ebook img

A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664 PDF

0.88 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664

Astronomy&Astrophysicsmanuscriptno.TCyg1paper_def cESO2017 (cid:13) January25,2017 A refined analysis of the low-mass eclipsing binary system ⋆ T-Cyg1-12664 RamónIglesias-Marzoa1,2,MercedesLópez-Morales3,MaríaJ.Arévalo1,4,JeffreyL.Coughlin5,andCarlosLázaro1,4 1 AstrophysicsDepartment,UniversidaddeLaLaguna,E-38205LaLaguna,Tenerife,Spain 2 CentrodeEstudiosdeFísicadelCosmosdeAragón,PlazaSanJuan1,E-44001,Teruel,Spain e-mail:[email protected] 3 Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 7 4 InstitutodeAstrofísicadeCanarias,E-38200,LaLaguna,Tenerife,Spain 1 5 SETIInstitute,189BernardoAve,MountainView,CA94043,USA 0 2 ReceivedSeptember15,1996;acceptedMarch16,1997 n a ABSTRACT J 4 Context.Theobservational mass-radiusrelationofmainsequence starswithmassesbetween 0.3and1.0 M revealsdeviations 2 betweenthestellarradiipredictedbymodelsandtheobservedradiiofstarsindetachedbinaries∼. ⊙ Aims.Wegenerateanaccuratephysicalmodelofthelow-masseclipsingbinaryT-Cyg1-12664intheKeplermissionfieldtomeasure ] thephysicalparametersofitscomponentsandtocomparethemwiththepredictionoftheoreticalstellarevolutionmodels. R Methods.WeanalyzetheKeplermissionlightcurveofT-Cyg1-12664toaccuratelymeasurethetimesandphasesoftheprimaryand S secondaryeclipse.Inaddition,wemeasuretherotationalperiodoftheprimarycomponentbyanalyzingtheout-of-eclipseoscillations thatareduetospots.Weaccuratelyconstraintheeffectivetemperatureofthesystemusingground-basedabsolutephotometryinB, . h V,R ,andI .WealsoobtainandanalyzeVR I differentiallightcurvestomeasuretheeccentricityandtheorbitalinclinationofthe C C C C p system,andapreciseT ratio.Fromthejointanalysisofnewradialvelocitiesandthoseintheliteraturewemeasuretheindividual eff - massesofthestars.Finally,weusethePHOEBEcodetogenerateaphysicalmodelofthesystem. o Results.T-Cyg1-12664isaloweccentricitysystem,locatedd=360 22pcawayfromus,withanorbitalperiodofP=4.1287955(4) tr days,andanorbitalinclinationi=86.969 0.056degrees.Itiscomp±osedoftwoverydifferentstarswithanactiveG6primarywith s T =5560 160K,M =0.680 0.045M ,±R =0.799 0.017R ,andaM3VsecondarystarwithT =3460 210K,M =0.376 0.017 a Meff1,andR±=0.3475 01.0081R±. ⊙ 1 ± ⊙ eff2 ± 2 ± [ Co⊙nclusion2s.Thep±rimarystar⊙isanoversizedandspottedactivestar,hotterthanthestarsinitsmassrange.Thesecondaryisacool 1 starnearthemassboundaryforfullyconvectivestars(M 0.35 M ),whoseparametersappeartobeinagreementwithlow-mass v stellarmodel. ∼ ⊙ 5 Keywords. Stars:fundamentalparameters–Stars:low-mass–Binaries:eclipsing–Binaries:spectroscopic 3 8 6 01. Introduction estimatemassesofabout0.62 M and0.32 M fortheprimary . and secondary. Çakırlıetal. (201⊙3) reanalyzed⊙ this system us- 1T-Cyg1-12664(KIC 10935310, 2MASS J19513982+4819553) ing new RV measurements, the high precision Kepler mission 0 is a low-mass detached eclipsing binary (LMDEB) at 7 lightcurvesandR-bandground-basedphotometryandobtained 1α=19:51:39.824,δ=+48:19:55.38(J2000.0).Itwasfirstdiscov- thefollowingvaluesforthemassesandradiiofthestars: M1 = v:(eTrerdESin;AthleonTs-Coyegt1alfi.e2l0d0o4f),thaendTritaniss-aAlstloaninticthEexKopelpalneertmSiusrsvioeny 0M.68,0R±0=.002.189M7⊙,0R.011=2R0.6.1I3n±t0h.e0ir07stRud⊙y;,awndhiMle2th=e0ra.3d4iu1s±o0f.0t1h2e Xifieldofview.Becauseofitsintermediateorbitalperiod( 4.129 pri⊙mar2yisconsi±stentwith⊙mainsequencelow-massstellarmod- ∼ d) and low mass ratio (q 0.55), this system can serve as a els, the radiusof the secondarydefiesinterpretationas a main- r ≃ abenchmarkforlow-mass(M<1M )stellarevolutionmodelsthat sequencestar. haveproblemswiththeradiipredi⊙ctedforthestars. The discovery and first analysis of T-Cyg1-12664 was re- AfteritspublicationinDevoretal.(2008a),weincludedT- ported by Devoretal. (2008a) and Devor (2008) using TrES Cyg1-12664inourobservingprogramtorefinethephysicalpa- photometric data. They obtained a small number of radial ve- rametersofseveralLMDEBs.Herewepresentathoroughanal- locity (RV) observations, including only one RV measurement ysisofthesystembasedontheKeplerphotometry,newground- of the faint secondary star. Their RV measurements show that basedmultibandphotometryandRV measurements,andaspe- theperiodinitiallyidentifiedintheTrESphotometry(8.26days) cificphotometriccalibrationcarriedouttoobtainunbiasedcol- was in fact of 4.129 days, and a secondary eclipse would be ors and precise, photometry-based effective temperatures. The buried in the TrES data. From that first analysis Devor (2008) outlineofthisworkisasfollows.InSects.2and3wedescribe the Kepler and the ground-basedRV and photometricobserva- ⋆ Tables 1, 2, 3 and 10 are only available in electronic form at the tions. Section 4 describes a careful analysis of the system, in- CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via cludingspecificsectionsforaconsistentphotometriccalibration, http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/ effectivetemperature,a carefultreatmentofthe thirdlight,and Articlenumber,page1of18 A&Aproofs:manuscriptno.TCyg1paper_def Fig.1.Fitofanorder300Legendrepolynomial totheKeplerdatain Fig.2.EffectofthedetrendingoverthephasedlightcurveofQ6quarter. quarter6.Theupperpanelshowstheout-of-eclipselightcurveandthe Upperpanelshowstherawlightcurveandlowerpanelshowsthelight fit(redline).Thelowerpanelshowstheresidualsofthefit. curveafterapplyingtheLegendrepolynomialfittedinFig.1. 2.2.Ground-basedobservations theorbitaleccentricity.Finally,theabsoluteparametersandthe distanceofthesystemarecomputedinSect.6,withSect.6.3de- WeobservedT-Cyg1-12664withtheCAMELOTcameraatthe votedtocomparingourresultstothestellarmodelsandprevious IAC80 telescope in Tenerife, Spain, in VR I bands, over 14 C C results. nights,between2009-04-04and2010-10-01UT(JD2454936.6 – JD 2455471.5), when eclipses occurred. We also requested a routinary observation program at the same telescope to sam- pleout-of-eclipsephases.CAMELOTisequippedwithaback- illuminatedE2V2048x2048sensorwithsquared13.5µmpixels, 2. Light-curveobservations whichresultsinaplatescaleof0.”304/pixanda10.’4x10.’4field ofview. 2.1.Keplerobservations AlthoughCAMELOThastwo readoutchannels,allthe ob- servations were made using one channel to avoid systematic T-Cyg1-12664 was observed by the Kepler spacecraft in Long effects between the object and the comparison stars. Exposure Cadence mode from Q0 through Q17 (JD 2454953.54 – times ranged from 100 s to 180 s in V band, 65 s to 95 s in JD 2456424.00). The observations were reduced using the R band, and 60 s to 90 s in I band, dependingon the seeing Kepler mission pre-search data conditioning (PDC) pipeline C C andtheatmospherictransparency.Eachnight,wemonitoredT- (Jenkinsetal. 2010), which produces high quality light curves Cyg1-12664 continuously over an altitude limit of 30 degrees liketheonesillustratedinFigs.1and2forQ6.Theinstrumen- (airmass 2) abovethe horizon.We also acquired bias frames tal systematics and spot-related activity in this star are readily ≤ anddomeflatsinallthefiltersatthebeginningofeachnight. visible in the Kepler light curveswith out-of-eclipsevariations We used standardreductiontechniques,includingbias sub- deeperthanthesecondaryeclipse. straction, flat-field correction, and alignment of all images to We detrended the light curves from each quarter following a common reference system, to process the frames. We ana- aproceduresimilartoSlawsonetal.(2011),byfittingLegendre lyzedthe correctedframesusingthe photaperturephotometry polynomialstotheout-of-eclipsedata.Theresultforonequarter packageinIRAFandacustomdifferentialphotometrypipeline (Q6) is shown in Fig. 2. For T-Cyg1-12664 we had ephemeris designed to deal with large sets of frames. The pipeline first information from preliminary works, so we could exclude the performs aperture photometry for a set of preselected compar- time intervals affected by eclipses, and it was not necessary to ison stars and the target, for a range of aperture sizes. Us- applytheiterativeprocessesdescribedinSlawsonetal.(2011). ing the flux within each aperture, the pipeline computes the Because of the effects of the spacecraft safe-modes and trig- signal-to-noiseratio(S/N)ofthetargetusingtheCCDequation gers, some quarters were divided in smaller intervals, but this (Merline&Howell1995,eq.25),andselectstheapertureradius detrending process was applied to all the Kepler mission pho- that produces the maximum S/N. This aperture is then used to tometryencompassinganintervalof1470days.TypicalLegen- extractthefluxofallthestarsinthatframe.Thisprocedureac- drepolynomialsorderswerebetween30and300,dependingon counts for seeing and transparency variations along the night. thecomplexityofthevariationsanddurationofthelight-curves The CCD equationwas also used to computethe formalerrors intervals.Theresultofthisdetrendingisillustratedinthebottom in the photometry.We imposeda limit of 9 pixelsto the maxi- panelofFig.2.Thisdetrendedlightcurve,providedinTable1, mumapertureradiusto avoidcontaminationbynearbystarsas wassubsequentlyanalyzedtogetherwiththeground-basedpho- isthecaseforT-Cyg1-12664(seeSect.4.5).Theselectedcom- tometrydescribedinSect.2.2. parison stars provedto be stable during all the observing runs. Wenotethatthisdetrendingprocesshasthedisadvantageof We generatedV, R , and I differentiallight curvesof the tar- C C potentially removing informationfrom the light curve, such as getdividingitsfluxbythecombinedfluxofallthecomparison heating effects and proximity effects that are due to the shape stars. Owing to the small field of view of the telescope no dif- of the stars. However, as we demonstrate in subsequent sec- ferentialextinctioneffectsweretakenintoaccount.OurVR I C C tions, these effects are negligible in T-Cyg1-12664,because of photometry(givenin Table 2) includessevenprimaryand four thelargeseparationbetweenthestars. secondaryeclipseswhich,whenaddedtothosefromtheKepler, Articlenumber,page2of18 RamónIglesias-Marzoaetal.:Arefinedanalysisofthelow-masseclipsingbinarysystemT-Cyg1-12664 Çakırlıetal.(2013)andTrESphotometry,enableustoimprove determineF (λ)andF (λ)bycubicsplinesinterpolationofthe 1 2 theperiodofthesystemandsearchforperiodvariations. originalreferencespectra. For reference spectra, we used the normalized (flattened) synthetic spectra from Munarietal. (2005). The Munarietal. 3. Radialvelocityobservations (2005) grid we used covers models with 3500 T 10,000 eff ≥ ≥ in steps of 250 K, 0.0 logg 5.0 in steps of 0.5 dex,-2.5 We observedT-Cyg1-12664aspartof a largerprogramto pro- ≥ ≥ ≥ [M/H] 0.5instepsof0.5dex,and0 V 100km/sinsteps rot duce accurate radial velocity curves of low-mass binaries (see ≥ ≥ ≥ of10km/s.Toensurethatwefoundtheglobalminimuminboth Coughlin2012). We collectedradialvelocityobservationsover selected reference spectra and their velocities, we performed a two seasons (June – December 2010 and May – September globalgridsearch loopingoverallpossible combinationsof α, 2011),withtheDualImagingSpectrograph(DIS)onthe3.5-m V ,V ,T ,T ,usingacommon[M/H]forbothreferencespec- 1,j 2,j 1 2 at Apache Point Observatoryand the R-C Spectrographon the tra,andloggandV foreachreferencestar.Wecomparedthe rot 4-m at Kitt Peak National Observatory (KPNO). With DIS we radial velocities found by this method with those obtained us- observed using its red channel with the R1200 grating, which ingthewell-testedTODCORcode(Zucker&Mazeh1994),and givesaresolutionof0.58Åperpixel,orR 10,000.Thewave- findconsistentresultsforallthebinariesinourprogram. ≈ length range was set to 5900 - 7100 Å for the first observing The errors in the derived radial velocities were computed ∼ season,and 5700-6800Å forthesecond.Forthe R-CSpec- using a bootstrapping re-sampling method iterated over 10000 ∼ trograph,weusedtheKPC-24gratinginsecondorder,resulting times. The adopted errors correspond to the 1σ confidence in- inaresolutionof0.53Åperpixel,orR 10,000,withthewave- tervalofthedistributionofbootstrappingsolutions.Toestimate length rangeset to 5700- 6750Å. W≈e collected a total of 31 theerrorsinthederivedtemperatures,weusedthespectroscopic individual spectra f∼or T-Cyg1-12664, in addition to bias, dark, quality-of-fitparameter(López-Morales&Bonanos2008;Behr andflatfieldcalibrationframes.WealsocollectedHeNeArlamp 2003),definedas frames before or after each target observation to use as wave- rms2 lengthcalibrations. z= √N 1, (2) Allrawframeswerebias,dark,andflat-fieldcorrected.For rms2min −  the DISobservations,column1023is a dead column,and thus we replaced those values by a linear interpolation between the where N is the numberof data points, rms2 is the standard de- two neighboring columns. We also removed cosmic rays from viation of the fit under consideration,and rms2 is the best fit min all frames using a Laplacian edge algorithm implemented in found.Thezparameterissimilartoareducedχ2 intheabsence the lacos_spec IRAF package (see vanDokkum 2001). Fi- ofknownerrorsontheindividualpoints.Bydefinitionz= 0at nally, we extracted one-dimensional spectra from each image, thebest-fit,andthe1σconfidenceintervalcorrespondstoz=1. includingskybackgroundsubstraction,usingtheIRAFpackage IntheparticularcaseofT-Cyg1-12664,thespectrumofthe apall. After wavelength calibration, all science spectra were secondaryistooweak,andwewereunabletodetectanysignif- flattened and normalized by fitting a 20-piece cubic spline fit icant radial velocity measurements for the secondary star over overteniterations,duringwhichpoints3σabovethefitor1.5σ anyreasonableparameterranges.Thus,wetreatedthesystemas below the fit were rejected. For each spectrum, we calculated asingle-linedbinarybyfixingthevalueofαto9999andonly thebarycentricJuliandateinterrestrialtime,BJD(TT),andcor- fitting for the parametersof the primary star V , T , [M/H], 1,j eff1 rectedthemtothereferenceframeofthesolarsystembarycenter logg and V . The resultant radial velocities are listed in Ta- rot usingtheIRAFtaskbcvcorr. ble3.Inaddition,thebestfitoftheprimary’sspectratothegrid Forallbinariesweattemptedtoextracttheradialvelocityof of synthetic spectra gives a Teff=5750 250 K, logg=4.5 0.5, eachstarineachframe,V1,j andV2,j,where1and2denotethe [M/H] =-0.5±0.5 and vrsini=40±10±km s−1. This Teff±is in primaryandsecondarystars,and jistheframenumber,usinga agreementwiththeoneobtainedinSect.4.2usingphotometric newexploratorymethod:insteadofusingcross-correlations,we colors. The metallicity appearsto be lower than the typical for directlyfitreferencespectratoeachobservedspectrumviaatra- starsneartheGalacticplane(seeSection6.2),whichwouldhave ditionalstandarddeviationminimization,whichisequivalentto near-solarmetallicity.Weattributethisresulttotherathercoarse minimizingχ2,assumingallobservedpointshaveequalerrors. samplinginmetallicityofourmodels,andthereforeadoptsolar Specifically,foreachobservedspectrum,wefitforthevelocity metallicityforthissystemintheremaininganalysis. ofeachreferencespectra,aswellasfortheirluminosityratio,α Wenotethat,althoughthisχ2minimizationtechniqueyields = L /L ,foratotalofthreefreeparameters.Duringthefitting, valuesof the radialvelocitiesand other stellar parameterscon- 1 2 theoriginalobservedspectrumisneverchanged,andthusitcan sistent with those obtained via other methods in the case of T- have any arbitrary number and distribution of wavelength and Cyg1-12664, the technique can be prone to systematics intro- fluxvaluepairs.Givenatotalof M observedspectra,eachwith duced by the presence of correlated noise or not well modeled N points, taken at times t , we want to find the values of V , spectralinstrumentalprofiles,especiallyinthecase oflowS/N j j 1,j V ,andαateacht ,thatminimizethefunction spectra.Itisthereforeadvisabletohaveresultscheckedagainst 2,j j othermethodslikeTODCOR. XjM=1XiN=1j F0,i− α·F1(cid:16)λ0,i·(1− Vc1α,j)+(cid:17)+1F2(cid:16)λ0,i·(1− Vc2,j)(cid:17)2, 44..1A.Pnhaolytosmisetorifctchaelibsryastiotenmandcolors (1) InTable4,wecompilealltheavailablephotometryforT-Cyg1- where F isthefluxofanobservedspectrumata givenwave- 12664 in public catalogs. We found inconsistencies between 0,i length, λ , F (λ), and F (λ) are the fluxes of reference stars someofthepassbandmagnitudesreportedbydifferentcatalogs, 0,i 1 2 1 and 2 at a given wavelength, and c is the speed of light. We e.g.theBandVmagnitudesreportedbytheGSCandNOMAD Articlenumber,page3of18 A&Aproofs:manuscriptno.TCyg1paper_def Table4. PhotometryinseveralbandsforT-Cyg1-12664obtainedfrom Table5.ObservedLandoltfields.Thenumberofmeasurementsisthe photometriccatalogs. globalcountfordifferentairmasses. Bandpass Magnitude Source Night Field N N Airmassrange stars meas V 13.520 0.190 GSCa 2012-07-26 SA110SF3 8 19 1.130-2.519 B 14.040±0.416 GSC2.3.2a PG1633+099 8 9a 1.055-2.590 V 13.108±0.297 GSC2.3.2a 2012-08-18 SA110SF3 8 4b 1.158-2.435 ± PG0231+051 6 9c 1.086-1.690 B 13.530 NOMADb,c PG1657+078 6 6 1.076-2.542 V 13.120 NOMADb,c (a)8measurementsfortheBandVfilters.(b)6measurementsfortheI R 13.500 NOMADb C filter.(c)10measurementsfortheV filter. B1 14.460 USNO-B1d B2 14.020 USNO-B1d Table 6. Standard transformation coeficients from Eq. 3 for the two R1 13.130 USNO-B1d nights.Theuncertaintiesareshowninparenthesesaffectingthelasttwo R2 13.500 USNO-B1d digits. I2 13.210 USNO-B1d r 12.400 USNO-A2e Parameter 2012-07-26 2012-08-18 b 13.100 USNO-A2e b0 2.7185(30) 2.7947(65) B 13.530 UCAC3e,f b1 0.2262(18) 0.2250(38) R2 12.512 UCAC3e,f b2 0.0101(39) 0.0430(90) b -0.0204(22) -0.0342(49) I 11.858 UCAC3e,f 3 b -0.0038(13) -0.0186(27) U 13.905 0.021 Everettetal.(2012) 4 ± v 2.7752(25) 2.8607(44) B 13.864 0.024 Everettetal.(2012) 0 ± v 0.1184(13) 0.1170(24) V 13.280 0.018 Everettetal.(2012) 1 ± v 0.0436(30) 0.0575(56) g 13.541 SloanDigitalSkySurvey 2 ′ v 0.0025(13) -0.0082(27) r 13.052 SloanDigitalSkySurvey 3 ′ v 0.01621(82) 0.0163(15) i 12.911 SloanDigitalSkySurvey 4 ′ r 2.8779(29) 2.9391(46) z 12.843 SloanDigitalSkySurvey 0 ′ r 0.0877(13) 0.0905(24) D51 13.327 Keplermissiong 1 r -0.0662(61) 0.029(11) Kepler 13.100 Keplermission 2 r -0.0096(21) -0.0208(40) J 11.911 0.024 2MASSh 3 H 11.582±0.015 2MASSh r4 0.0940(29) 0.0501(56) K 11.529±0.021 2MASSh i0 3.2383(37) 3.3249(52) s ± i1 0.0426(17) 0.0482(29) i -0.2608(78) -0.209(12) Notes. 2 (a)Identifier:GSC0356101711. i3 0.0024(26) -0.0326(45) (b)Identifier:1383-0349082. i4 0.0717(39) 0.0865(73) (c)MagfromYB2. (d)Identifier:1383-0345184. (e)Identifier:U135011189502. packageapphot,andadoptinganapertureof14”(a13pixelra- (f)MagfromSuperCosmos. diusintheTCPimages),tomatchtheLandoltaperturewidths. (g)Bandcenteredin510nm,seeBrownetal.(2011). Theextinctioncorrectionandtransformationtothestandard (h)Identifier:2MASSJ19513982+4819553. photometric system was performed simultaneously solving the setofequations catalogsdisagreeby0.4–0.5mags.Thedifferencesaretoolarge m =B +b +b X +b (B V) +b X (B V) +b (B V)2 to be explained by stellar activity, or even accounting for the B 0 1 B 2 − 3 B − 4 − m =V +v +v X +v (B V) +v X (B V) +v (B V)2 depthoftheeclipses( 0.20intheKeplerband).Wedonothave V 0 1 V 2 − 3 V − 4 − an explanationforthe∼se discrepanciesbut,concernedaboutin- m =R +r +r X +r (V R )+r X (V R )+r (V R )2 RC C 0 1 RC 2 − C 3 RC − C 4 − C troducinglargeerrorsinthedeterminationofparametersforthis m =I +i +i X +i (V R ) +i X (V R ) +i (V R )2 system,weproceededtoderivenew,consistentcolors. IC C 0 1 IC 2 − C 3 IC − C 4 − C (3) We performed photometric calibrations of several objects, including T-Cyg1-12664, over two photometric nights in July wheretheinstrumentalmagnitudesappearontheleft-handside and August 2012, during out-of-eclipse phases. We used the of the equations, the absolute magnitudesare denoted as B, V, Trömso CCD Photometer in full frame mode (TCP, Östensen R , and I , and the airmass values as X. The equations were C C 2000; Östensen&Solheim 2000), at the IAC80 telescope solved using least-square techniques, and the resulting coeffi- (CAMELOTwasnotavailableatthetimeoftheseobservations). cients for each night are summarized in Table 6. The absolute The TCP is built arounda Texas Instruments1024x1024CCD magnitudesobtainedforT-Cyg1-12664astheaverageofthere- sensor and produces a 9.’6 field of view, with a plate scale of sultsforeachnightaresummarizedinTable7.Inthatsameta- 0.”537pixel−1,attheIAC80’sfocalplane. ble,wealsolistcolorindexes,includingthenear-infraredJHKS WeobservedseveralLandoltstandardfields(Landolt2009), bandsfrom2MASS(Skrutskieetal.2006). coveringobjectswithawiderangeofcolorsandairmasses,and Our BandV calibratedmagnitudesareslightlyfainterthan using Johnson-Cousins B, V, R , and I filters. A log of the the ones from Everettetal. (2012). We attribute the small dif- C C observationsis shown in Table 5. We measured the flux of the ferences (∆B=0.073, ∆V=0.019), to stellar activity variations, standardstarsviastandardaperturephotometry,usingtheIRAF as seen in Fig. 2. In the Kepler light curve these variationsare Articlenumber,page4of18 RamónIglesias-Marzoaetal.:Arefinedanalysisofthelow-masseclipsingbinarysystemT-Cyg1-12664 Table7.CalibratedmagnitudesandcolorindicesforT-Cyg1obtained Table 8. Mean effective temperature estimations resulting from our from our photometric calibration. The infrared magnitudes are taken photometriccalibration,2MASSandSDSSphotometryandourspec- from2MASS(seeTable4). troscopyforT-Cyg1-12664. Theinterestellarreddeningwasnottaken intoaccountforthiscomputation. Band Adoptedvalue(mag) B 13.937 0.002 Calibrations Colorindices Teff(K) ± Empirical V 13.299 0.005 RICC 1122..591215±±±00..000045 CCABooarrlxxilbe((sa22ts00er00&o00s))Ma(2a0rt1in2e)zRoger(1988) ((((VVBB−−−VVKK))SS,))(,R(J−−ICH)) 5555462891620000±±±3261500900 VVB−−−VRICC 000...376783488±±±000...000000765 MFIvueakzsuiac´gniaetateaetlta.la(.2l.(02(020800)161)) Mode(((lVggd′′−e−−−pKerrn′′S))d)ent 555455662047±±±±124584b VRIJJCC−−−−HKKKISSCS 10000.....749337182804292±±±±00000.....000002022326182 BHLeeojsuesdueanllseh(1eet9lta7el9.t)(a1l9.9(280)00) ((((((VVBBBJ−−−−−−HVVVKK))))SS,,,,))((((,,VVVJ((RJ−−−−C−KRII−CCKSC)))IS),,C,,)(()(,RH,V(CH−−−−IKICCKS)),)S) 555456278000±±±322093000 − ± Thiswork Spectroscopy 5750 250 H−KS 0.053±0.026 Meanvalue(adopted) 5560±±160 Notes. of ∆m 0.022, which is very close to the variation we see (a)InterpolationfromTable7.6.(b)Forlogg=4.5,[M/H]=-0.5). Kp ∼ inV band.The B V indexobtainedbyEverettetal.(2012)is − 0.584 0.030,whichisslightlybluerthanours,mainlyasacon- ± sequenceofthedifferenceintheBmeasurements. 4.2.Effectivetemperature We derived the effective temperature of the system, T , using eff theempiricalandmodeldependent,temperature–colorrelations listed in Table 8, our BVR I colors derived in Sect. 4.1, and C C the colors of the system published in 2MASS (Skrutskieetal. 2006), and the SDSS (Eisensteinetal. 2011). All those colors weremeasuredoutsideofeclipses,whichguaranteesthatnosys- tematicswere introducedby the dimmingof the system during eclipseevents.Westillhavetheeffectofstellarvariability,which resultsinsmallvariationsofthecolorindexes.Thosevariations areaccountedforintheT errorsreportedinTable8. eff Table8summarizesthevaluesoftheT derivedusingeach eff temperature–colorrelation.Weassumednegligiblereddeningin the directionof T-Cyg1-12664when computingthe colorsbut, in any case, the effect of the reddening over the distances in- Fig.3.Comparisonbetweentheabsoluteopticaland2MASSphotom- volved will be smaller than the uncertainties in colors among etrywith thesynthetic photometry obtained for a Kurucz model with theopticalandIRbands,asaconsequenceofthosecolorsbeing T =5500K,logg=4.5,and[M/H]=-0.5.Theuncertaintiesintheup- measuredindifferentepochsandtheintrinsicphotometricvari- eff perpanelaresmallerthanthepointsizes. ability of the system. The mean effective temperature adopted forthesystem,computedastheaverageofalltheresultsinTa- ble8,is5560 160K.Thisvalueiswithin1σofthevalueofTeff paredtheopticalandnear-infraredcolorsmeasuredforT-Cyg1- ± obtainedfromfitting our spectra in Sect. 3, andcorrespondsto 12664 to a Kurucz (1993) model template with T =5500 K, eff aspectraltypeG6V,basedonthetabulatedvaluesofMamajek logg = 4.5, and [M/H]=-0.5. The result is shown in Fig. 3, (2015). We adopted this result as the spectral type for the pri- wherethe fitbetweenthe modelandthe observationsproduces mary. an rms of 0.037 mags. We also repeated the same comparison Our Teff andspectraltype of the primarydo notagreewith withthecalibratedphotometryinTable7andatemplatemodel thosederivedbyDevor(2008)andÇakırlıetal.(2013).Inthose withthesamemetallicityandlogg,butwithT =4250Kfrom eff studiestheauthorsclaimaK5Vspectraltypeforthesystemand Çakırlıetal.(2013).Thebestfitinthiscaseproducesanrmsof a mean Teff=4320 100 K. The main difference between their 1.029mags,withaclearsystematictrend.Basedontheseresults ± calculations and ours is their use of B and V magnitudesfrom weconcludethatthevalueof5560 160Kisagoodestimateof ± theUSNOcatalogandGSC2.3.2,whichwenoticedinSect.4.1, theactualT forT-Cyg1-12664. eff areunreliable. 4.4.Rotationandsynchronicityparameter 4.3.Spectralenergydistribution The Kepler raw light curves of the system (see, for example, Given the difference between the spectral type obtained in this Fig. 2) reveals periodic photometric variations owing to spots, work and those in the literature, and as an additional check to and with a period clearly different from that of the binary. In the absolute photometry values derived in Sect. 4.1, we com- addition,and giventhe largedifferencesin luminositybetween Articlenumber,page5of18 A&Aproofs:manuscriptno.TCyg1paper_def the primary and secondary stars, we can attribute those photo- Table9.FluxesandcolorsforT-Cyg1-C,thecontaminantintheKepler passband. metricvariationstospotsontheprimarystar.Therefore,wecan measure the rotation period of the primary, assuming that the spotsrotatejointlywiththephotosphere.Afternormalizingeach Parameter Value quarteroftheKeplerrawlight-curve,andremovingtheeclipses B 18.600+/-0.039 using the ephemeris equation of the system (see Sect. 4.6), we V 17.822+/-0.029 calculatedLomb-Scargleperiodograms(Scargle1982)foreach R 16.975+/-0.020 normalized light curve. A prominent peak is seen in the peri- I 16.009+/-0.017 odogram from which we obtained rotation periods in a range B V 0.778+-0.049 − between 3.840778 d and 4.250872 d. We attribute those vari- V RC 0.847+-0.035 − ations to changes in the different spot configurations over the VC IC 1.813+-0.034 − time span ofthe observations,andadopteda meanrotationpe- RC IC 0.966+-0.026 − riodof P = 3.968 0.091d.Thatrotationperiodresultsina rot ± Notes.ThecolorindexB-VisnotusedinthecomputationoftheT of synchronicityparameter F = ω /ω = 1.041 0.024,using eff rot orb ± thecontaminatingstar(seetext). theperiodofthebinarycomputedin Sect.4.6. Thisvalueof F is too small to producea significant deviation in the computed stellar radius and lets us assume that the primary star is rota- (R /D)2 =(5.65 0.14) 10 22overtheintegratedVR I bands − C C tionallysynchronizedwiththeorbitalperiod.This Prot mustbe (se∗eMoro&Mu±nari200×0).Theuncertaintywascomputedper- takenasanestimate,giventhatthestarisnotarigidbodywith formingMonte-Carlofitsover100iterations.Weusedthesame awelldefinedrotationperiodand,thus,thisperioddependson KuruczspectrumusedinthesyntheticSED,scaledbythecom- thelatitudeofthespots.ForeachofthetwomainspotsintheQ6 puted dilution factor and integrated over the Kepler response interval,we measuredthe timestmin of eachassociatedminima function1 to estimate the contaminant flux due to T-Cyg1-C. andplottedthedifferenceT0 tminversusthesequentialnumber The uncertainty was also computed with a Monte-Carlo anal- − ofeachminima,withT0definedasthetimeofaprimaryeclipse. ysis, as in the dilution factor case, and the obtained value is Wefitastraightlinetoeachspot’sdatasetandobtainedslopesof FKP = (5.88 0.15) 10−9 erg cm−2 s−1. For T-Cyg1-12664 3.9659 0.0092d and 3.988 0.010d, which confirmsthe pres- we followed t±he same×procedure but using a dilution factor of ± ± enceofdifferentialrotation,asalreadyrevealedbytheobserved (R/D)2 = (2.7291 0.0082) 10 21, whichresultsina Kepler − rangeofrotationalperiods.In addition,thespotwith thelower fluxofF =(2.500±6 0.0071×) 10 7ergcm 2s 1. K − − − rotationperiodistheonewithlowerlatitudeintheQ6-1epoch Using these fluxe±s for the b×inary and the contaminant, the (see Sect. 5.5), which suggests that the primary has solar-type thirdlightratiointheKeplerbandresultsin differential rotation (see, for example, Reinhold&Arlt 2015; Lanzaetal.2014, andreferencestherein). lKp =0.02297 0.00058. 3 ± Asacheckofthefeasibilityofthisresult,wecomparedthis 4.5.Thirdlight valuewiththeestimatedamountofthirdlightintheV,R ,and C T-Cyg1-12664 has an optical companion at a distance of 4.”6 I bands using images taken the night of 2010-08-28at an or- C as pointedby Çakırlıetal. (2013), which is clearly seen in our bitalphase of 0.285.The valuesobtainedfor the differencesin images. We call this contaminant star T-Cyg1-C in the rest of magnitude between T-Cyg1-12664 and T-Cyg1-C were ∆V = the text. The aperture of our ground-based photometry avoids 4.619 0.028,∆R = 4.186 0.018,and∆I = 3.463 0.013, C C contaminationbylightfromthisstar.Thus,ourVR I differen- which±translateintothirdligh±tratiosateachpassband ± C C tialphotometryisfreeofthisthirdlightcontribution.However, Keplerusesaphotometricapertureof 10 11pixforT-Cyg1- lV =0.0140 0.0004;lRC =0.0207 0.0003; 12664(roughly3x3pix),dependingo∼nthe−season,withaplate 3 lI±C =0.03963 0.0005. ± scaleof3”98/pix.Giventhatthiscontaminantisnotlistedinthe 3 ± KeplerInputCatalog(KIC)itwouldn’thavebeenaccountedfor These results are of the same order of magnitude as those duringKepler’sthirdlightcalibration,andtheKeplerlightcurve obtained for the K band. No other nearby stars are observed P ofT-Cyg1-12664isaffectedbythefluxofT-Cyg1-C. in the IAC80 images and there are no signs of apsidal motion ToestimatetheamountofthirdlightintheKeplerpassband, in the eclipse timings (primary or secondary) in the time span we hadtorelyonthefluxofthe contaminantinV, RC, and IC. oftheobservations(seeSect.4.6).Thus,weassumedthatthere We applied the photometriccalibration performedon the night is no other significant source of third light in the system and of2012-07-26toT-Cyg1-C,toobtainitsmagnitudesandcolors we adopted the value for the Kepler band as the only source. listedinTable9.FromthosecolorsweadoptedTeff =3761 56 Nonetheless,duringthemodellingofthissysteminSect.5.5we ± KforT-Cyg1-C,basedonthecalibrationsofCox(2000),Bessell ranteststo ensurethatnoothersourceofthirdlightaffectsthe (1991,1979)andLejeuneetal.(1998).Wedidn’tusetheB V BVR I bands, for example, if T-Cyg1-12664were a multiple − C C color index since their Teff is not consistent with the results of systemwithathirdobjectthatisnotresolvedinourimages.All the other color indices and the B-band magnitude is too faint. thesetestsyieldednegativeresults. Thus,werelyonlyonthecolorsthatmakeuseofV,R ,andI C C photometry.From the obtainedT , and assumingit is a main- eff sequence star, we adopteda spectral type of M0V for this star, 4.6.Orbitalperiodanalysisandephemeris usingthetablesinMamajek(2015). WecalculatedthecentraltimesofeclipseinboththeKeplerde- To estimate the Kepler band flux, K , for T-Cyg1-C we fit p trendedlightcurvesandtheIAC80lightcurves.Tofindthecen- an spectral energy distribution (SED) using the observed col- traltimesofeclipseintheKeplerlightcurve,wefiteitherthird ors and a Kurucz model spectrum with T =3750 K and so- eff lar metallicity and obtain a geometric dilution parameter of 1 Avaliableathttp://keplergo.arc.nasa.gov/CalibrationResponse.sh Articlenumber,page6of18 RamónIglesias-Marzoaetal.:Arefinedanalysisofthelow-masseclipsingbinarysystemT-Cyg1-12664 Table11.RVfittingresults. Parameter Value AdjustedQuantities Pa(d) 4.1287955 4 10 7 − ± · T (HJD) 2454936.705 0.011 p ea 0.0365 ±0.0014 ωa(deg) 92±.8 2.2 ± γ(km/s) -6.28 0.53 ± K (km/s) 48.07 0.74 1 ± K (km/s) 87.0 2.5 2 ± DerivedQuantities M sin3i(M ) 0.677 0.046 1 M sin3i(M⊙) 0.374±0.017 2 q= M /M ⊙ 0.553±0.018 2 1 ± a sini(106km) 2.728 0.042 1 ± Fig.4.Histogramofthesecondaryeclipsedistributioninphase(lower a sini(106km) 4.93 0.14 2 axis)andintime(upperaxis).Allthesecondaryeclipsesaresistemat- asini(106km) 7.66±0.15 icallybelowphase0.5.Theverticaldashed linesshow thepositionof ± OtherQuantities thefourIAC80I -bandsecondaryeclipses. C χ2 58.657 χ2 1.128 red or fourth order polynomials to the points in each eclipse. The Nobs (primary) 47 timingsoftheKeplereclipseshaverelativelylargeuncertainties Nobs (secondary) 9 ( 3min)becausetheeventsaresparselysampled,giventhe29.4 Timespan(days) 1507.86 m∼inutes sampling rate of the long cadence Kepler data. In the rms1 (km/s) 5.079 caseoftheIAC80lightcurves,whicharebettersampled,wefit- rms2 (km/s) 3.492 tedsixthorderpolynomialsforboththeprimaryandsecondary eclipses. Timesfor thesecondaryeclipseswere determinedus- Notes.(a)Parameterfixedbeforehand. ing the I -band light curve since it shows the deepest eclipses C andallowsabetterdeterminationoftheminima.Alltheeclipse timesarelistedinTable10. the complete set of keplerian parameters [P,T ,e,ω,γ,K ,K ] p 1 2 To compute a new ephemerides equation for the system, for the primaryand secondaryRV curvesby χ2 function mini- we also added the eclipse times published by Devoretal. mization.The uncertaintiesin the parameterscan be computed (2008a)andÇakırlıetal.(2013).Whennecessary,weconverted from the Fisher matrix or using a Markov-Chain Monte Carlo the times of minima from HJD to BJD using the method of method (MCMC). We chose this last method since it can deal Eastmanetal.(2010).Wealsoconservativelyassignedanuncer- withcorrelationsbetweenparameters.MCMCwasrunover106 taintyof0.01daystotheeclipsesofDevoretal.(2008a),given samplesforeachsolutionfoundwithrvfit. thedispersionoftheirphotometry.Alldatacombinedprovideda totalof228primaryeclipsesoveratimebaselineofeightyears. We ran a first fit to obtain initial parameter values and to Wefitallthemeasurementsbyastraightline,eliminatingtwoof check the significance of an elliptical orbit. In this first fit, we theKeplerobservations,whichpresentedlongdeviationscaused fixedonlytheorbitalperiodtothevalueobtainedinSect.4.6and bybadsamplingoftheeclipses.Theresultofthatfitisthefol- leftalltheotherparametersfree.Thisfirstsolutionwascompat- lowingupdatedephemeridesequation: ible with a low eccentric, e = 0.069 0.016,orbit and a mass ± ratioofq = 0.558 0.018.Thisellipticalorbitisconfirmedby ± thesmalldisplacementinphaseofthesecondaryeclipsesshown MinI(BJD)=2455415.61831(5)+4.1287955(4)n (4) inSect.4.6. Theresidualstothisfitshownosignsofdeviationfromastraight The dispersion in the RV measurements and the sinusoidal line,whichsuggestnothirdbodyispresentinthesystem,atleast appearanceoftheRVdatadistributioncanhidethesubtleeffect with orbital periods of the order of the obsevations timescale. ofasmalleccentricity.Tocircumventthislimitation,wedecided Finally,weshowahistogramwiththephasedistributionsofthe to constrainthe eccentricityand the argumentof the periastron secondaryeclipsesinFig.4. Alltheeclipsesaresystematically usingtheKeplerlightcurves(seeSect.5.2)andfixthemtothe belowphase0.5,withameanphaseof∆φ=0.49894 0.00025, valuese=0.0365 0.0014andω=92.8 2.2deg.Thisnewfit whichsuggeststhatthebinaryisslightlyeccentric. ± yieldedthevalues±inTable11.Thefitted±RV curveisshownin Fig.5. 5. Radialvelocityandlightcurvefits 5.2.LightcurvespreliminaryanalysiswithJKTEBOP 5.1.RVfittingprocedure We fit our RVs jointly with the primary and secondary WeusedthedetrendedKeplerdatatoobtainaninitialmodelof measurements from Çakırlıetal. (2013) and Devor (2008). thelight-curvewithoutspotsandtofixsomeinitialparameters, We fit a keplerian orbit to the data using the rvfit code namelyecosωandesinω.Thisallowsustostartourcombined (Iglesias-Marzoaetal.2015).Thiscodeisbasedonanadaptive analysis of the multiband light curves with initial values near simulatedannealing(ASA)algorithmandcansimultaneouslyfit thefinalsolutiononcethespotsareincludedintheanalysis.For Articlenumber,page7of18 A&Aproofs:manuscriptno.TCyg1paper_def Fig.6.JKTEBOPfittotheKeplerdetrendedlight-curve.Adetailedplot ofthefitsintheeclipsesisshowninFig.7 Fig. 5. RV curve fit and residuals. Thecontinuous and dashed curves arethefitsfortheprimaryandsecondarystars,respectively.Thefilled and empty circles are the RV measurements for the primary and sec- ondary star respectively. The crosses are the RV measurements from Çakırlıetal.(2013).Thedottedlineintheupperpanelisthevaluefor γ.ThephasewascomputedwithEq.4. this goal we used JKTEBOP2 (Southworthetal. 2004), which is based on the EBOP code (Popper&Etzel1981; Etzel1981) and models the stars as triaxial ellipsoids. We fixed q, P and Fig. 7. Detail of the Fig. 6 showing the fit in the eclipses. Note the T0 fromtheephemerisEq.4,andthesolutionoftheRVcurves changeintheverticalscaleinthetwoplotsandthesmalldisplacement (Sect.5.1).Wefitthefollowingparameters:thesumandratioof ofthesecondaryeclipsefromphase0.5,indicatedwithaverticaldashed fractionalradii,i.e.r1+r2andr1/r2,theorbitalinclinationi,the line. quantities esinω, ecosω, the surface bright of the secondary, andthelightscalefactor. Inthisfirststage,theeffectofheatingbetweenthetwocom- ponents of the binary was not taken into account, since it was Toavoidproblemscausedbythelongintegrationtimeofthe eliminated from the light curves when we detrended the out- Keplerdata.we split upeachobservationintosix pointsto un- of-eclipse variations. Therefore, the model coefficients associ- dergoanumericalintegration.TheeffectofthisKeplerlonginte- ated with this effect were fixed to zero. In any case, we ran grationtimeinlightcurvesofeclipsingbinaries(Coughlinetal. tests to confirm this effect was not noticeable. The third light 2011) and exoplanetsystems(Kipping2010) is a knownissue. contribution, l3, was fixed to the value calculated in Sect. 4.5. Theseauthorsfindthatundersamplingaffectsthemorphological Testsfittingl3yieldedsolutionswithhigherthirdlightcontribu- shapeoftheeclipses(transits),insuchawaythattheyappearto tions, butpoorerfits. We adopteda square-rootlimb darkening beshallowerandhavealongerduration.Thiseffectismostpro- (LD)law(Diaz-Cordoves&Gimenez1992;vanHamme1993), nounced in eclipsing binaries with short periods and low sum withtheLDcoefficientsinterpolatedfromthetablesprovidedby of the fractional radii (r + r ) values. T-Cyg1-12664, with a 1 2 Claret&Bloemen (2011) and PHOENIX stellar models using r +r 0.1isintherangewherethiseffectcanbenoticed. 1 2 thenominalT of5560 160Kand3350 50Kfortheprimary ≃ eff and secondary compone±nts. We adopted±those values running TheheavydetrendingappliedtotheKeplerlightcurvepro- preliminary PHOEBE tests with the optical IAC80 curves and duces points deviating largely from the model in phases with theRVsolutionforacircularorbit.ThePHOENIXmodelswere stronglightcurvecurvaturenearthe centerof the eclipses (see selected based in their lower T limit, althoughthe LD coeffi- Fig.7).Thus,aconservativesigma-clippingof10σwasapplied eff cientwere computedonlyforZ=0.0.Thelogg valueswereset in the fitting processto discard these points. With this prelimi- to4.5and5.0foreachcomponent,respectively.Forthegravity- naryfit,wearrivedatthesolutionshowninFigs.6and7,where brighteningcoefficientsweusedvaluesfromClaret&Bloemen i = 86.87 0.14, e = 0.0365 0.0014, and ω = 92.8 2.2. ± ± ± (2011)forthesameTeff. The resulting fractional radii are r1 = 0.07282±0.00098 and r =0.03300 0.00050.Theuncertaintiesinthefittedparameter 2 ± 2 JKTEBOPiswritteninFORTRAN77andthesourcecodeisavail- werecomputedusinga bootstrapanalysiswith 5 000synthetic ableathttp://www.astro.keele.ac.uk/ jktcodes/jktebop.html datasets. ∼ Articlenumber,page8of18 RamónIglesias-Marzoaetal.:Arefinedanalysisofthelow-masseclipsingbinarysystemT-Cyg1-12664 Fig.8.LightcurvesoftheT-Cyg1-12664intheepochQ6-1andfitted Fig.9.Samefigureas8,butfortheQ6-2epoch.Notethejumpinthe modelwiththeparametersofthefirstcolumninTable12.Fromtopto Keplerphotometryatphase0.55(seetext). bottom,filtersI ,R ,V,andKeplerband.Theground-basedobserva- C C tionsaredisplacedverticallytoshrinktheplot.Thelowerpanelsshow theresidualsofthesefitsinthesameorder. Toavoidpotentialproblemsintroducedbythe 28minlow- ≃ cadence duty cycle of the Kepler light-curve, we performed a firstfitusingonlytheIAC80lightcurvesandtheinitialparame- tersderivedfromthedetrendedKeplerlightcurveinSect.5.2to 5.3.FinallightcurveanalysiswithPHOEBE getafirstsetofparametersforthebinary(radius,effectivetem- peratures,etc).Withtheseresults,werananewfit,thistimein- To properly model the multiband light-curves of T-Cyg1- cludingtheKeplerlightcurvetoproperlymodelthespots.This 12664, we used PHysics Of Eclipsing BinariEs (PHOEBE, two-stepapproachhelpsthefittingofthesystembecause1)the Prša&Zwitter 2005; Prša 2011). Given the low value of q for IAC80VR I lightcurvesarebestsuitedtoconstrainingtheef- thissystem,theRocheloberelativeradiiforeachstar(Eggleton C C fectivetemperatures,radii,andinclinationofthesystembecause 1983)arer 0.43andr 0.33,wellabovethevaluesob- RL1 ≃ RL2 ≃ of their high cadence during eclipses and finer spectral resolu- tained for the relative radii from the preliminary fit with JK- tion and 2) the Kepler lightcurve have a better coverage of the TEBOP, so we selected a detached eclipsing binary model in out-of-eclipsephases,whichallowsustomodelthespots.Inthe PHOEBE. secondfit,thephysicalandgeometricalparametersofthebinary We fit the IAC80 VR I light curves simultaneously with arefixedandweonlyfitthespots.Weiteratethistwo-steppro- C C theKeplerlightcurve,butonlyusingepochsoftheKeplerlight cess untila satisfactorymodelis obtainedand variationsin the curvecoevalwiththeground-basedobservations.Thisisanec- resultantparametersremainwithintheuncertaintiesforatleast essarysteptoensurethatwearemodelingthesamespotconfig- threeconsecutivefits.Thisapproachhasthedisadvantageofbe- uration.AlmostallIAC80observationsarecoevalwithKepler’s ing slower than the simultaneous fit of all the light curves but Q6. We identified three epochs in which a primary and a con- ourpreliminarytestshowedthatthefittingresultswerenotably tiguoussecondaryeclipseswereobservedsimultaneouslyinall better from the residuals point of view. The main advantage is fourbands.Oneepochwasdiscardedowingtounidentifiedsys- thatweretainboththephysicalinformationthatarecontainedin tematicsintheIAC80data,whichaffecttheleveloftheprimary theground-basedlightcurvesandtheexcellenttimecoverageof eclipse.TheothertwowereselectedforanalysiswithPHOEBE. thespotconfigurationcontainedintheKeplerlightcurves. Articlenumber,page9of18 A&Aproofs:manuscriptno.TCyg1paper_def Table12.T-Cyg1-12664parameterscomputedfortwodifferentepochs. Parameter Q6-1epoch Q6-2epoch Timespan 2455376.51579- 2455380.70480- 2455380.64350 2455384.83250 Geometricandorbitalparameters P(d)(fixed) 4.1287955(7) T0(BJD)(fixed) 2455415.61831(5) ∆φ -0.000800 0.000024 -0.000700 0.000023 ± ± q(fixed) 0.553 0.018 ± γ(kms−1)(fixed) -6.28±0.53 i(deg) 87.003 0.012 86.931 0.010 ± ± e(fixed) 0.0365 0.0014 ± a(R )(fixed) 11.03 0.21 ⊙ ± ω(deg)(fixed) 92.8 2.2 ± Ω1 14.391±0.057 14.257±0.038 Ω2 19.461±0.072 18.937±0.061 F1(fixed) 1.041±0.024 F2(fixed) 1.000 Fractionalvolumetricradii r1vol 0.07240±0.00060 0.07311±0.00040 r2vol 0.03039±0.00024 0.03129±0.00022 Radiativeparameters Teff1(K)(fixed) 5560±160 Teff2(K) 3540±160 3380±160 Albedo(fixed) 0.5 β1,β2 0.4353,0.3710 0.4353,0.3837 lKp(fixed) 0.02297 0.00058 3 ± Limb-darkeningcoeficients(square-rootlaw) x1,y1(bol) 0.3811,0.3636 0.3811,0.3636 x2,y2(bol) -0.0427,0.8284 -0.0427,0.8284 x1,y1(KPband) 0.3598,0.3869 0.3598,0.3869 x2,y2(KPband) 0.0928,0.8096 0.06280.8721 x1,y1(Vband) 0.4786,0.3242 0.4786,0.3242 x2,y2(Vband) 0.1759,0.7896 0.1544,0.8349 x1,y1(RCband) 0.3177,0.4299 0.3177,0.4299 x2,y2(RCband) 0.1592,0.7278 0.1061,0.8169 x1,y1(ICband) 0.1795,0.4965 0.1795,0.4965 Fig.10.RepresentationofthespotconfigurationsofT-Cyg1-12664in x2,y2(ICband) -0.1726,1.0385 -0.1848,1.0833 the(v,w)plane for thetwoepochs analyzed: thelower plot isfor the Spot1parameters(primarystar) Q6-1epochandtheupperplotisfortheQ6-2epoch,whichisdisplaced Colatitude(deg) 81.3±7.4 19.51±0.74 byanoffsetof0.2inthewaxis.Bothaxeshaveunitsofrelativeradius. Longitude(deg) 18.2 1.5 20.9 1.8 ± ± Thestarsarerepresentedatorbitalphase0.020,justaftertheprimary Radius(deg) 19.97 0.40 29.39 0.45 ± ± eclipse,andthesecondarystarisorbitingtowardstherightside. Tspot/Tsurf 0.98141±0.00087 0.9686±0.0014 Spot2parameters(primarystar) Colatitude(deg) 34.9 4.1 93 72 ± ± chronicityparameterfortheprimaryF wassetto1.041 0.024, Longitude(deg) 286.31 7.3 291.8 9.0 1 Radius(deg) 14.5 0±.66 8.1 ±1.5 asobtainedinSect.4.4.Althoughthisisaverysmallva±lueand ± ± Tspot/Tsurf 0.9801±0.0047 0.9862±0.0037 it would not have practical effects on the shape of the star, we ParameterscomputedfromMCMC included it for completeness. For the secondary star, the syn- i∆(φdeg) -08.070.000297++−000...0002005002284 -08.60.09022961+−+000...00000000932107 chronicityparameterF2wasassumedtobe1.0. ΩΩ12 1148..4987+−+−00000.....46230808830 1148..3604+−+−00000.....744300252068 agreTeemff1enwtawsisthetthtoe5sp5e6c0t±ro1s6c0opKic, avsalcuoemapnudtethdeincoSloercst.d4e.r2iv,eind Teff2(K) 3548−+3358 3365−+4552 from the absolute photometry. The albedos of the two com- Fractionalvolumetr−icradiifromMCMC − ponents were set to A = A = 0.5 as given by Rucin´ski 1 2 r1vol 0.0719+00..00002342 0.0729+00..00002317 (1969), since the temperatures and spectral types are compat- r2vol 0.0312+−00..00001140 0.0318+−00..00001116 ible with those of stars with convective envelopes. The values Derivedphysical−radiifromMCMC − of the gravity-brightening exponents, β and β , and those of RR21((RR⊙⊙)) 00..374943+−+−0000....000011337308 00..385014+−+−0000....000011244984 (th2e01L1D)focroeeffiacchiepnatsssbwaenrde.iAnsteirnpothlaetecdasfe1roomfthCela2JrKetT&EBBOloPempreen- liminary light-curve analysis we used a square-root LD law (Diaz-Cordoves&Gimenez 1992). For the primary star these Giventhe largenumberof parametersin a completebinary coefficient values were kept fixed since T does not change eff1 systemmodel,wetriedtofixasmanyofthemaspossiblebefore- throughout the fitting process. For the secondary, we updated hand,usingallavailableinformation.WefixedtheperiodandT the coefficientsvalues whenevernecessary.As in Sect. 5.2, we 0 tothevaluesintheephemerisequationinSect.4.6.Themassra- used the same set of PHOENIX-based LD coefficients. This is tioqandγwerefixedfromtheRVsolutioninTable11.Theval- because, during the fitting process, the T evolves below the eff2 uesforeandωwerefixedfromthepreliminaryJKTEBOPanal- 3500KlimitoftheKuruczLDtables.Thisoccurredforallfit- ysis of the Kepler detrended light-curve in Sect. 2.1. The syn- tingattemptsusingthePhoebe(2010)orvanHamme(1993)LD Articlenumber,page10of18

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.