ebook img

A refinement of a double inequality for the gamma function PDF

0.12 MB·English
by  Feng Qi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A refinement of a double inequality for the gamma function

A REFINEMENT OF A DOUBLE INEQUALITY FOR THE GAMMA FUNCTION 1 1 FENGQIANDBAI-NIGUO 0 2 Abstract. Inthepaper,wepresentamonotonicityresultofafunctioninvolv- n ingthegammafunctionandthelogarithmicfunction,refineadoubleinequal- a ityforthegammafunction,andimprovesomeknownresultsforboundingthe J gammafunction. 5 2 ] A 1. Introduction C In [10], the following double inequality was complicatedly procured: For x h. (0,1), ∈ t x2+1 x2+2 a <Γ(x+1)< , (1.1) m x+1 x+2 where Γ(x) stands for the classical Euler’s gamma function which may be defined [ for x>0 by 2 ∞ v Γ(x)= tx−1e−tdt. (1.2) Z 5 0 9 The aim of this paper is to simply and concisely generalize, refine and sharpen 4 the double inequality (1.1). 1 Our main results may be stated as the following theorem. . 1 Theorem 1. The function 0 0 lnΓ(x+1) 1 (1.3) ln(x2+1) ln(x+1) : − v is strictly increasing on (0,1), with the limits i X lnΓ(x+1) r lim =γ (1.4) a x→0+ ln(x2+1) ln(x+1) − and lnΓ(x+1) lim =2(1 γ). (1.5) x→1− ln(x2+1) ln(x+1) − − As a result, the double inequality x2+1 α x2+1 β <Γ(x+1)< (1.6) (cid:18) x+1 (cid:19) (cid:18) x+1 (cid:19) 2010 Mathematics Subject Classification. Primary26A48,33B15;Secondary 26D15. Key words and phrases. monotonicity, generalization, refinement, sharpening, inequality, gammafunction,Descartes’SignRule,openproblem,conjecture. The first author was supported in part by the Science Foundation of Tianjin Polytechnic University. ThispaperwastypesetusingAMS-LATEX. 1 2 F.QIANDB.-N.GUO holds on (0,1) if and only if α 2(1 γ) and β γ, where γ =0.57 stands for ≥ − ≤ ··· Euler-Mascheroni’s constant. Consequently, the double inequality (x x )2+1 α⌊x⌋−1 −⌊ ⌋ (x i)<Γ(x+1) (cid:20) x x +1 (cid:21) − −⌊ ⌋ iY=0 (x x )2+1 β⌊x⌋−1 < −⌊ ⌋ (x i) (1.7) (cid:20) x x +1 (cid:21) − −⌊ ⌋ iY=0 holds for x (0, ) N if and only if α 2(1 γ)and β γ, where x represents ∈ ∞ \ ≥ − ≤ ⌊ ⌋ the largest integer less than or equal to x. In Section 2, we cite three lemmas for proving in Section 3 Theorem 1. In Section 4, we compare Theorem 1 with several known results and pose some open problems and conjectures. 2. Lemmas In order to prove Theorem 1, we need the following lemma which can be found in [3], [18, pp. 9–10,Lemma 2.9], [19, p. 71, Lemma 1] or closely-relatedreferences therein. Lemma 1. Let f and g be continuouson [a,b] anddifferentiable on (a,b)suchthat g′(x) = 0 on (a,b). If f′(x) is increasing (or decreasing) on (a,b), then so are the 6 g′(x) functions f(x)−f(b) and f(x)−f(a) on (a,b). g(x)−g(b) g(x)−g(a) We also need the following elementary conclusions. Lemma 2. For x (0,1), we have ∈ x4+4x3 2x2 4x 3<0, − − − x2+1 (x 1) x2+2x 1 (x+1) x2+1 ln >0, − − − x+1 (cid:0) (cid:1) (cid:0) (cid:1) x6+6x5 3x4 16x3 21x2 6x 1<0, − − − − − x5+5x4 2x3 8x2 7x 1<0, − − − − 5x7+34x6+27x5 62x4 205x3 198x2 83x 6<0. − − − − − Proof. For our own convenience,denote the functions above by h (x) for 1 i 5 i ≤ ≤ on [0,1] in order. By Descartes’ Sign Rule, the function h (x) has just one possible positive root. 1 Since h (1)= 4 and h (2)=29, the function h (x) is negative on [0,1]. 1 1 1 − A straightforwardcalculation gives d h (x) (x 1)h (x) 2 1 = − , dx(cid:20)(x+1)(x2+1)(cid:21) (x+1)2(x2+1)2 so the function h2(x) is strictly increasing on [0,1]. Due to h (0) = 1, it is (x+1)(x2+1) 2 derived that h (x)>0 on (0,1). 2 Since h (1)= 40, h (3)=1304, h (1)= 12, 3 3 4 − − h (2)=49, h (1)= 488, h (2)=84, 4 5 5 − A REFINEMENT OF AN INEQUALITY FOR THE GAMMA FUNCTION 3 using Descartes’ Sign Rule again yields the negativity of the functions h (x) for i 3 i 5 on (0,1). The proof of Lemma 2 is complete. (cid:3) ≤ ≤ For our own convenience, we also recite the following double inequality for polygamma functions ψ(k)(x) on (0, ). ∞ Lemma 3. The double inequality (k 1)! k! (k 1)! k! − + <( 1)k+1ψ(k)(x)< − + (2.1) xk 2xk+1 − xk xk+1 holds for x>0 and k N. ∈ For the proof of the inequality (2.1), please refer to [5, p. 131], [6, p. 223, Lemma 2.3], [7, p. 107, Lemma 3], [8, p. 853], [12, p. 55, Theorem 5.11], [13, p. 1625], [16, p. 79], [17, p. 2155, Lemma 3] and closely-related references therein. 3. Proof of Theorem 1 Now we are in a position to prove our main results in Theorem 1. It is easy to see that lnΓ(x+1) 1 lnΓ(x+1) ln x−1 Γ(x+1) = x−1 = ln(x2+1)−ln(x+1) x−11lnxx2++11 ln px−1 xx2++11 q (3.1) ln x−1 Γ(x+1) ln 0−1 Γ(0+1) f(x) f(0) = − = − , lnpx−q1 xx2++11 −ln 0−qp1 002++11 g(x)−g(0) where x2+1 f(x)=ln x−1 Γ(x+1) and g(x)=ln x−1 r x+1 p on [0,1]. Easy computation and simplification yield f′(x) (x+1) x2+1 [(x 1)ψ(x+1) lnΓ(x+1)] = − − g′(x) (x 1)(cid:0)(x2+2x(cid:1) 1) (x+1)(x2+1)lnx2+1 − − − x+1 and d f′(x) (1 x) x4+4x3 2x2 4x 3 q(x) = − − − − , dx(cid:20)g′(x)(cid:21) (x 1) x2+(cid:0)2x 1 (x+1) x2+1(cid:1) lnx2+1 2 − − − x+1 where (cid:2) (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) (x+1) x2+1 q(x)=lnΓ(x+1) (x 1)ψ(x+1) − − − x4+4x3 (cid:0)2x2 4(cid:1)x 3 − − − x2+1 (x 1) x2+2x 1 (x+1) x2+1 ln ψ′(x+1). ×(cid:20) − − − x+1 (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) Further computation and simplification give (1 x) x2+2x 1 +(x+1) x2+1 lnx2+1 q′(x)= − − x+1 q (x), (cid:0) (x4+4x3(cid:1) 2x2 4x(cid:0) 3)2 (cid:1) 1 − − − where q (x)=2 x6+6x5 3x4 16x3 21x2 6x 1 ψ′(x+1) 1 − − − − − (cid:0) +(x+1) x2+1 x4+4x(cid:1)3 2x2 4x 3 ψ′′(x+1) − − − (cid:0) (cid:1)(cid:0) (cid:1) 4 F.QIANDB.-N.GUO and satisfies q′(x)=12 x5+5x4 2x3 8x2 7x 1 ψ′(x+1) 1 − − − − (cid:0)+ x4+4x3 2x2 4x 3 3(cid:1)3x2+2x+1 ψ′′(x+1) − − − (cid:0) (cid:1)(cid:2) (cid:0) +(x+1(cid:1)) x2+1 ψ′′′(x+1) . (cid:0) (cid:1) (cid:3) By virtue of Lemmas 2 and 3, we obtain 2 3 q′(x)< x4+4x3 2x2 4x 3 (x+1) x2+1 + 1 − − − (cid:26) (cid:20)(x+1)3 (x+1)4(cid:21) (cid:0) (cid:1) (cid:0) (cid:1) 1 2 3 3x2+2x+1 + − (cid:20)(x+1)2 (x+1)3(cid:21)(cid:27) (cid:0) (cid:1) 1 1 +12 x5+5x4 2x3 8x2 7x 1 + − − − − (cid:20)x+1 2(x+1)2(cid:21) (cid:0) (cid:1) 5x7+34x6+27x5 62x4 205x3 198x2 83x 6 = − − − − − (x+1)3 <0 on [0,1]. So the function q (x) is strictly decreasing on [0,1]. Since 1 q (0)= 2ψ′(1) 3ψ′′(1)=3.922 1 − − ··· and π2 q (1)=80 1 16ψ′′(2)= 45.128 , 1 (cid:18) − 6 (cid:19)− − ··· the function q (x) has a unique zero on (0,1), and so is the function q′(x). As a 1 result, the function q(x) has a unique minimum on (0,1). Because of 1 π2 q(0)= 3γ = 0.028 3(cid:18) 6 − (cid:19) − ··· and q(1) = 0, we obtain that q(x) < 0 on (0,1). Combining this with Lemma 2 leads to d f′(x) >0 dx(cid:20)g′(x)(cid:21) on (0,1), which means that the function f′(x) is strictly increasing on (0,1). Fur- g′(x) thermore, from Lemma 1 and the equation (3.1), it follows that the function (1.3) is strictly increasing on (0,1). By L’Hospital’s rule, we have lnΓ(x+1) (x+1) x2+1 ψ(x+1) lim = lim x→0+ ln(x2+1) ln(x+1) x→0+ x(cid:0)2+2x(cid:1) 1 − − = ψ(1) − =γ and lnΓ(x+1) (x+1) x2+1 ψ(x+1) lim = lim x→1− ln(x2+1) ln(x+1) x→1− x(cid:0)2+2x(cid:1) 1 − − =2ψ(2) =2(1 γ). − A REFINEMENT OF AN INEQUALITY FOR THE GAMMA FUNCTION 5 Hence, the double inequality (1.6) and its sharpness follow. Thedoubleinequality(1.7)maybededucedfrom(1.6)andtherecurrentformula Γ(x+1)=xΓ(x) for x>0. The proof of Theorem 1 is complete. 4. Remarks Inthissection,wecompareTheorem1withsomeknownresultsandposeseveral open problems and conjectures. Remark 1. It is clear that the double inequality (1.6) refines the double inequal- ity (1.1). Moreover,the inequality (1.6) may be rearrangedas 1 x2+1 2(1−γ) 1 x2+1 γ <Γ(x)< , x (0,1). (4.1) x(cid:18) x+1 (cid:19) x(cid:18) x+1 (cid:19) ∈ Remark 2. In [1, p. 145, Theorem 2], it was obtained that if x (0,1), then ∈ xα(x−1)−γ <Γ(x)<xβ(x−1)−γ (4.2) with the best possible constants 1 π2 α=1 γ =0.42278 and β = γ =0.53385 , (4.3) − ··· 2(cid:18) 6 − (cid:19) ··· and if x (1, ), then (4.2) holds with the best possible constants ∈ ∞ 1 π2 α= γ and β =1. (4.4) 2(cid:18) 6 − (cid:19) In [2, p. 780, Corollary], the following conclusion was established: Let α and β be nonnegative real numbers. For x>0, we have 1 1 √2πxxexp x ψ(x+α) <Γ(x)<√2πxxexp x ψ(x+β) (4.5) (cid:20)− − 2 (cid:21) (cid:20)− − 2 (cid:21) with the best possible constants α= 1 and β =0. 3 In [9, p. 3, Theorem 5], among other things, it was demonstrated that for x ∈ (0,1] we have xx[1−lnx+ψ(x)] xx[1−lnx+ψ(x)] <Γ(x) . (4.6) ex ≤ ex−1 By the well-known software Mathematica Version 7.0.0, we can show that (1) thedoubleinequalities(4.1)and(4.2)arenotincludedeachotheron(0,1), (2) when x>0 is smaller, the double inequalities (4.1) is better than (4.2), (3) the double inequality (4.1) improves (4.5) on (0,1), (4) the left-hand side inequality in (4.1) refines the correspondingone in (4.6), (5) the right-hand side inequalities in (4.1) and (4.6) are not contained each other, (6) whenx>0is smaller,the right-handside inequality in(4.1)is better than the corresponding one in (4.6). Remark 3. In[4,Corollary1.2,Theorem1.4andTheorem1.5],thefollowingsharp inequalities for bounding the gamma function were obtained: For x>0, we have x+1/2 x+1/eγ 1 1 √2 x+ e−x Γ(x+1) eγ/eγ x+ e−x, (4.7) (cid:18) 2(cid:19) ≤ ≤ (cid:18) eγ(cid:19) 6 F.QIANDB.-N.GUO x+1/2 x+1/2 x+1/2 x+1/2 √2e Γ(x+1)<√2π (4.8) (cid:18) e (cid:19) ≤ (cid:18) e (cid:19) and 1 4 √2x+1xxexp x+ <Γ(x+1) (cid:26)−(cid:20) 6(x+3/8) − 9(cid:21)(cid:27) 1 < π(2x+1)xxexp x+ . (4.9) (cid:26)−(cid:20) 6(x+3/8)(cid:21)(cid:27) p By the software Mathematica Version 7.0.0, we can reveal that (1) the double inequalities (1.6) and (4.7) do not include each other on (0,1), (2) the right-hand side inequality in (1.6) is better than the one in (4.8) on (0,1), (3) theleft-handsideinequalitiesin(1.6)and(4.8)arenotincludedeachother on (0,1), (4) the lower bound in (1.6) improves the corresponding one in (4.9), but the right-hand side inequalities in (1.6) and (1.6) do not contain each other on (0,1). Remark 4. It is clear that when x N the inequality (1.7) becomes equality. This ∈ shows us that for x > 1 the double inequality (1.7) is better than those double inequalities listed in the above Remarks 2 and 3. Remark 5. In[15,Theorem1],amongotherthings,itwasprovedthatthefunction lnΓ(x+1) F(x)= (4.10) xln(2x) is both strictly increasing and strictly concave on 1, . By L’Hospital Rule and 2 ∞ the double inequality (2.1) for k =1, we obtain (cid:0) (cid:1) ψ(x+1) lim F(x)= lim = lim xψ′(x+1) =1, x→∞ x→∞1+ln(2x) x→∞ (cid:2) (cid:3) soitfollowsthatΓ(x+1)<(2x)xon 1, ,whichisnotbetterthantheright-hand 2 ∞ side inequality in (1.6) on 1,1 . (cid:0) (cid:1) 2 (cid:0) (cid:1) Remark 6. By similar argumentto the proofof Theorem1, we may provethat the function lnΓ(x+1) (4.11) ln(x2+6) ln(x+6) − is strictly decreasing on (0,1). Consequently, x2+6 6γ x2+6 7(1−γ) <Γ(x+1)< , x (0,1). (4.12) (cid:18) x+6 (cid:19) (cid:18) x+6 (cid:19) ∈ Motivating by monotonic properties of the functions (1.3) and (4.11), we pose the following open problem: What is the largest number λ > 1 (or the smallest number λ<6 respectively) for the function lnΓ(x+1) (4.13) ln(x2+λ) ln(x+λ) − to be strictly increasing (or decreasing respectively) on (0,1)? Remark 7. Finally, we pose the following conjectures. A REFINEMENT OF AN INEQUALITY FOR THE GAMMA FUNCTION 7 (1) Thefunction(1.3)isstrictlyincreasingnotonlyon(0,1)butalsoon(0, ). ∞ (2) For τ >0, the function lnΓ(x) , x=1 ln(x2+τ) ln(x+τ) 6 (4.14)  (1+τ)γ,− x=1 − is strictly increasing with respect to x (0, ). ∈ ∞ (3) Recall from [11, Chapter XIII], [20, Chapter 1] or [21, Chapter IV] that a function f is completely monotonic on an interval I if f has derivatives of all orders on I and 0 ( 1)nf(n)(x)< (4.15) ≤ − ∞ for x I and n 0. We conjecture that the function ∈ ≥ lnx , x=1 h(x)=ln(1+x2) ln(1+x) 6 (4.16) − 2, x=1 is completely monotonic on (0, ). ∞ Remark 8. For the history, backgrounds, origins, developments of bounding the gamma function, please refer to the expository and survey article [12] and plenty of references therein. Remark 9. This paper is a revised version of the preprint [14]. Acknowledgements. Theauthorsappreciateanonymousrefereesfortheirhelpful and valuable comments on this paper. References [1] H. Alzer, Inequalities for the gamma function, Proc. Amer. Math. Soc. 128 (1999), no. 1, 141–147. 5 [2] H.AlzerandN.Batir,Monotonicitypropertiesofthegammafunction,Appl.Math.Lett.20 (2007),no.7,778–781;Availableonlineathttp://dx.doi.org/10.1016/j.aml.2006.08.026. 5 [3] G.D.Anderson,M.K.Vamanamurthy,andM.Vuorinen,Specialfunctionsofquasiconformal theory,Expo.Math.7(1989), 97–136. 2 [4] N.Batir,Inequalities for the gamma function,Arch.Math.91(2008), 554–563. 5 [5] B.-N.Guo, R.-J.Chen, and F. Qi, A class of completely monotonic functions involving the polygamma functions,J.Math.Anal.Approx.Theory1(2006), no.2,124–134. 3 [6] B.-N.GuoandF.Qi,Some properties of the psi and polygamma functions,Hacet.J.Math. Stat.39(2010), 219–231. 3 [7] B.-N.GuoandF.Qi,Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1, 103–111; Available online at http://dx.doi.org/10.4134/BKMS.2010.47.1.103. 3 [8] B.-N.Guo,F.QiandH.M.Srivastava,Someuniquenessresultsforthenon-triviallycomplete monotonicityofaclassoffunctionsinvolvingthepolygamma andrelatedfunctions,Integral TransformsSpec.Funct.21(2010),no.11,103–111;Availableonlineathttp://dx.doi.org/ 10.1080/10652461003748112. 3 [9] B.-N.Guo,Y.-J.ZhangandF.Qi,Refinementsandsharpenings of some double inequalities for bounding the gamma function, J. Inequal. Pure Appl. Math. 9 (2008), no. 1, Art. 17; Availableonlineathttp://www.emis.de/journals/JIPAM/article953.html?sid=953. 5 [10] P.Iva´dy,Anoteonagammafunctioninequality,J.Math.Inequal.3(2009),no.2,227–236. 1 [11] D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer,Dordrecht,1993. 7 8 F.QIANDB.-N.GUO [12] F.Qi,Bounds for the ratio of two gamma functions,J.Inequal. Appl.2010(2010), Article ID493058, 84pages; Availableonlineathttp://dx.doi.org/10.1155/2010/493058. 3,7 [13] F.QiandB.-N.Guo,Alogarithmically completely monotonic functioninvolvingthegamma function,TaiwaneseJ.Math.14(2010), no.4,1623–1628. 3 [14] F.QiandB.-N.Guo,An elegant refinement of a double inequality for the gamma function, Availableonlineathttp://arxiv.org/abs/1001.1495. 7 [15] F.Qi andB.-N.Guo, Monotonicity and logarithmic convexity relating to the volume of the unit ball,Availableonlineathttp://arxiv.org/abs/0902.2509. 6 [16] F. Qi and B.-N. Guo, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions tobe completely monotonic,Adv.Appl.Math.44(2010), no.1, 71–83;Availaleonlineathttp://dx.doi.org/10.1016/j.aam.2009.03.003. 3 [17] F.Qi,S.GuoandB.-N.Guo,Completemonotonicityofsomefunctionsinvolvingpolygamma functions, J.Comput. Appl. Math. 233(2010), no. 9, 2149–2160; Availableonlineat http: //dx.doi.org/10.1016/j.cam.2009.09.044. 3 [18] F.Qi,D.-W.NiuandB.-N.Guo,Refinements, generalizations, andapplications ofJordan’s inequality and related problems,J.Inequal. Appl.2009(2009), ArticleID271923, 52pages; Availableonlineathttp://dx.doi.org/10.1155/2009/271923. 2 [19] F. Qi and A. Sofo, An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 71(2009), no.3,69–76.2 [20] R. L. Schilling, R. Song and Z. Vondraˇcek, Bernstein Functions, de Gruyter Studies in Mathematics37,DeGruyter,Berlin,Germany,2010.7 [21] D.V.Widder,The Laplace Transform,PrincetonUniversityPress,PrincetonNJ,1946.7 (F.Qi)DepartmentofMathematics,CollegeofScience,TianjinPolytechnicUniver- sity,Tianjin City, 300160,China E-mail address: [email protected], [email protected], [email protected] URL:http://qifeng618.wordpress.com (B.-N.Guo) School of Mathematicsand Informatics,Henan Polytechnic University, JiaozuoCity, HenanProvince,454010,China E-mail address: [email protected], [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.