ebook img

A reformulated series expansion of the arctangent function PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A reformulated series expansion of the arctangent function

A reformulated series expansion of 7 1 0 the arctangent function 2 n a J S. M. Abrarov∗and B. M. Quine∗† 5 1 January 15, 2017 ] M G . Abstract h t a In our recent publication we obtained a series expansion of the m arctangent function involving complex numbers. Inthis work weshow [ that this formula can also be expressed as a real rational function. 1 Keywords: arctangent function, rational function v 8 9 0 5 0 1 Derivation . 1 0 7 1.1 Derivatives of the arctangent function 1 : v i Consider the following function X r i a − , (x+i)m where x is a real variable and m is a non-negative integer. Since i 1 x − = i (x+i)1 −1+x2 − 1+x2 it is not difficult to show by induction that ∗ Dept. EarthandSpaceScienceandEngineering,YorkUniversity,Toronto,Canada, M3J1P3. † Dept. PhysicsandAstronomy,YorkUniversity,Toronto, Canada,M3J1P3. 1 i 1 i 1 1 x − = − = i (x+i)m (x+i)m−1(x+i)1 (x+i)m−1 −1+x2 − 1+x2 (cid:18) (cid:19) 1 i 1 x = i1 − i (x+i)m−1 −1+x2 − 1+x2 (cid:18) (cid:19)(cid:18) (cid:19) 2 i 1 x = i2 − i = (x+i)m−2 −1+x2 − 1+x2 ··· (cid:18) (cid:19)(cid:18) (cid:19) n i 1 x = in − i = (x+i)m−n −1+x2 − 1+x2 ··· (cid:18) (cid:19)(cid:18) (cid:19) m 1 x = im+1 i , m n. − −1+x2 − 1+x2 ≥ (cid:18) (cid:19) Applying the binomial formula to this identity 1 x m m 1 m−n ix n m im+1 i = im+1 − (cid:18)−1+x2 − 1+x2(cid:19) − n=0(cid:18)−1+x2(cid:19) (cid:18)−1+x2(cid:19) n! X and then separating its right side into the real and imaginary parts, after some trivial rearrangements we obtain i m ( 1)nxm−(2n−1) m ( 1)nxm−2(n−1) m − m = − m + i − m . (1) (x+i) (1+x2) 2n 1 (1+x2) 2(n 1) n=1 (cid:18) − (cid:19) (cid:18) − (cid:19) X Taking into consideration that i i Re − = Re − (x+i)m − (x i)m (cid:20) (cid:21) (cid:20) − (cid:21) and i i Im − = Im − (x+i)m (x i)m (cid:20) (cid:21) (cid:20) − (cid:21) we can also find i m ( 1)nxm−(2n−1) m ( 1)nxm−2(n−1) m − m = − m i − m . (2) − (x i) (1+x2) 2n 1 − (1+x2) 2(n 1) − n=1 (cid:18) − (cid:19) (cid:18) − (cid:19) X Consequently, taking sum of equations (1) and (2) provides i i 1 1 1 − − = (x+i)m − (x i)m i (x+i)m − (x i)m (cid:18) − (cid:19) (cid:18) − (cid:19) (3) m ( 1)nxm−(2n−1) m = 2 − . (1+x2)m 2n 1 n=1 (cid:18) − (cid:19) X 2 The mth derivative of the arctangent function can be represented as [1, 2] dm ( 1)m(m 1)! 1 1 arctan(x) = − − . (4) dxm 2i (x+i)m − (x i)m (cid:18) − (cid:19) Comparing equations (3) and (4) immediately yields dm m ( 1)m+nxm−(2n−1) m arctan(x) = (m 1)! − . (5) dxm − (1+x2)m 2n 1 n=1 (cid:18) − (cid:19) X Notably, in contrast to the equation (4), the series expansion (5) involves no complex numbers. It interesting to note that the equation (4) is also directly related to the identity dm (m 1)! 1 arctan(x) = sgnm−1( x) − sin marcsin , dtm − (1+x2)m/2 √1+x2 (cid:18) (cid:18) (cid:19)(cid:19) where the signum function is defined as 1, x 0 sgn(x) = ≥ 1, x < 0, ( − by de Moivre’s formula (see [1] for derivation procedure). However, in the work [1] this identity is shown without signum function that, according to Lampret [3], is necessary to account for x R− in derivatives of the acrtan- ∈ gent function. 1.2 The arctangent function Inourrecent publicationwe have derived aseries expansion ofthearctangent function [4] M +1 2 ⌊ ⌋ 1 1 1 arctan(x) = i lim . (6) M→∞ 2m 1 (1+2i/x)2m−1 − (1 2i/x)2m−1 mX=1 − (cid:18) − (cid:19) 3 We used the notation M/2 +1 in equation (6) only for chronological reason ⌊ ⌋ tokeep consistency with itspreviously published variation(see [2]for details) M L 2 +1 ⌊ ⌋ 1 arctan(x) = i lim L→∞ 2m 1 ℓ=1 m=1 − X X 1 1 . × ((2ℓ 1)+2i/x)2m−1 − ((2ℓ 1) 2i/x)2m−1 (cid:18) − − − (cid:19) Since at M the upper limit in summation M/2 +1 also tend to → ∞ ⌊ ⌋ infinity, the series expansion (6) can be rewritten as ∞ 1 1 1 arctan(x) = i . (7) 2m 1 (1+2i/x)2m−1 − (1 2i/x)2m−1 mX=1 − (cid:18) − (cid:19) In order to exclude the complex numbers in equation (7) we can apply a similar approach as we have made already for derivation of the identity (5). In particular, we note that 1 (x/2)m i = − . (8) (1+2i/x)m i (x/2+i)m − Consequently, for the function i − (x/2+i)m we can simply replace the variable x x/2 in the identity (1) to obtain → i − m (x/2+i) m n x m−(2n−1) n x m−2(n−1) (9) ( 1) m ( 1) m = − 2 m + i − 2 m . x 2 2n 1 x 2 2(n 1) nX=1 1+(cid:0) (cid:1)2 (cid:18) − (cid:19) 1+(cid:0) (cid:1)2 (cid:18) − (cid:19) (cid:16) (cid:0) (cid:1) (cid:17) (cid:16) (cid:0) (cid:1) (cid:17) Comparing now equations (8) and (9) we get 1 m (10) (1+2i/x) x m m ( 1)n x m−(2n−1) m ( 1)n x m−2(n−1) m =i − 2 m +i − 2 m . 2  x 2 2n 1 x 2 2(n 1)  (cid:16) (cid:17) nX=1 1+(cid:0) (cid:1)2 (cid:18) − (cid:19) 1+(cid:0) (cid:1)2 (cid:18) − (cid:19)  (cid:16) (cid:0) (cid:1) (cid:17) (cid:16) (cid:0) (cid:1) (cid:17)  4 Similarly, writing 1 (x/2)m i = − (1 2i/x)m i (x/2 i)m − − − and replacing x x/2 in equation (2) results in → 1 m (11) − (1 2i/x) − x m m ( 1)n x m−(2n−1) m ( 1)n x m−2(n−1) m =i − 2 m i − 2 m . 2  x 2 2n 1 − x 2 2(n 1)  (cid:16) (cid:17) nX=1 1+(cid:0) (cid:1)2 (cid:18) − (cid:19) 1+(cid:0) (cid:1)2 (cid:18) − (cid:19) Therefore, taking sum(cid:16) of(cid:0)eq(cid:1)ua(cid:17)tions (10) and (11)(cid:16)lead(cid:0)s(cid:1)to(cid:17)  1 1 x m m ( 1)n x m−(2n−1) m = 2i − 2 (1+2i/x)m − (1−2i/x)m (cid:16)2(cid:17) Xn=1 1+(cid:0) (cid:1)x2 2 m (cid:18)2n−1(cid:19) (cid:16) (cid:17) (cid:0) (cid:1) or 1 1 1 m (1+2i/x)m −(1 2i/x)m (cid:18) − (cid:19) 2i x m m ( 1)n x m−(2n−1) m (12) = − 2 . m(cid:16)2(cid:17) Xn=1 1+(cid:0) (cid:1)x2 2 m (cid:18)2n−1(cid:19) (cid:16) (cid:17) (cid:0) (cid:1) Replacing in equation (12) the index m 2m 1 provides → − 1 1 1 2m 1 (1+2i/x)2m−1 − (1 2i/x)2m−1 − (cid:18) − (cid:19) 2i x 2m−12m−1 ( 1)n x 2m−1−(2n−1) 2m 1 (13) = − 2 − . 2m−1(cid:16)2(cid:17) nX=1 1+(cid:0) (cid:1)x2 2 2m−1 (cid:18)2n−1(cid:19) (cid:16) (cid:17) (cid:0) (cid:1) Consequently, applying the equation (13) to the formula (7) we have ∞ 1 1 1 i 2m 1 (1+2i/x)2m−1 − (1 2i/x)2m−1 mX=1 − (cid:18) − (cid:19) ∞ 2i x 2m−12m−1 ( 1)n x 2m−1−(2n−1) 2m 1 = i − 2 − mX=1 2m−1(cid:16)2(cid:17) Xn=1 1+(cid:0) (cid:1)x2 2 2m−1 (cid:18)2n−1(cid:19) (cid:16) (cid:17) (cid:0) (cid:1) 5 or ∞ 1 1 1 i 2m 1 (1+2i/x)2m−1 − (1 2i/x)2m−1 mX=1 − (cid:18) − (cid:19) ∞ 2m−1 ( 1)n x 2(2m−n)−1 2m 1 = 2 − − − (2m 1)(1+x2/4)2m−1 2 2n 1 mX=1 nX=1 − (cid:16) (cid:17) (cid:18) − (cid:19) or arctan(x) = (14) ∞ 2m−1 ( 1)n x 2(2m−n)−1 2m 1 2 − − . − (2m 1)(1+x2/4)2m−1 2 2n 1 mX=1 Xn=1 − (cid:16) (cid:17) (cid:18) − (cid:19) As we can see, the equation (14) is represented in form of a real rational function. Although performing computation by truncating equation (14) is not op- timal due to double summation, its application may be more convenient in theoretical analysis. In particular, reformulation as the real rational func- tion (14) can help understand, for example, a behavior of equation (7) at small x 0 in computing pi (see [4] for details) and estimate its error in → truncation. 2 Conclusion We derived an equivalent (14) to series expansion (7) of the arctangent func- tion in form a real rational function. Since equation (14) involves no complex numbers, its application may be more convenient in theoretical analysis. Acknowledgments This work is supported by National Research Council Canada, Thoth Tech- nology Inc. and York University. The authors wish to thank Dr. J. Guillera and Dr. M. Shao for discussions and useful information. 6 References [1] F.DinghuiandZ.Xuesheng, B.P.Demidovich’sproblemsandexercises in mathematicalanalysis, part2, 2nd Ed., ShandongScience andTechnology Press, 1999, pp. 206, 207 (in Chinese). [2] S.M. Abrarov and B.M. Quine, A simple identity for derivatives of the arctangent function, arXiv:1605.02843. [3] V. Lampret. The higher derivatives of the inverse tangent function revis- ited, Appl. Math. E-Notes, 11 (2011), 224-231. http://www.math.nthu.edu.tw/~amen/2011/101020-2.pdf [4] S.M. Abrarov and B.M. Quine, A generalized Vi´ete’s-like formula for pi with rapid convergence, arXiv:1610.07713. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.