconvergetoamodelcalledDynamic a GenerativeSystemwithSymmetry(DGSS).InDGSSwedefinetheconceptsofrelational J setandfunctionandprovethatextensionalityandthesubstitutionpropertyofequalityare 5 theoremsofDGSS. 2 AsafirstexemplificationofDGSS,weconstructamodelofnaturalnumberswithout relyingonPeano’sAxioms. Eventually, somenewclarifications regardingthenatureof ] M thenumberzeroaregiven. G . h t a 1. INTRODUCTION m KurtGo¨del[7]thoughtthatsettheoreticantinomiesareperhapsnotproblemsconnected [ tosettheoryitself buttothe theoryofconcepts. Inthispaperwe wouldlike to focuson 1 theconceptofunaryrelation.Inmathematicalliteraturethetermunaryrelationisapplied v tosubsetsofagivenset[11]. 0 Thuswecanthinkofmathematicalobjectsasiftheywereeithersetsorrelations(unary, 8 3 binary,etc.).Forexample,afunction f foragivenargumentxcanbeseenasasetconsist- 4 ingoforderedpairs(x,f(x))orasa binaryrelationsuchthatforeveryargumentxthere . existsexactlyonetermywith f(x)=y. Additionally,beginningwiththeworkofChurch, 1 0 Turingandothers[2],theconceptoffunctionsasalgorithmswasdeveloped. 0 In 1996E. De Giorgiintroducedthe conceptof FundamentalRelation [3], [5] which 1 describes the phenomenon of autoreference. Generally, Fundamental Relations change : v theperspectiveofhowwe considerentities. In a certainsense, a fundamentalrelationis i a relation abstraction describing the entities related and the relation between them. For X thisreasonthe presenttheorymightbe thoughtofasa kindofa CombinatoryLogic[1], r a but it also calls to mind Mereology [8], the theory of part-whole relationships. In the contextofFundamentalRelations,aunaryrelationmakessenseifandonlyifthereexists afundamentalbinaryrelationwhichdescribesitsbehavior. FundamentalRelationspermitustointroducea specific kindofunaryrelation,which exhibitsdynamicbehavior.AsaresultaRelationalCalculuscanbedefinedbytheintuitive conceptofbinaryrelation. Startingwithasimplesystemoftwoaxioms,whichdescribesakindofdynamiciden- tity,wethenexpressthissysteminalgebraiclanguageandshowthatsomeequationalrules andPeano’sAxiomsbecometheoremsofthissystem. Date:18December2009. 2000MathematicsSubjectClassification. Primary03G27;Secondary03H05,18A15. Keywordsandphrases. UnaryRelations; Relational Calculus; Non-standard Identity; Extensionality and SubstitutionPropertyofEquality;Peano’sAxiomsofNaturalNumbers. 1 2 LIDIAOBOJSKA 2. FUNDAMENTAL RELATIONS AdoptingDeGiorgi’swayofconsideringrelations,whichheseesasfundamentalenti- ties[3],werestrictourselvestorestateonlythosedefinitionsandaxiomswhicharestrictly necessaryinthecontextofthisarticle. Moreover,wemodifythenotationinordertointro- ducesomenewconcepts. Letusbeginwithtwoprimitivenotions:qualityandbinaryrelations. (1) Wewillsaythatifqisaquality(writtenasQq),thenqxmeansthattheobjectx hasthequalityq. (2) Giventwoobjectsx,yofanynatureandabinaryrelationr,wewillwriterx,yto saythat“xandyareinrelationr”or“xisinrelationrwithy”. Wecanproceed,asdoDeGiorgietal. [3],andintroducetheFundamentalRelationR Q whichisdefinedasabinaryrelation: Axiom2.1. R isabinaryrelation. Q (1) IfR x,ythenQx. Q (2) IfQqthenR q,x≡qx. Q Thus,ifR isdefinedasabinaryrelation,itfollowsthatqcanbeconsideredaunary Q relation[9]. Definition2.1. Aunaryrelationisanyrelation∗suchthatR∗isabinaryrelation. Tosimplifythenotationwewillwrite:(qx)insteadofR q,x(i.e. R q,x≡(qx)). Q Q Ingeneral, inthe expressionoftheform(xy), ( )willbe usedtoindicatethe relation abstractionorFundamentalRelation(inthiscase binary)connectingthe unaryrelationx and its argument y. Because unary relations underlie those binary relations in which at leastoneoftheobjectsisdefinedintermsoftheother,unaryrelationswecanthinkofas “qualifying”theirarguments.Inthisperspective,qualitiesareviewedasrelationalentities, insofarastheycanonlybeconceivedofbeing“in”someobject(seeAxiom2.1). 3. RELATIONALCALCULUS 3.1. Basic Definitions. As presented in Section 2, at the basis of our relational system isa primitivecalleda FundamentalRelation(). ThisFundamentalRelationis a kindof relationabstraction which can act as a combinatoror as a pure relation. When we write (xy),wecanreaditastheapplicationofxontoy,astheprocessxactingontheinputy,or simplyastheconnectionbetweenxandy. xmightbeseenasaqualityinthesenseofDe Giorgi,butcanalsobeanyarbitraryentityinrelationwithy. (xy)“creates”anewobject, inthesensethat(xy)isawholewhichturnsouttoconsistoftworelatedentitiesxandy. Thisinterpretationgivesagreatfreedom,aswewillseebelow. Thenotation(xy)allows ustointroduceanykindofunaryrelationintheplaceofx,eventhoughthisconceptmight notbeintuitive. We definea logicwith unrestrictedquantification,bearinginmindthatquantifiersare abbreviationsfor certain quantifier-free expressions. In the present system, well formed formulasare those formed from atomic constants, i. e., the logical operators∀, ∃, ∧, ∨, ¬, =⇒, ⇐⇒ and =, parentheses [ ], { } and variables, possibly connected by means of application(). Avariableisanyobjectwhichisabletoenterintorelationwithotherobjectsduetothe applicationoperator(). ARELATIONALAXIOMATICFRAMEWORKFORTHEFOUNDATIONSOFMATHEMATICS 3 Thenatureoftheobjectsremainsexplicitlyopen,aslongastheseobjectsarecapableof beinginrelationwithotherobjectsinaccordancewiththeAssociationRuletobedefined inAxiom3.1. Theobjectsthemselvescanevenberelations. Definition3.1. The languageof RelationalCalculus(RC) terms is builtfrom an infinite numberofvariables: x,y,z,...usingtheapplicationoperator()asfollows: (1) Ifxisavariable,thenxisanRCterm, (2) ifx,yarevariables,then(xy)isanRCterm, (3) ifxisavariableandMisanRCterm,then(Mx)and(xM)areRCterms. Axiom3.1. ∀a,b,c:(abc)=((ab)c)=(a(bc)) Axiom3.1describesasimpleAssociationRuleusedinMathematics. Asstatedabove, theapplicationoperatorallowsustoconsider(abc)asasingleobjectwithoutconstraining theviewofitsinnerstructure.Hence,onecaneitherfind(ab)tobeinrelationwithcora inrelationwith(bc). Furthermore,wewillusetheclassicalDeductionRulesfor“=”: Axiom3.2. ∀p,q,r:[p=p], [p=q]=⇒[q=p], {[p=q]∧[q=r]}=⇒[p=r] 3.2. DynamicIdentityTriple(DIT). TheDynamicIdentityTriple(DIT)[9]iscomposed of three specific unary relations: DIT =[x,y,z] with x6=y, y6=z, z6=x, satisfying the followingtwoaxioms: Axiom3.3. (xy)=y Axiom3.4. (zy)=x Axiom3.3canbeunderstoodasaDistinctionRule(objectyisseparatedfromobjectx) orasakindofrelationunderwhichyremainsinvariant. Axiom3.4describestheprocessofreturningtox: yreturnstoxviaz. Lemma3.1. (zx)=z Proof. Assume(zx)6=z: (zy)6=((zx)y)= (z(xy))= (zy)—contradiction (Ax3.1) (Ax3.3) (cid:3) Proposition3.1. AnExtensionalRule∀p,q,x:[(px)=(qx)]=⇒[p=q]isatheoremof DIT. Proof. Weproveallpossiblecombinationsof p,qandx: (1) [(xx)=(yx)]=⇒[x=y]: x= (zy)= ((zx)y)= (z(xy))= (z(x(xy)))= (Ax3.4) (Lm3.1) (Ax3.1) (Ax3.3) (Ax3.1) (z((xx)y))=(z((yx)y))= (z(y(xy)))= (z(yy))= (Ax3.1) (Ax3.3) (Ax3.1) ((zy)y)= (xy)= y (Ax3.4) (Ax3.3) (2) [(xx)=(zx)]=⇒[x=z]: x= (zy)= ((zx)y)=((xx)y)= (x(xy))= (xy)= y (Ax3.4) (Lm3.1) (Ax3.1) (Ax3.3) (Ax3.3) x= (zy)=(zx)= z (Ax3.4) (Lm3.1) (3) [(yx)=(zx)]=⇒[y=z]: x= (zy)= ((zx)y)=((yx)y)= (y(xy))= (yy) (Ax3.4) (Lm3.1) (Ax3.1) (Ax3.3) y= (xy)=((yy)y)= (y(yy))=(yx)=(zx)= z (Ax3.3) (Ax3.1) (Lm3.1) 4 LIDIAOBOJSKA (4) [(xy)=(yy)]=⇒[x=y]: x= (zy)= (z(xy))=(z(yy))= ((zy)y)= (xy)= y (Ax3.4) (Ax3.3) (Ax3.1) (Ax3.4) (Ax3.3) (5) [(xy)=(zy)]=⇒[x=z]: y= (xy)=(zy)= x (Ax3.3) (Ax3.4) x= (zy)=(zx)= z (Ax3.4) (Lm3.1) (6) [(yy)=(zy)]=⇒[y=z]: y= (xy)= ((zy)y)= (z(yy))=(z(zy))= (zx)= z (Ax3.3) (Ax3.4) (Ax3.1) (Ax3.4) (Lm3.1) (7) [(xz)=(yz)]=⇒[x=y]: (xz)= ((zy)z)= (z(yz))=(z(xz))= ((zx)z)= (zz) (Ax3.4) (Ax3.1) (Ax3.1) (Lm3.1) z= (zx)= (z(zy))= ((zz)y)=((xz)y)= (x(zy))= (Lm3.1) (Ax3.4) (Ax3.1) (Ax3.1) (Ax3.4) (xx) z= (zx)=((xx)x)= (x(xx))=(xz) (Lm3.1) (Ax3.1) x= (zy)=((xz)y)= (x(zy))= (xx)=z (Ax3.4) (Ax3.1) (Ax3.4) x= (zy)=(xy)= y (Ax3.4) (Ax3.3) (8) [(xz)=(zz)]=⇒[x=z]: z= (zx)= (z(zy))= ((zz)y)=((xz)y)= (x(zy))= (Lm3.1) (Ax3.4) (Ax3.1) (Ax3.1) (Ax3.4) (xx) x= (zy)=((xx)y)= (x(xy))= (xy)= y (Ax3.4) (Ax3.1) (Ax3.3) (Ax3.3) x= (zy)=(zx)= z (Ax3.4) (Lm3.1) (9) [(yz)=(zz)]=⇒[y=z]: x= (zy)= (z(xy))= ((zx)y)= ((z(zy))y)= (Ax3.4) (Ax3.3) (Ax3.1) (Ax3.4) (Ax3.1) (((zz)y)y)=(((yz)y)y)= ((y(zy))y)= ((yx)y)= (Ax3.1) (Ax3.4) (Ax3.1) (y(xy))= (yy) (Ax3.3) y= (xy)= ((zy)y)= (z(yy))=(zx)= z (Ax3.3) (Ax3.4) (Ax3.1) (Lm3.1) (cid:3) Definition3.2. Wewillcallrabijectiverelationiff: (1) ∀r,p,x:[(rx)=(px)]=⇒[r=p], (2) ∀r,x,y:[(rx)=(ry)]=⇒[x=y]. Thus, by a bijective relation we intend a relation which obeysthe extensionalrule as wellasthesubstitutionpropertyofequality. Proposition3.2. x,y,zarebijectiverelations. Proof. Aspect(1)ofDefinition3.2isassuredbyProposition3.1. Weproveaspect(2)foreverypossiblecombinationofr, pandx: (1) [(xx)=(xy)]=⇒[x=y]: x= (zy)= (z(xy))=(z(xx))= ((zx)x)= (zx)= z (Ax3.4) (Ax3.3) (Ax3.1) (Lm3.1) (Lm3.1) x= (zy)=(xy)= y (Ax3.4) (Ax3.3) (2) [(xx)=(xz)]=⇒[x=z]: y= (xy)= (x(xy))= ((xx)y)=((xz)y)= (x(zy))= (Ax3.3) (Ax3.3) (Ax3.1) (Ax3.1) (Ax3.4) (xx) x= (zy)=(z(xx))= ((zx)x)= (zx)= z (Ax3.4) (Ax3.1) (Lm3.1) (Lm3.1) (3) [(xy)=(xz)]=⇒[y=z]: x= (zy)= (z(xy))=(z(xz))= ((zx)z)= (zz) (Ax3.4) (Ax3.3) (Ax3.1) (Lm3.1) y= (xy)=((zz)y)= (z(zy))= (zx)= z (Ax3.3) (Ax3.1) (Ax3.4) (Lm3.1) ARELATIONALAXIOMATICFRAMEWORKFORTHEFOUNDATIONSOFMATHEMATICS 5 (4) [(yx)=(yy)]=⇒[x=y]: y= (xy)= ((zy)y)= (z(yy))=(z(yx))= ((zy)x)= (Ax3.3) (Ax3.4) (Ax3.1) (Ax3.1) (Ax3.4) (xx) x= (zy)=(z(xx))= ((zx)x)= (zx)= z (Ax3.4) (Ax3.1) (Lm3.1) (Lm3.1) x= (zy)=(xy)= y (Ax3.4) (Ax3.3) (5) [(yx)=(yz)]=⇒[x=z]: (yy)= (y(xy))= ((yx)y)=((yz)y)= (y(zy))= (yx) (Ax3.3) (Ax3.1) (Ax3.1) (Ax3.4) y= (xy)= ((zy)y)= (z(yy))=(z(yx))= ((zy)x)= (Ax3.3) (Ax3.4) (Ax3.1) (Ax3.1) (Ax3.4) (xx) x= (zy)=(z(xx))= ((zx)x)= (zx)= z (Ax3.3) (Ax3.1) (Lm3.1) (Lm3.1) (6) [(yy)=(yz)]=⇒[y=z]: y= (xy)= ((zy)y)= (z(yy))=(z(yz))= ((zy)z)= (Ax3.3) (Ax3.4) (Ax3.1) (Ax3.1) (Ax3.4) (xz) x= (zy)=(z(xz))= ((zx)z)= (zz) (Ax3.4) (Ax3.1) (Lm3.1) y= (xy)=((zz)y)= (z(zy))= (zx)= z (Ax3.3) (Ax3.1) (Ax3.4) (Lm3.1) (7) [(zx)=(zy)]=⇒[x=y]: x= (zy)= ((zx)y)=((zy)y)= (xy)= y (Ax3.4) (Lm3.1) (Ax3.4) (Ax3.3) (8) [(zx)=(zz)]=⇒[x=z]: x= (zy)= ((zx)y)=((zz)y)= (z(zy))= (zx)= z (Ax3.4) (Lm3.1) (Ax3.1) (Ax3.4) (Lm3.1) (9) [(zy)=(zz)]=⇒[y=z]: y= (xy)= ((zy)y)=((zz)y)= (z(zy))= (zx)= z (Ax3.3) (Ax3.4) (Ax3.1) (Ax3.4) (Lm3.1) (cid:3) Note that x, y, z must be distinct. If they were not distinct, our model would either collapse to a simple formulasimilar to a classical definition of identity, (xx)=x, or we wouldseparatexfromy: (1) Ifx=y,then[(xx)= x]and[(zx)= x]; (Ax3.3) (Ax3.4) with[(xx)=(zx)]=⇒ [x=z]wegetx=y=zand(xx)=x. (Pr3.1) (2) Ifx=z,then[(xy)= x]and[(xy)= y],whichimplies[x=y]; (Ax3.4) (Ax3.3) againwegetx=y=zand(xx)=x. (3) Ify=z,then[(xy)= y]and[(yy)= x],weget (Ax3.3) (Ax3.4) x= (yy)= ((xy)y)= (x(yy))= (xx)and (Ax3.4) (Ax3.3) (Ax3.1) (Ax3.4) y= (xy)= ((yy)y)= (yyy), (Ax3.3) (Ax3.4) (Ax3.1) whichleadstotheeternalprogression y=(yyy)= ((yyy)yy)= (yyyyy)=(yyyyyyy)... and (Ax3.3) (Ax3.1) x=(yy)= ((xy)y)= (xyy)= ((yy)yy)= (yyyy)=... (Ax3.3) (Ax3.1) (Ax3.4) (Ax3.1) Moreover, x, y, z are considered to be “co-essential”, in the sense that two relations alone,xandyorxandzoryandz,cannotdefineDIT. Finally, the bijective property of x, y, z assures their dynamic character. DIT [x,y,z] defined in terms of x, y, z is fully dynamic. For this reason we have called our model DynamicIdentityTriple. 3.3. DynamicIdentityTriplewithSymmetry(DITS). LetusslightlymodifyDIT and addasymmetryconditiononz[(yz)=(zy)]. Lemma3.2. [(yz)=(zy)]=⇒[(xz)=z] 6 LIDIAOBOJSKA Proof. (xz)= ((zy)z)= (z(yz))=(z(zy))= (zx)= z (cid:3) (Ax3.4) (Ax3.1) (Ax3.4) (Lm3.1) Lemma3.3. [(yz)=(zy)]=⇒[(xy)=(yx)] Proof. (xy)= ((zy)y)=((yz)y)= (y(zy))= (yx) (cid:3) (Ax3.4) (Ax3.1) (Ax3.4) Lemma3.4. [(yz)=(zy)]=⇒[(xx)=x] Proof. x= (zy)= ((xz)y)= (x(zy))= (xx) (cid:3) (Ax3.4) (Lm3.2) (Ax3.1) (Ax3.4) Lemma3.4providesausefulextensiontoAxiom3.3. Because the symmetry condition [(yz)=(zy)] is not a theorem of DIT, we define a DynamicIdentityTriplewithSymmetry(DITS)byaddinganotheraxiom: Axiom3.5. (yz)=(zy) Definition3.3. ADynamicIdentityTriplewithSymmetryDITSisamodelsatisfyingAx- ioms3.3,3.4and3.5. 3.4. Dynamic Generative System (DGS). We can “open” DIT and assume that Ax- ioms3.3and3.4aretrueforanyvariabley. Usingclassicalquantificationrules,weobtain amodifiedmodel,whichwewillcallDynamicGenerativeSystem–DGS=[x,y,z], with thefollowingaxioms: Axiom3.6. ∀y:(xy)=y Axiom3.7. ∀y∃z:(zy)=x AnalogouslytoLemma3.1,weobtain: Lemma3.5. ∀r:(rx)=r Proof. Assume∀r:(rx)6=r: ∀r,y:(ry)6=((rx)y)= (r(xy))= (ry)—contradiction (Ax3.1) (Ax3.6) (cid:3) NotethatLemma3.5doesnotexcludethepossibilityofr=x. Hence,weget(xx)=xbyAxioms3.6and3.7orbyAxioms3.3,3.4andthesymmetry condition(Axiom3.5). 3.5. Dynamic GenerativeSystemwith Symmetry(DGSS). As in the case of DIT, we canaddasimilarsymmetryconditiontoDGS. Axiom3.8. ∀y∃z:(zy)=(yz)=x Definition 3.4. A Dynamic Generative System with Symmetry (DGSS) is a model that satisfiesAxioms3.6,3.7and3.8. Lemma3.6. ∀x,y:[x=y]=⇒∃s,t:[(sx)=(ty)=x]∧[s=t] Proof. Theexistenceofsandt isassuredbyAxiom3.7: =⇒ ∃s:x=(sx) (Ax3.7) =⇒ ∃t:x=(ty) (Ax3.7) Furthermore,Axiom3.7guaranteestheequivalenceof(sx)and(ty): (sy)=(sx)= x= (ty)=(tx) (Ax3.7) (Ax3.7) Finally,weprovetheequivalenceofsandt: s= (sx)=(s(ty))= (s(yt))= ((sy)t)=(xt)= t (Lm3.5) (Ax3.8) (Ax3.1) (Ax3.6) (cid:3) ARELATIONALAXIOMATICFRAMEWORKFORTHEFOUNDATIONSOFMATHEMATICS 7 Lemma3.7. ∀x,y:[x=y]=⇒∃s,t:[(xs)=(yt)=x]∧[s=t] Proof. Theexistenceofsandt isassuredbyAxiom3.7: =⇒ ∃s:x=(sx) (Ax3.7) =⇒ ∃t:x=(ty) (Ax3.7) Furthermore,Axiom3.7guaranteestheequivalenceof(sx)and(ty): (xs)= (sx)= x= (ty)= (yt) (Ax3.8) (Ax3.7) (Ax3.7) (Ax3.8) s= (sx)=(s(yt))= ((sy)t)=(xt)= t (Lm3.5) (Ax3.1) (Ax3.6) (cid:3) Corollary 3.1. The symmetry condition (Axiom 3.8) assures the uniqueness of z in Ax- iom3.7: ∀y∃˙z:[(zy)=x]. Moreover,wecanprovethefollowingpropertiesofDGSS: Lemma3.8. ∀x,y,z:[(zx)=(zy)=x]=⇒[x=y] Proof. x= (xx)=(x(zy))= ((xz)y)= ((zx)y)=(xy)= y (cid:3) (Lm3.5) (Ax3.1) (Ax3.8) (Ax3.6) Analogously: Lemma3.9. ∀x,y,z:[(xz)=(yz)=x]=⇒[x=y] Proof. [(xz)=(yz)=x]⇐⇒ [(zx)=(zy)=x]=⇒ [x=y] (cid:3) (Ax3.8) (Lm3.8) Finally,weprovethatinDGSSextensionalityandthesubstitutionpropertyofequality hold: Proposition3.3. ∀x,y,z:[(zx)=(zy)]⇐⇒[x=y] Proof. (1) ∀x,y,z:[(zx)=(zy)]=⇒[x=y]: [(zx)=(zy)]=⇒ ∃s:[(s(zx))=(s(zy))=x] (Lm3.6) [(zx)=(zy)]=⇒[(s(zx))=(s(zy))=x]⇐⇒ (Ax3.1) [((sz)x)=((sz)y)=x]=⇒ [x=y] (Lm3.8) (2) ∀x,y,z:[x=y]=⇒[(zx)=(zy)]: =⇒ ∀a∃s:(sa)=x (Ax3.7) Witha=(zx): x=(sa)=(s(zx))= ((sz)x)=((sz)y) (Ax3.1) [x=y]=⇒ [((sz)x)=((sz)y)=x]⇐⇒ (Lm3.6) (Ax3.1) [(s(zx))=(s(zy))=x]=⇒ [(zx)=(zy)] (Lm3.8) (cid:3) Analogously: Proposition3.4. ∀x,y,z:[(xz)=(yz)]⇐⇒[x=y] 8 LIDIAOBOJSKA Proof. (1) ∀x,y,z:[(xz)=(yz)]=⇒[x=y]: [(xz)=(yz)]=⇒ ∃s:[((xz)s)=((yz)s)=x] (Lm3.7) [(xz)=(yz)]=⇒[((xz)s)=((yz)s)=x]⇐⇒ (Ax3.1) [(x(zs))=(y(zs))=x]=⇒ [x=y] (Lm3.9) (2) ∀x,y,z:[x=y]=⇒[(xz)=(yz)]: =⇒ ∀a∃s:(sa)=x= (as) (Ax3.7) (Ax3.8) Witha=(xz): x=(as)=((xz)s)= (x(zs))=(y(zs)) (Ax3.1) [x=y]=⇒ [(x(zs))=(y(zs))=x]⇐⇒ (Lm3.7) (Ax3.1) [((xz)s)=((yz)s)=x]=⇒ [(xz)=(yz)] (Lm3.9) (cid:3) 4. APPLICATION IN FOUNDATIONS OF MATHEMATICS 4.1. Relationalsets. Definition4.1. QisarelationalsetofobjectsxandxisanelementofQifforaspecific qualityqholds: (qx)=x[x⊑Q,Q= (qx)]. df Example4.1. Letn bethe qualityofbeingnaturalnumber. Thus, (nx)definestherela- tionalsetofnaturalnumbersN=(nx). Ifxisanaturalnumber,(nx)=xholds. If x = y = q then Q = (qq) = q=⇒q⊑q, which can be interpreted as a df (Axs3.6,3.7) singleton, a set composedof only one element: q is a relationalset and it is an element ofitself. HavinginmindRussell’sparadox[12],onecanaskwhathappenswhenpisconsidered tobethequalityofnotbeinganelementofitself¬[x⊑x]. LetP= (px),[x⊑P]⇐⇒[x=(px)]. df ¬[x⊑x]⇐⇒¬[x⊑P]⇐⇒[x6=(px)]. Asaresultthereexistobjectswhicharenotrelationalsets. At the beginningwe said thatour theorycalls to mind mereology,a sortof collective settheory,firstformulatedbyS.Les´niewski[8]. Mereologyiscollectiveinthesensethat amereological“set”isawhole(acollectiveaggregateorclass)composedof“parts”and thefundamentalrelationisthatofbeinga“part”ofthewhole,anelementofaclass. Thus beinganelementofaclassisequivalenttobeingasubset(properorimproper)ofaclass. Inthissenseitisclearthateveryclassisanelementofitself. Letusnowdefinetheconceptofsubset: Definition 4.2. A relationalset B [B=(bx)] is a relationalsubset of a relationalset A [A=(ax)],writtenas(cid:2)(bx)⊆(ax)(cid:3),iff∀x:{(cid:2)(bx)=x(cid:3)=⇒[(ax)=x]}. Letusverifythecases[x=a],(cid:2)x=b(cid:3)and(cid:2)x=a=b(cid:3): (1) Ifx=athen(ba)=a= (aa)=⇒{[a⊑B]=⇒[a⊑A]}. (Lm3.5) (2) Ifx=bthen(bb)=b= (ab)=⇒{(cid:2)b⊑B(cid:3)=⇒(cid:2)b⊑A(cid:3)}. (Ax3.6) (3) Ifx=a=bthen[(aa)=a=⇒(aa)=a]=⇒[a⊑A],andanalogously(cid:2)b⊑B(cid:3). Nowwecanintroducetheconceptoffunction. Definition4.3. Abinaryrelation f :A7−→Bisafunctioniff ∀x,y,z:{[x⊑A]∧[y,z⊑B]}=⇒{[(fxy)=(fxz)]=⇒[y=z]}, where[x⊑A]≡[(ax)=x]and[y,z⊑B]≡{(cid:2)(by)=y(cid:3)∧(cid:2)(bz)=z(cid:3)}. ARELATIONALAXIOMATICFRAMEWORKFORTHEFOUNDATIONSOFMATHEMATICS 9 4.2. Peano’sAxiomsasTheoremsofDGSS. Thenextstepwouldbetoseewhetheritis possibletoredefinePeano’sAxioms[10]intermsofrelationalsets. Let ustake n instead of x in Axiom3.6, which standsfor the qualityof beingnatural number. (nx) definesa relationalset of naturalnumbers[N=(nx),∀x6=n]. We explicitly ex- clude n=x, because “n”, the quality of being natural number should not be a number itself.Furthermore,wedefineasmallestnaturalnumberandcallit“1”,inaccordancewith theoriginalformulationofPeano[10]. Since1isanaturalnumber,(n1)= 1holds. (Ax3.6) Thenwedefineasuccessorfunction(inMathematicsconsideredasaunaryoperation) (1x): (1x)iscalledasuccessorofx. Lemma4.1. (1x)isafunctionoftype f :N7−→N. Proof. Wehavetoprovethat(1x)fulfillstherequirementsofDefinition4.3,i.e. ∀a,b,c:[(fab)=(fac)]=⇒[b=c]with f =1,a=x,b=(1x),c=y: Atfirst,weshow∀x:[(nx)=x]=⇒[(n(1x))=(1x)]: (n(1x))= ((n1)x)= (1x) (Ax3.1) (Ax3.6) Weshownowthat∀x,y:[(1x(1x))=(1x)y]=⇒[(1x)=y]: ∀x,y:[(1x(1x))=(1xy)]⇐⇒ [((1x)(1x))=((1x)y)]⇐⇒ (Ax3.1) (Pr3.3) [(1x)=y]. (cid:3) Notethattermslike(1111)areirreducibleandcannaturallybeinterpretedasnumbers. Weclaim: Proposition4.1. [(nx),(1x),1]isamodelofnaturalnumbers. Proof. WeprovethatallPeanoAxiomsaretheoremsofDGSS: (1) (n1)= 1=⇒ 1⊑N (Ax3.6) (Df4.1) (2) ∀x:[(nx)=x]=⇒[(n(1x))=(1x)]: (n(1x))= ((n1)x)= (1x) (Ax3.1) (1) (3) {∀x,y:[(nx)=x]∧[(ny)=y]∧[(1x)=(1y)]}=⇒[x=y]: ∀x,y:[(1x)=(1y)]=⇒ [x=y] (Pr3.3) (4) ∀x:[(nx)=x]=⇒(1x)6=1: Assume∃x:(1x)=1forx6=n: (n1)= 1= (1n) (1) (Lm3.5) [(1x)=(1n)]=⇒ [x=n]—contradiction. (Pr3.3) (5) {[M⊆N]∧[1⊑M]∧{∀k:[k⊑M]=⇒[(1k)⊑M]}}=⇒[M=N]: With[x⊑M]≡[(mx)=x]: (m1)=1= (1m) (Lm3.5) ∀k:[(mk)=k]⇐⇒ [(1(mk))=(1k)]⇐⇒ [((1m)k)=(1k)]⇐⇒ (Pr3.3) (Ax3.1) [((m1)k)=(1k)]⇐⇒ [(m(1k))=(1k)] (Ax3.1) =⇒ (n1)=1 (1) =⇒ ∀k:[(nk)=k]=⇒[(n(1k))=(1k)] (2) ∀k:{[(mk)=k]∧[(nk)=k]}=⇒ ∀k:[(mk)=(nk)]≡ [M=N] (Ax3.2) (Df4.1) (cid:3) Naturalnumberscanbedefinedasfollows: 10 LIDIAOBOJSKA (1) 1isanaturalnumber. (2) Thesuccessorof1is(11)= 2 df (3) (12)=(1(11))=((11)1)=(21)= 3 df (4) (13)=(1(12))=((11)2)=(22)=(2(11))=((21)1)=(31)= 4etc. df 4.3. The Number Zero. To reconstructnaturalnumberswe have been consideringx in Axiom 3.6 as a kind of quality and we assumed that n=x6=x∀x. Thus n should be differentfromallnaturalnumbers. We now define another fundamental number “0” and put n=0. We can verify that Proposition4.1holdsforeveryx6=0: (1) (01)=1 (2) ∀x6=0:[(0x)=x]=⇒[(0(1x))=(1x)] (3) {∀x,y6=0:[(0x)=x]∧[(0y)=y]∧[(1x)=(1y)]}=⇒[x=y] (4) ∀x6=0:[(0x)=x]=⇒(1x)6=1 (5) {[(mk)⊆(0k)]∧[(m1)=1]∧ {∀k:[(mk)=k]=⇒[(m(1k))=(1k)]}}=⇒[m=0] If we would allow x=0 in Proposition 4.1, we would producea contradictionin the fourthPeanoAxiom:[(10)6=1]and[(10)=1]byLemma3.5wouldimply[16=1]. ThankstoAxiom3.6,whichstates∀x:(0x)=xwecaneasilydefineallnaturalnum- bersbeginningfrom0: Example4.2. 2isanaturalnumber,hence(02)=2. (02)= (0(11))= ((01)1)= (11)= 2. df (Ax3.1) (1) df Many mathematicians introduce 0 as a first natural number, but in RC 0 cannot be consideredanaturalnumber.ThankstoLemma3.5,i.e.(10)=1,read“1isthesuccessor of 0”, the intended meaning of 0 and 1 is fully preserved, and no additional axioms are needed. 5. CONCLUSIONS WefoundtheconceptofFundamentalRelation,asdefinedbyE.DeGiorgi,necessary butnotsufficienttoexpressadynamicbehaviorofrelations.Todothis,wehaveintroduced threedistinctunaryrelationswhichformaDynamicIdentityTriple(DIT).Thethreebasic relationsobeytwoverysimpleaxiomsandifdesiredathirdaxiomofsymmetry(DITS)can beadded.Therelationsinamodelinteractinawaythatanytwoofthemcannot“operate” atthesametime:aphenomenonwhichcanbecharacterizedbytheworddynamic. Usingclassicalrulesofquantification,wemodifythebasicmodelsandobtaintheDy- namic Generative System (DGS), which can also be enhanced by a symmetry condition (DGSS).AfterdefiningrulesforaRelationalCalculus,wedefinesomebasicsettheoretic notions,theconceptoffunctionandfindthatPeano’sAxiomsandextensionalityandthe substitutionpropertyofequalityaretheoremsofDGSS.Inaddition,itbecomesclearthat thenumberzerocanbeaddedtothesystemofPeano’sAxioms,butcannotbeconsidered anaturalnumber. REFERENCES [1] Curry,H.B.:FoundationsofMathematicalLogic.McGraw-Hill,NewYork(1963)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.