ebook img

A refined Bloch group and the third homology of SL_2 of a field PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A refined Bloch group and the third homology of SL_2 of a field

A REFINED BLOCH GROUP AND THE THIRD HOMOLOGY OF SL OF A 2 FIELD KEVINHUTCHINSON 1 Abstract. WeusethepropertiesoftherefinedBlochgrouptoprovethatH3 ofSL2 ofaglobal 1 field is never finitely-generated, and to calculate H of SL of local fields with odd residue 3 2 0 characteristicuptosome2-torsion. Wealsogivelowerboundsforthe3-rankofthehomology 2 groupsH (SL (O ),Z). 3 2 S v o N Contents 1 2 1. Introduction 1 ] 2. ReviewofBlochGroups 4 T 3. SomealgebrainRP(F) 7 K . 4. ValuationsandSpecialization 16 h t 5. Someapplications 23 a m 6. ThethirdhomologyofSL oflocalfields 25 2 [ References 34 4 v 9 7 2 1. Introduction 3 . 1 In [10], Chih-Han Sah quotes S. Lichtenbaum who mentions our lack of knowledge of the 0 precisestructureofH (SL (Q),Z)asanexampleoftheunsatisfactorystateofourunderstanding 1 3 2 1 of the homology of linear groups. This was nearly twenty five years ago, and to the author’s : knowledge the precise structure of this group is still unknown. We will return to this question v i below. (Observe, however, that H (SL (Q),Z) (cid:27) Kind(Q) (cid:27) Z/24 for all n ≥ 3 - by the results X 3 n 3 of[5],forexample.) r a In this article, we study the structure of the third homology of SL of fields by using the prop- 2 erties of the refined Bloch group of the field, which was introduced in [4]. We are particularly interested in understanding H (SL (F),Z) as a functor of F, and its possible relation to other 3 2 functorsin K-theoryandalgebraicgeometry. What are now referred to as Bloch groups of fields first appeared in the work of S. Bloch in the late 1970s (see [1] for the lecture notes) as a way of constructing explicit maps - and, in particular, regulators - on K of fields. In the 1980s, they were studied by Dupont and Sah 3 (under the name scissors congruence group) because of their connection with 3-dimensional hyperbolic geometry ([2], [10]). This connection is still actively studied today: Bloch groups of number fields are targets for Bloch invariants of certain finite-volume oriented hyperbolic Date:November22,2011. 1991MathematicsSubjectClassification. 19G99,20G10. Keywordsandphrases. K-theory,GroupHomology. 1 2 KEVINHUTCHINSON 3-manifolds ([8], [9], [3]). These invariants are amenable to explicit calculation and are related in a known way to the Chern-Simons invariant. There are also intriguing connections between Blochgroups,conformalfieldtheoriesandevenmodularformtheory([12],[7]). The precise relationship between the Bloch group and K-theory was established via their mu- tualconnectiontothehomologyoflineargroups. Theseconnectionsweregreatlyclarifiedand exploited in the work of Suslin ([11]): For an infinite field F, the Bloch group, B(F), arises naturally as a quotient of H (GL (F),Z). Of course, K (F) admits a Hurewicz homomorphism 3 2 3 toH (GL(F),Z) = H (GL (F),Z). Suslinprovedthatthereisanaturalshortexactsequence 3 3 3 (cid:93) 0 → TorZ(µ ,µ ) → Kind(F) → B(F) → 0 1 F F 3 (cid:93) whereTorZ(µ ,µ )istheuniquenontrivialextensionofTorZ(µ ,µ )byZ/2and 1 F F 1 F F Kind(F) = Coker(KM(F) → K (F)). 3 3 3 TheseresultsofSuslinwereextendedtofinitefields(withatleast4elements)in[4]. InalettertoSah,SuslinaskedthequestionwhetherthecompositeH (SL (F),Z) → H (GL (F),Z) → 3 2 3 2 Kind(F)inducesanisomorphism 3 H (SL (F),Z) (cid:27) Kind(F). 3 2 F× 3 The current state of knowledge on this question is that the map is surjective ([5]) and that the inducedmap H (SL (F),Z[1]) → Kind(F)[1] 3 2 2 F× 3 2 isanisomorphism,where A[1]denotes A⊗Z[1]foranyabeliangroup A([6]). 2 2 ThehomologygroupsofthespeciallineargroupsSL (F)arenaturallymodulesoverthegroup n ringZ[F×]viatheshortexactsequences 1 (cid:47)(cid:47) SL (F) (cid:47)(cid:47) GL (F) det (cid:47)(cid:47) F× (cid:47)(cid:47) 1. n n Since the scalar matrices a · I are central and have determinant an, it, of course, follows that n (F×)n acts trivially on H (SL (F),Z). In particular, the groups H (SL (F),Z) are modules for k n k 2 thegroupringR := Z[F×/(F×)2]. F Whenn > k (orn ≥ k whenk isodd),weareintherangeofstability(see[10],[5]and[?])and thismodulestructureisnecessarilytrivial. Butbelowtherangeofstability,themodulestructure appears to be nontrivial and interesting. For example, the unstable groups H (SL (F),Z) are 2n 2n modules over the Grothendieck-Witt ring of the field (which is a quotient of R ) and surject F ontotheMilnor-Witt K-theorygroups KMW(F)([?]). 2n In [4] the author defined a refined Bloch group, RB(F), of a field F which was shown to have thefollowingproperties: (1) The group RB(F) is an R -module and there is a natural surjective homomorphism of F R -modules F H (SL (F),Z) (cid:47)(cid:47) (cid:47)(cid:47) RB(F) 3 2 (2) Thisinducesacommutativediagram(ofR [1]-modules)withexactrows F 2 0 (cid:47)(cid:47) TorZ(µ ,µ )[1] (cid:47)(cid:47) H (SL (F),Z[1]) (cid:47)(cid:47) RB(F)[1] (cid:47)(cid:47) 0 1 F F 2 3 2 2 2 = (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 (cid:47)(cid:47) TorZ(µ ,µ )[1] (cid:47)(cid:47) Kind(F)[1] (cid:47)(cid:47) B(F)[1] (cid:47)(cid:47) 0 1 F F 2 3 2 2 HereR actstriviallyonthebottomrowandfurthermore F RefinedBlochgroupandH ofSL 3 3 2 (3) On taking F×-coinvariants, the top row becomes isomorphic to the bottom row. In particular,RB(F)[1] (cid:27) B(F)[1]and 2 F× 2 I RB(F)[1] (cid:27) I H (SL (F),Z[1]) = Ker(H (SL (F),Z[1]) → Kind(F)[1]) F 2 F 3 2 2 3 2 2 3 2 whereI denotestheaugmentationidealofthegroupringR . F F (ThegroupI RB(F)[1]isalsothekernelofthestabilizationhomomorphism F 2 H (SL (F),Z[1]) → H (SL (F),Z[1]). 3 2 2 3 3 2 ThecokernelofthismapisthethirdMilnor K-group KM(F)[1]andtheimageisisomorphicto 3 2 Kind(F)[1]. ) 3 2 The main result of the current article (Theorem 4.4 and its corollaries) tells us that given a valuation v on the field F with residue field k, there are surjective reduction or specialization homomorphisms RB(F) (cid:47)(cid:47) (cid:47)(cid:47) R(cid:91)P(k) (cid:91) whereRP(k)isacertainquotientoftherefinedpre-Blochgroup,RP(k),ofthefieldk. In particular, if a ∈ F× and v(a) is not a multiple of 2, there is a specialization homomorphism whichinducesasurjection e−RB(F)[1] (cid:47)(cid:47) (cid:47)(cid:47) P(cid:100)(k)[1] a 2 2 where 1−(cid:104)a(cid:105) e− = ∈ I [1] a 2 F 2 and (cid:104)a(cid:105) denotes the square class of a in R and P(cid:100)(k) is a certain quotient of the classical pre- F Blochgroup,P(k),oftheresiduefield. Using these results, we can prove that I RB(F)[1] is large if F is a field with many valua- F 2 tions. In particular, it follows that H (SL (F),Z) is not finitely generated for any global field 3 2 F. (Bycontrast,if F isaglobalfieldthenH (SL (F),Z) = Kind(F)iswell-knowntobefinitely 3 3 3 generated.) For example, (see Theorem 5.1) if F is a global field whose class group has odd order then thereisanaturalsurjection (cid:76) I RB(F)[1] (cid:47)(cid:47) (cid:47)(cid:47) B(k )[1] F 2 v v 2 where v runs through all the finite places of F and k is the residue field at v. (By the results v of [4], if F is the finite field with q elements, then B(F ) is cyclic of order (q + 1)/2 or q + 1 q q accordingasqisoddoreven.) Asanotherapplication,wealsousethetechniquesdevelopedtoconstructexplicitlynon-trivial F -vectorspaces of known dimension inside groups of the form H (SL (O ),Z) where O is a 3 3 2 S S ring of S-integers, and thus to give lower bounds on the 3-ranks of such groups. We hope that thesetechniqueswillbeusefulinprovingmoregeneralresultsofthistypeinthefuture. Finally, we use these specialization maps, together with the basic algebraic properties of the refined Bloch groups, developed in section 3 below, to give a calculation of H (SL (F),Z[1]) 3 2 2 for local fields F with finite residue field of odd order (Theorem 6.14). In particular, for such fieldswehave H (SL (F),Z[1]) (cid:27) Kind(F)[1]⊕B(k)[1] 3 2 2 3 2 2 where k is the residue field. Here the right-hand side is an R module with F× acting trivially F onthefirstfactorwhileanyuniformizeractsas−1onthesecondfactor. 4 KEVINHUTCHINSON To return to our opening remarks, it follows from the results here that there is a natural surjec- tion (cid:16)(cid:76) (cid:17) H (SL (Q),Z)⊗Z[1] = H (SL (Q),Z[1]) (cid:47)(cid:47) (cid:47)(cid:47) Kind(Q)[1]⊕ B(F )[1] . 3 2 2 3 2 2 3 2 p p 2 It is natural to ask whether this is an isomorphism and, furthermore, what adjustments, if any, needtobemadetoobtainacorrespondingstatementwithintegralcoefficients. 2. ReviewofBlochGroups 2.1. Preliminaries and Notation. For a field F, we let G denote the multiplicative group, F F×/(F×)2, of nonzero square classes of the field. For x ∈ F×, we will let (cid:104)x(cid:105) ∈ G denote the F corresponding square class. Let R denote the integral group ring Z[G ] of the groupG . We F F F willusethenotation(cid:104)(cid:104)x(cid:105)(cid:105)forthebasiselements,(cid:104)x(cid:105)−1,oftheaugmentationidealI ofR . F F For any a ∈ F×, we will let p+ and p− denote respectively the elements 1+(cid:104)a(cid:105) and 1−(cid:104)a(cid:105) in a a R . F ForanyabeliangroupAwewillletA[1]denoteA⊗Z[1]. Foranintegern,wewillletn(cid:48) denote 2 2 theoddpartofn. ThusifAisafiniteabeliangroupofordern,thenA[1]isafiniteabeliangroup 2 ofordern(cid:48). Welete+ ande− denoterespectivelythemutuallyorthogonalidempotents a a p+ 1+(cid:104)a(cid:105) p− 1−(cid:104)a(cid:105) e+ := a = , e− := a = ∈ R [1]. a 2 2 a 2 2 F 2 (Ofcourse,theseoperatorsdependonlyontheclassofainG .) F 2.2. The classical Bloch group. For a field F, with at least 4 elements, the pre-Bloch group, P(F),isthegroupgeneratedbytheelements[x], x ∈ F× \{1},subjecttotherelations R : [x]−(cid:2)y(cid:3)+(cid:2)y/x(cid:3)−(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:2)(1− x)/(1−y)(cid:3) x (cid:44) y. x,y LetS2(F×)denotethegroup Z F× ⊗ F× Z < x⊗y+y⊗ x|x,y ∈ F× > anddenoteby x◦ytheimageof x⊗yinS2(F×). Z Themap λ : P(F) → S2(F×), [x] (cid:55)→ (1− x)◦ x Z iswell-defined,andtheBlochgroupof F,B(F) ⊂ P(F),isdefinedtobethekernelofλ. 2.3. TherefinedBlochgroup. Therefinedpre-Blochgroup,RP(F),ofafield F whichhasat least 4 elements, is the R -module with generators [x], x ∈ F× subject to the relations [1] = 0 F and S : 0 = [x]−[y]+(cid:104)x(cid:105)(cid:2)y/x(cid:3)−(cid:68)x−1 −1(cid:69)(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:104)1− x(cid:105)(cid:2)(1− x)/(1−y)(cid:3), x,y (cid:44) 1 x,y Ofcourse,fromthedefinitionitfollowsimmediatelythatP(F) = (RP(F)) = H (F×,RP(F)). F× 0 Foranyfield F wedefinetheR -module F RS2(F×) := I2 × S2(F×) ⊂ I2 ⊕S2(F×) Z F Sym2F (GF) Z F Z 2 whereS2(F×)hasthetrivialR -modulestructure. Z F RefinedBlochgroupandH ofSL 5 3 2 AsanR -module,RS2(F×)isgeneratedbytheelements F Z [a,b] := ((cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105),a◦b) ∈ RS2(F×). Z TherefinedBloch-WignerhomomorphismΛtobetheR -modulehomomorphism F Λ : RP(F) → RS2(F), [x] (cid:55)→ [1− x,x] Z (whichcanbeshowntobewell-defined). In view of the definition of RS2(F×), we can express Λ = (λ ,λ ) where λ : RP(F) → I2 is Z 1 2 1 F themap[x] (cid:55)→ (cid:104)(cid:104)1− x(cid:105)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105),andλ isthecomposite 2 RP(F) (cid:47)(cid:47) (cid:47)(cid:47) P(F) λ (cid:47)(cid:47) S2(F×). Z Finally,wecandefinetherefinedBlochgroupofthefield F (withatleast4elements)tobethe R -module F RB(F) := Ker(Λ : RP(F) → RS2(F×)). Z 2.4. The fields F and F . Throughout this paper it will be convenient for us to have (refined 2 3 andclassical)pre-BlochandBlochgroupsforthefieldswith2and3elements. Forthisreason, weintroducethefollowingsomewhatadhocdefinitions. P(F ) = RP(F ) = RB(F ) = B(F ) is simply an additive group of order 3 with distinguished 2 2 2 2 generator,denotedC . F 2 RP(F )isthecyclicR -modulegeneratedbythesymbol[−1]andsubjecttotheonerelation 3 F3 0 = 2·([−1]+(cid:104)−1(cid:105)[−1]). Thehomomorphism Λ : RP(F ) → RS2(F×) = I2 = 2·Z(cid:104)(cid:104)−1(cid:105)(cid:105) 3 Z 3 F3 istheR -homomorphismsending[−1]to(cid:104)(cid:104)−1(cid:105)(cid:105)2 = −2(cid:104)(cid:104)−1(cid:105)(cid:105). F 3 ThenRB(F ) = Ker(Λ)isthesubmoduleoforder2generatedby[−1]+(cid:104)−1(cid:105)[−1]. 3 Furthermore, we let P(F ) = RP(F ) . This is a cyclic Z-module of order 4 with generator 3 3 F× 3 [−1]. Letλ : P(F ) → I2 bethemap[−1] (cid:55)→ −2(cid:104)(cid:104)−1(cid:105)(cid:105). ThenB(F ) := Ker(λ) = RB(F ). 3 F 3 3 3 2.5. TherefinedBlochGroupandH (SL (F),Z). Werecallsomeresultsfrom[4]: Themain 3 2 resultthereis Theorem2.1. Let F beafieldwithatleast4elements. If F isinfinite,thereisanaturalcomplex 0 → TorZ(µ ,µ ) → H (SL (F),Z) → RB(F) → 0. 1 F F 3 2 which is exact everywhere except possibly at the middle term. The middle homology is annihi- latedby4. Inparticular,foranyinfinitefieldthereisanaturalshortexactsequence 0 → TorZ(µ ,µ )[1] → H (SL (F),Z[1]) → RB(F)[1] → 0. 1 F F 2 3 2 2 2 ThefollowingresultisCorollary5.1in[4]: Lemma 2.2. Let F be an infinite field. Then the natural map RB(F) → B(F) is surjective and theinducedmapRB(F) → B(F)hasa2-primarytorsionkernel. F× 6 KEVINHUTCHINSON Nowforanyfield F,let H (SL (F),Z) := Ker(H (SL (F),Z) → Kind(F)) 3 2 0 3 2 3 and RB(F) := Ker(RB(F) → B(F)) 0 ThefollowingisLemma5.2in[4]. Lemma2.3. Let F beaninfinitefield. Then (1) H (SL (F),Z[1]) = RB(F)[1] 3 2 2 0 2 0 (2) H (SL (F),Z[1]) = I H (SL (F),Z[1])andRB(F)[1] = I RB(F)[1]. 3 2 2 0 F 3 2 2 2 0 F 2 (3) H (SL (F),Z[1]) = Ker(H (SL (F),Z[1]) → H (SL (F),Z[1])) 3 2 2 0 3 2 2 3 3 2 = Ker(H (SL (F),Z[1]) → H (GL (F),Z[1])) 3 2 2 3 2 2 On the other hand, the corresponding results for finite fields are as follows (the results in [4] applytofieldswithatleast4elements,butitisstraightforwardtoverifythattheyextendtothe fieldsF andF withthedefinitionssuppliedabove): 2 3 Lemma 2.4. For a finite field k the natural map RP(k) → P(k) induces an isomorphism RB(k) (cid:27) B(k). (ThisisLemma7.1in[4].) ForafieldF,weletTorZ(µ(cid:93),µ )denotetheuniquenontrivialextensionofTorZ(µ ,µ )byZ/2 1 F F 1 F F Z ifthecharacteristicof F isnot2,andTor (µ ,µ )incharacteristic2. 1 F F Theorem2.5. Thereisanaturalshortexactsequence 0 → TorZ(µ(cid:93),µ ) → H (SL (F ),Z[1/p]) → B(F ) → 0 1 Fq Fq 3 2 q q foranyfinitefieldF oforderq = pf. q Furthermore,thereisanaturalisomorphism H (SL (F ),Z[1/p]) (cid:27) Kind(F ). 3 2 q 3 q (See[4],Corollary7.5. ) Furthermore,thecalculationsin[4],sections5and7,showthat Lemma2.6. (cid:40) Z/(q+1)/2, qodd B(F ) (cid:27) q Z/(q+1), qeven andif K ⊂ SL (F )isacyclicsubgroupoforder(q+1)(cid:48) thenthecompositemap 2 q Z/(q+1)(cid:48) (cid:27) H (K,Z[1]) → H (SL (F ),Z[1]) → B(F )[1] 3 2 3 2 q 2 q 2 isanisomorphism. RefinedBlochgroupandH ofSL 7 3 2 2.6. The map H (G,Z) → RB(F). In section 6 of [4] a recipe is given for calculating the 3 homomorphism H (G,Z) → RB(F) for subgroups G of SL (F). We recall this calculation in 3 2 thecasethatG isafinitecyclicsubgroup. First,given4distinctpointsx ,x ,x ,x ∈ P1(F)wedefinetherefinedcrossratiocr(x ,x ,x ,x ) ∈ 0 1 2 3 0 1 2 3 RP(F)by  (cid:68) (cid:69)(cid:104) (cid:105) cr(x ,x ,x ,x ) =  (cid:104)(cid:104)xx(x12−−−xx02xx)−(2xx10(cid:105)(cid:105)−(cid:104)(cid:104)xxxx1113)−−−xxx302(((cid:105)(cid:105)xx22,,−−xx10))((xx33−−xx01)) , iiifff xxxi0(cid:44)==∞∞∞ 0 1 2 3  (cid:104)(cid:68)x(x202−−x0x)(01x0(cid:105)−(cid:104)xxxx1233)−−−(cid:69)xxx(cid:104)010x(cid:105)2,−x1(cid:105), iiff xx12 == ∞∞ x2−x1 x2−x0 3 NowsupposethatGisafinitecyclicsubgroupofSL (F)oforderrwithgeneratort. Wechoose 2 x ∈ P1(F)withtrivialstabilizerG = 1,andchoosey ∈ P1(F)\G· x. x Lemma2.7. Thecomposite Z/n (cid:27) H (G,Z) → RP(F) 3 isgivenbytheformula (cid:88)r−1 1 (cid:55)→ cr(βx,y(1,t,ti+1,ti+2)). 3 i=0 where βx,y(1,t,t,t2) = 0 3 βx,y(1,t,ti+1,ti+2) = (x,t(x),ti+1(x),ti+2(x))for1 ≤ i ≤ r−3 3 βx,y(1,t,tr−1,1) = (y,t(x),t−1(x),x)−(y,x,t(x),t−1(x)) 3 βx,y(1,t,tr,tr+1) = βx,y(1,t,1,t) 3 3 (cid:40) 0, y = t(y) = (y,t(y),x,t(x))+(y,t(y),t(x),x), y (cid:44) t(y) Furthermore,theresultingmapisindependentoftheparticularchoiceof x andy. 3. SomealgebrainRP(F) In this section we study certain key elements and submodules of the refined pre-Bloch group ofafield F. 3.1. Theelementsψ (x)andthemodulesK(i). Werecalltheelements i F (cid:104) (cid:105) {x} := [x]+ x−1 ∈ P(F) (for x ∈ F×). A straightforward calculation - see Suslin [11] - shows that these symbols allow ustodefineagrouphomomorphism F× → P(F), x (cid:55)→ {x} 8 KEVINHUTCHINSON whosekernelcontains(F×)2;i.e. wehave (cid:110) (cid:111) x2 = 0and{xy} = {x}+{y} forall x,y. Inparticular,theseelementssatisfy2{x} = 0forall x. WenowconsidertwoliftingsoftheseelementsinRP(F): For x ∈ F× welet (cid:104) (cid:105) ψ (x) := [x]+(cid:104)−1(cid:105) x−1 1 and (cid:40) (cid:16) (cid:104) (cid:105)(cid:17) (cid:104)1− x(cid:105) (cid:104)x(cid:105)[x]+ x−1 , x (cid:44) 1 ψ (x) := 2 0, x = 1 (If F = F ,weinterpretthisasψ (1) = 0fori = 1,2. For F = F ,wehaveψ (−1) = ψ (−1) = 2 i 3 1 2 [−1]+(cid:104)−1(cid:105)[−1]. ) Themaps F× → RP(F),x (cid:55)→ ψ (x)arenolongerhomomorphisms,butarederivations: i Lemma3.1. Let F beafield. Fori ∈ {1,2},themap F× → RP(F),x (cid:55)→ ψ (x) i isa1-cocycle;i.e. wehave ψ (xy) = (cid:104)x(cid:105)ψ (y)+ψ (x) forall x,y ∈ F×. i i i Proof. Thestatementistrivialfor F = F orF . Wecanthusassume F hasatleast4elements. 2 3 If x = 1 or y = 1, the required identities are clear. If x (cid:44) 1 and y (cid:44) x−1 the relation 0 = S +(cid:104)−1(cid:105)S inRP(F)yieldstheidentity x,xy x−1,x−1y−1 ψ (x)−ψ (y)+(cid:104)x(cid:105)ψ (xy) = 0. 1 1 1 (cid:16) (cid:17) Thus we must also prove that (cid:104)x(cid:105)ψ x−1 + ψ (x) = 0 for all x (cid:44) 1. Fix x (cid:44) 1 and choose 1 1 y (cid:60) {1,x−1}(hereweusethat F hasatleast4elements). Then (cid:16) (cid:17) (cid:104)y(cid:105)ψ (x) = ψ (xy)−ψ (y) = −(cid:104)xy(cid:105)ψ x−1 1 1 1 1 andmultiplyingby(cid:104)y(cid:105)givestherequiredidentity. Now,for x,y ∈ F×,let (cid:34) (cid:35) (cid:20) (cid:21) x y Q(x,y) := (cid:104)x(cid:105) +(cid:104)y(cid:105) ∈ RP(F). y x Then (cid:32)(cid:42) (cid:43)(cid:34) (cid:35) (cid:20) (cid:21)(cid:33) (cid:42) (cid:43) (cid:32) (cid:33) (cid:32) (cid:33) x x y x x x Q(x,y) = (cid:104)y(cid:105) + = (cid:104)y(cid:105) 1− ψ = (cid:104)y− x(cid:105)ψ . 2 2 y y x y y y Fora,b (cid:44) 1,therelation0 = S +S inRP(F)givestheidentity a,b a,b Q(a−1 −1,b−1 −1) = Q(a−1,b−1)+Q(1−a,1−b). Thus (cid:32) (cid:33) (cid:32) (cid:33) (cid:32) (cid:33) (cid:68) (cid:69) a−1 −1 (cid:68) (cid:69) b 1−a b−1 −a−1 ψ = b−1 −a−1 ψ +(cid:104)a−b(cid:105)ψ 2 b−1 −1 2 a 2 1−b andhence (cid:32) (cid:33) (cid:32) (cid:33) (cid:42) (cid:43) (cid:32) (cid:33) b−1 −1 b b 1−a ψ = ψ + ψ . 2 a−1 −1 2 a a 2 1−b Nowifwefix x,y (cid:44) 1with xy (cid:44) 1,wecansolvetheequations b 1−a x = , y = a 1−b RefinedBlochgroupandH ofSL 9 3 2 foraandbandprovetherequiredidentityforψ (). (cid:3) 2 Corollary3.2. Fori ∈ {1,2}wehave: (cid:16) (cid:17) (cid:16) (cid:17) (1) ψ xy2 = ψ (x)+ψ y2 forall x,y i i i (cid:16) (cid:17) (2) (cid:104)(cid:104)x(cid:105)(cid:105)ψ y2 = 0forall x,y i (3) 2·ψ (−1) = 0foralli (cid:16) i(cid:17) (4) ψ x2 = −(cid:104)(cid:104)x(cid:105)(cid:105)ψ (−1)forall x i i (cid:16) (cid:17) (cid:16) (cid:17) (5) 2·ψ x2 = 0forall x andif−1isasquarein F thenψ x2 = 0forall x. i i (6) (cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)y(cid:105)(cid:105)ψ (−1) = 0forall x,y i (7) (cid:104)−1(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)ψ (y) = (cid:104)(cid:104)x(cid:105)(cid:105)ψ (y)forall x,y i i (8) Let (cid:40) 1, −1 ∈ (F×)2 (cid:15)(F) := 2, −1 (cid:60) (F×)2 ThemapG → RP(F),(cid:104)x(cid:105) (cid:55)→ (cid:15)(F)ψ (x)isawell-defined1-cocycle. F i (cid:16) (cid:17) Proof. The identities ψ (1) = 0 and ψ x−1 = (cid:104)−1(cid:105)ψ (x) follow from the definition of ψ (). i i i i Moregenerally,let M beanR -moduleandletψ : F× → M bea1-cocyclesatisfying F ψ(1) = 0andψ(x−1) = (cid:104)−1(cid:105)ψ(x)forall x ∈ F×. (1) Forall x,ywehave (cid:68) (cid:69) ψ(xy2) = y2 ψ(x)+ψ(y2) = ψ(x)+ψ(y2) (cid:68) (cid:69) since y2 = 1inR . F (2) Thecocycleconditionimpliesthat(cid:104)(cid:104)x(cid:105)(cid:105)ψ(y) = (cid:104)(cid:104)y(cid:105)(cid:105)ψx forall x,y. Thus (cid:68)(cid:68) (cid:69)(cid:69) (cid:104)(cid:104)x(cid:105)(cid:105)ψ(y2) = y2 ψ(x) = 0. (3) Wehave(cid:104)−1(cid:105)ψ(−1) = ψ(−1)andthus 0 = ψ(1) = ψ(−1·−1) = ψ(−1)+(cid:104)−1(cid:105)ψ(−1) = 2ψ(−1). (4) Forall x wehave (cid:32) (cid:33) (cid:32) (cid:33) 1 1 ψ(x) = ψ · x2 = ψ +ψ(x2) = (cid:104)−1(cid:105)ψ(x)+ψ(x2). x x Thus ψ(x2) = −(cid:104)(cid:104)−1(cid:105)(cid:105)ψ(x) = −(cid:104)(cid:104)x(cid:105)(cid:105)ψ(−1). (5) The first statement follows from (3) and (4). For the second, observe that for any x we have ψ(x2) = −(cid:104)(cid:104)−1(cid:105)(cid:105)ψ(x) and(cid:104)(cid:104)−1(cid:105)(cid:105) = 0if−1isasquare. (6) Thisstatementfollowsfrom(2)and(4). (7) Thisisarestatementof(6);namely (cid:104)(cid:104)−1(cid:105)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)ψ(y) = (cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)y(cid:105)(cid:105)ψ(−1) = 0. (8) By (5), (cid:15)(F)ψ(x2) = 0 in M for all x and thus (cid:15)(F)ψ(xy2) = (cid:15)(F)ψ(x) for all x,y. Thus theproposedmapiswell-defined(andisthusclearlya1-cocycle). (cid:3) NowletK(i) denotetheR -submoduleofRP(F)generatedbytheset{ψ (x) | x ∈ F×}. F F i 10 KEVINHUTCHINSON Lemma3.3. Let F beafield. Thenfori ∈ {1,2} (cid:16) (cid:17) λ K(i) = p+ (I ) ⊂ I2 1 F −1 F F andKer(λ | )isannihilatedby4. 1 (i) K F Proof. Weusetheidentities (cid:68)(cid:68) (cid:69)(cid:69) (cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105) = (cid:104)(cid:104)ab(cid:105)(cid:105)−(cid:104)(cid:104)a(cid:105)(cid:105)−(cid:104)(cid:104)b(cid:105)(cid:105), (cid:104)−1(cid:105)(cid:104)(cid:104)a(cid:105)(cid:105) = (cid:104)(cid:104)−a(cid:105)(cid:105)−(cid:104)(cid:104)−1(cid:105)(cid:105), ab2 = (cid:104)(cid:104)a(cid:105)(cid:105) inI . F Thus (cid:104) (cid:105) λ (ψ (x)) = λ ([x])+(cid:104)−1(cid:105)λ ( x−1 ) 1 1 1 1 = (cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)1− x(cid:105)(cid:105)+(cid:104)−1(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)x(x−1)(cid:105)(cid:105) = (cid:104)(cid:104)x(1− x)(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)1− x(cid:105)(cid:105)+(cid:104)−1(cid:105)((cid:104)(cid:104)x−1(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)x(x−1)(cid:105)(cid:105)) = (cid:104)(cid:104)x(1− x)(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)1− x(cid:105)(cid:105)+(cid:104)(cid:104)1− x(cid:105)(cid:105)−(cid:104)(cid:104)−x(cid:105)(cid:105)−(cid:104)(cid:104)x(1− x)(cid:105)(cid:105)+(cid:104)(cid:104)−1(cid:105)(cid:105) = (cid:104)(cid:104)−1(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)−x(cid:105)(cid:105) = (cid:104)(cid:104)−x(cid:105)(cid:105)·(cid:104)(cid:104)x(cid:105)(cid:105) = −p+ ·(cid:104)(cid:104)x(cid:105)(cid:105) −1 Thusλ (K(1)) = p+ (I ). 1 F −1 F (cid:104) (cid:105) For x (cid:44) 1wehaveψ (x) = (cid:104)x(1− x)(cid:105)[x]+(cid:104)1− x(cid:105) x−1 andthus 2 λ (ψ (x)) = (cid:104)x(1− x)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)1− x(cid:105)(cid:105)+(cid:104)1− x(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)(cid:104)(cid:104)x(x−1)(cid:105)(cid:105) 1 2 = (cid:104)x(1− x)(cid:105)((cid:104)(cid:104)x(1− x)(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)1− x(cid:105)(cid:105))+(cid:104)1− x(cid:105)((cid:104)(cid:104)x−1(cid:105)(cid:105)−(cid:104)(cid:104)x(x−1)(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)) = −(cid:104)(cid:104)1− x(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)+(cid:104)(cid:104)x(1− x)(cid:105)(cid:105)+(cid:104)(cid:104)−1(cid:105)(cid:105)−(cid:104)(cid:104)−x(cid:105)(cid:105)−(cid:104)(cid:104)x(1− x)(cid:105)(cid:105)+(cid:104)(cid:104)1− x(cid:105)(cid:105) = (cid:104)(cid:104)−1(cid:105)(cid:105)−(cid:104)(cid:104)x(cid:105)(cid:105)−(cid:104)(cid:104)−x(cid:105)(cid:105) = (cid:104)(cid:104)x(cid:105)(cid:105)·(cid:104)(cid:104)−x(cid:105)(cid:105) = −p+ ·(cid:104)(cid:104)x(cid:105)(cid:105). −1 Thusλ (K(2)) = p+ (I )also. 1 F −1 F For the second statement, recall that for any group G and any Z[G]-module M a 1-cocycle ρ : G → M gives rise to Z[G]-homomorphism I → M, g−1 (cid:55)→ ρ(g). Thus, for i ∈ {1,2}, we G haveawell-definedR -homomorphism F I → RP(F), (cid:104)(cid:104)x(cid:105)(cid:105) (cid:55)→ 2ψ (x). F i Combining this with the inclusion p+ (I ) → I we obtain an R -module homomorphism −1 F F F µ : p+ (I ) → K(i) sendingp+ (cid:104)(cid:104)x(cid:105)(cid:105) = (cid:104)(cid:104)x(cid:105)(cid:105)+(cid:104)−1(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105)to2ψ (x)+(cid:104)−1(cid:105)2ψ (x) = 4ψ (x). −1 F F −1 i i i (cid:18) (cid:19) Itfollowsthatµ◦ λ | isjustmultiplicationby4,andtheresultisproved. (cid:3) 1 (i) K F Remark 3.4. Since p+ I is a free abelian group, it follows that, as an abelian group, K(i) −1 F (cid:16) (cid:17) F decomposes as a direct sum A ⊕ K(i) where A is a free abelian group and 4 annihilates (cid:16) (cid:17) F tors K(i) = Ker(λ | ). F tors 1K(i) F (cid:16) (cid:17) Furthermore, if (cid:104)(cid:104)−1(cid:105)(cid:105)ψ (x) = 0 for all x (for example, if −1 ∈ (F×)2) then ψ x2 = 0 for i i all x and the map G → RP(F),(cid:104)x(cid:105) (cid:55)→ ψ (x) is already a well-defined 1-cocycle. The above F (cid:16) (cid:17) i argumentsthenshowthat K(i) = Ker(λ | )isannihilatedby2. F tors 1K(i) F Foranyfield F wewilllet R(cid:103)P(F) := RP(F)/K(1). F

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.