ebook img

A reddening-free method to estimate the $^{56}$Ni mass of Type Ia supernovae PDF

0.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A reddening-free method to estimate the $^{56}$Ni mass of Type Ia supernovae

Astronomy&Astrophysicsmanuscriptno.main (cid:13)c ESO2016 January20,2016 A reddening-free method to estimate the 56Ni mass of Type Ia supernovae SuhailDhawan1,2,3,B.Leibundgut1,2,J.Spyromilio1,andS.Blondin4 1 EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,D-85748GarchingbeiMu¨nchen,Germany e-mail:[email protected] 2 ExcellenceClusterUniverse,TechnischeUniversita¨tMu¨nchen,Boltzmannstrasse2,D-85748,Garching,Germany 3 PhysikDepartment,TechnischeUniversita¨tMu¨nchen,James-Franck-Strasse1,D-85748GarchingbeiMu¨nchen 4 AixMarseilleUniversite´,CNRS,LAM(Laboratoired’AstrophysiquedeMarseille)UMR7326,13388Marseille,France Received;accepted 6 1 Abstract 0 2 TheincreaseinthenumberofTypeIasupernovae(SNeIa)hasdemonstratedthatthepopulationshowslargerdiversitythanhasbeen n assumedinthepast.Thereasons(e.g.parentpopulation,explosionmechanism)forthisdiversityremainlargelyunknown.Wehave a investigatedasampleofSNeIanear-infraredlightcurvesandhavecorrelatedthephaseofthesecondmaximumwiththebolometric J peakluminosity.Thepeakbolometricluminosityisrelatedtothetimeofthesecondmaximum(relativetotheBlightcurvemaximum) 9 asfollows:Lmax(1043ergs−1)=(0.039±0.004)×t2(J)(days)+(0.013±0.106). 1 56NimassescanbederivedfromthepeakluminositybasedonArnett’srule,whichstatesthattheluminosityatmaximumisequal to instantaneous energy generated by the nickel decay. We check this assumption against recent radiative-transfer calculations of ] Chandrasekhar-massdelayeddetonationmodelsandfindthisassumptionisvalidtowithin10%inrecentradiative-transfercalcula- R tionsofChandrasekhar-massdelayeddetonationmodels. S TheLmax vs.t2 relationisappliedtoasampleof40additionalSNeIawithsignificantreddening(E(B−V) >0.1mag)anda . reddening-freebolometricluminosityfunctionofSNeIaisestablished.Themethodistestedwiththe56Nimassmeasurementfrom h thedirectobservationofγ−raysintheheavilyabsorbedSN2014Jandfoundtobefullyconsistent. p Super-Chandrasekhar-massexplosions,inparticularSN2007if,donotfollowtherelationsbetweenpeakluminosityandsecondIR - maximum.Thismaypointtoanadditionalenergysourcecontributingatmaximumlight. o TheluminosityfunctionofSNeIaisconstructedandisshowntobeasymmetricwithatailoflow-luminosityobjectsandarather r t sharphigh-luminositycutoff,althoughitmightbeinfluencedbyselectioneffects. s a Keywords.supernovae:general–supernovae:individual:2014J,2006X,2007if [ 1 v 1. Introduction al.2013;Patatetal.2015).Duetointerstellardustacorrection 4 forreddeningintheMilkyWayandthehostgalaxyneedstobe 7 Type Ia supernovae (SNeIa) exhibit diverse observable proper- applied.Ourgoalistoestablisharelationbetweenthebolomet- 8 ties.Inadditiontothespectralandcolourdifferences,thepeak ricpeakluminosityandthe56Nimassindependentofreddening. 4 luminosity of SNeIa range over several factors (e.g. Suntzeff The Near Infrared (NIR) light curve morphology of SNeIa 0 1996, 2003; Li et al. 2011). The amount of 56Ni, derived . is markedly different from that in the optical. In particular, the 1 fromthebolometricluminosity,(Contardo,Leibundgut&Vacca lightcurvesstarttorebrightenabout2weeksafterthefirstmaxi- 0 2000) and the total ejecta mass (Stritzinger et al. 2006; Scalzo mum,resultinginasecondpeak.Recentstudies(e.g.Biscardiet 6 etal.2014)alsoshowawidedispersion.TheM distribution 56Ni al.2012;Dhawanetal.2015)foundthatmoreluminousSNeIa 1 providesinsightintothepossibleprogenitorchannelsandexplo- reach the second maximum in NIR filters at a later phase. This : v sionmechanismsforSNeIa(seeHillebrandt&Niemeyer2000; waspredictedbyKasen(2006)whoalsoindicatedthatthephase Xi Livio2000;Truran,Glasner,&Kim2012). of the second maximum (designated in the following as t2 and Theuncertaintyinthereddeningcorrectiondirectlyimpacts measured relative to the B-band light curve maximum) should ar the ability to derive accurate bolometric luminosities and 56Ni beafunctionofthe56Nimassintheexplosion.Weexpectthat massesderivedfromthepeakluminosity.Thetotaltoselective thephaseofthesecondNIRmaximumcanbeusedtodetermine absorption (RV) appears systematically and significantly lower bolometricpeakluminosityLmax andtheamountof56Nisyn- intheSNhoststhanthecanonicalMilkyWayRV valueof3.1. thesizedintheexplosion. Nobili & Goobar (2008) use a large sample of nearby SNeIa In the following, we investigate the link between the peak to derive an average R which is significantly lower than 3.1. V bolometricluminosity(L )andthephaseofthesecondmax- max Takingintoaccountspectroscopicfeaturesthatcorrelatewithlu- imum in the NIR light curves (t ). We use a sample of nearby 2 minosity,Chotardetal.(2011)foundanR of2.8±0.3which V SNeIawithlowhost-galaxyextinction(describedinSection2) is consistent with the Milky Way value. However, objects with todetermineL andthenemploydifferentmethodstoderive max highextinctionareseentohaveanunusuallylowR (Phillipset V M (Section3).ThisrelationcanthenbeusedtoderiveL 56Ni max and M for all SNeIa with a measured t , since the timing 56Ni 2 Sendoffprintrequeststo:S.Dhawan parameter is free of reddening corrections and allows us to in- 1 S.Dhawanetal.:NickelmassinSNeIa We add to this sample objects from the literature. We only in- cluded SNeIa with observations near maximum from U to H filters. The full description of the selected SNeIa can be found inDhawanetal.(2015). The sample of low-reddening SNeIa is defined to circum- 1.6 Y vent the uncertainties of host galaxy extinction. The 18 objects 1.4 arepresentedinTable1.WeuseE(B−V)hostvaluesfromthe literature. Only objects with E(B − V) < 0.1 mag were 1.2 host included.Sinceweconsideronlyobjects,whichdisplaythesec- 1.0 ond maximum in their NIR light curves this implies that most low-luminositySNeIa,especiallySN1991bg-likeobjectswere 0.8 excluded. 0.6 At maximum light the UV-optical-IR integrated luminosity represents >90% of the true bolometric luminosity (Blondin, Dessart,&Hillier2015).WeconstructedUBVRIJH bolomet- 1)1.6 J riclightcurvesforobjectswithsufficientphotometrynearmax- − s1.4 imumlightintheopticalandtheNIR.TheK filterdatawasex- g r cludedsinceonlyfewSNIahavewell-sampledK lightcurves. e1.2 We calculated the fraction of the flux emitted in K for a few 3 401.0 well-observed SNe Ia with sufficient data and determined it to 1 bearound1−3%oftheUVOIRluminosityatmaximum.The (x0.8 exclusionoftheK-fluxresultsinonlyaminoruncertaintyinthe a m0.6 finalUVOIRluminosity. L Priortothederivationofabolometricfluxforthelowextinc- tionsample(seeTable3)weapplyacorrectionforthemeasured 1.6 H extinctionfollowingCardelli,Clayton&Mathis(1989).Theas- sumeddistancesandtheirreferencescanbefoundinTable1. 1.4 1.2 3. Results 1.0 0.8 Based on our previous work (Dhawan et al. 2015), where we foundstrongcorrelationsbetweenvariousderivedparametersof 0.6 SNeIa with t in the Y and J filters, we argued that the bolo- 2 metric maximum luminosity should also correlate with t . The 2 10 15 20 25 30 35 40 sample of low-reddening SNeIa described in Section 2 is used t (days) toestablishtherelationbetweent andL .Thet parameter 2 2 max 2 hastheadvantagethatisisessentiallyindependentofreddening anddistance(relativetothecalibrationsample).Withsuchare- Figure1.ThebolometricmaximumluminosityL isplotted lationwewillbeinapositiontoderivetheluminosityfunction max againstthephaseofthesecondmaximumt inYJH filterlight ofSNeIaatmaximum. 2 curves. A strong correlation is observed in Y and J, whereas a weaker correlation is seen in the H band. Best fit lines are 3.1. CorrelationbetweenL andt overplottedinblack.Thefitincludeserrorsonbothaxes. max 2 Figure 1displaysastrongcorrelationbetweent fortheY andJ 2 filterlightcurvesandthebolometric(UVOIR)luminosityL max cludeheavilyreddenedobjects.Wecheckourderivationagainst (determinedbyfittingasplineinterpolationtotheUVOIRlight independentmeasurementsofM56NiwiththenearbySN2014J curve) with Pearson coefficients r = 0.88 and r = 0.86, re- inM82andSN2006X(Section4).Withthereddeningindepen- spectivelyforthelow-reddeningsample.Amuchweakertrend dentmethodwecanestablishtheluminosityfunctionofSNeIa isobservedintheH filterlightcurvewithr≈0.60. at maximum and also derive the distribution of nickel masses The slope of the L vs. t relation appears to flatten for max 2 amongSNIaexplosions(Section5).Wefinishbydiscussingthe objects with t (cid:38) 27d. This is most prominent in the Y band. 2 implications of this determination of the M distribution in 56Ni However,wewouldrequirealargersampletoconfirmthistrend theconclusions(Section6). amongstthemostluminousobjects. Wefitasimplelinearrelationtothedata 2. Data L =a ·t +b (1) max i 2,i i Our SNIa sample is constrained to objects, which have NIR observations at late times (t > 50 days after B maximum) whichleadstotheentriesinTable 2(forYJH filters).Thecor- with well-sampled optical and NIR light curves to construct respondingfitsareshowninFigure1.Wecompareourobserved a (pseudo-)bolometric light curve and measure t . The main valuestotheL andt fromtheDDCmodelsofBlondinetal. 2 max 2 source of near-infrared photometry of SNeIa is the Carnegie (2013). Model spectra and light curves published in Blondin et Supernova Project (CSP; Contreras et al. 2010; Burns et al. al.(2013)basedondelayeddetonationexplosionsshowsimilar 2011; Stritzinger et al. 2011; Phillips 2012; Burns et al. 2014). correlationstothosedescribedherein. 2 S.Dhawanetal.:NickelmassinSNeIa Table1.ThesampleofSNeIawithlowreddeningE(B−V) < 0.1.ThereferencesfortheSNeIaarepresentedalongwith host theextinctionvaluesandthedistancesemployedforcalculationofthe(pseudo-)bolometricluminosityatmaximum. SN µ E(B−V) E(B−V) Reference t (Y) t (J) t (H) L host MW 2 2 2 max (d) (d) (d) (1043erg/s) SN2002dj 32.93±0.30 0.096±0.030 0.010±0.003 P08 ... 31.1±1.8 23.0±0.9 1.25±0.26 SN2002fk 32.59±0.15 0.009±0.044 0.035±0.003 C14 ... 29.5±0.2 25.8±0.3 1.42±0.23 SN2005M 35.01±0.09 0.060±0.021 0.027±0.002 B14 28.9±3.8 30.9±0.7 ... 1.19±0.20 SN2005am 32.85±0.20 0.053±0.017 0.043±0.002 B14 21.7±0.1 21.3±0.7 19.7±0.7 1.10±0.20 SN2005el 34.04±0.14 0.015±0.012 0.098±0.001 B14 25.0±0.1 24.6±0.6 24.3±0.7 1.01±0.11 SN2005eq 35.46±0.07 0.044±0.024 0.063±0.003 B14 37.5±0.1 35.0±0.7 25.1±0.1 1.32±0.20 SN2005hc 36.50±0.05 0.049±0.019 0.028±0.001 B14 37.5±0.1 36.5±2.5 ... 1.36±0.30 SN2005iq 35.80±0.15 0.040±0.015 0.019±0.001 B14 27.7±0.1 24.2±0.7 25.0±0.1 1.07±0.21 SN2005ki 34.73±0.10 0.016±0.013 0.027±0.001 B14 26.8±0.1 25.2±1.7 20.5±1.7 1.03±0.27 SN2006bh 33.28±0.20 0.037±0.013 0.023±0.001 B14 25.0±0.3 22.9±0.3 21.0±0.6 0.86±0.15 SN2007bd 35.73±0.07 0.058±0.022 0.029±0.001 B14 28.3±0.1 ... ... 1.22±0.13 SN2007on 31.45±0.08 <0.007 0.010±0.001 B14 18.7±0.4 18.2±0.1 14.1±1.4 0.60±0.09 SN2008R 33.73±0.16 0.009±0.013 0.062±0.001 B14 15.5±0.7 14.1±0.7 ... 0.53±0.10 SN2008bc 34.16±0.13 <0.019 0.225±0.004 B14 32.9±0.3 33.3±0.2 31.0±1.4 1.24±0.19 SN2008gp 35.79±0.06 0.098±0.022 0.104±0.005 B14 33.5±1.2 35.7±0.8 34.4±0.7 1.29±0.14 SN2008hv 33.84±0.15 0.074±0.023 0.028±0.001 B14 25.0±0.3 24.7±0.3 21.9±0.5 1.08±0.16 SN2008ia 34.96±0.09 0.066±0.016 0.195±0.005 B14 24.0±0.7 25.6±0.2 19.2±0.9 1.13±0.14 SN2011fe 28.91±0.20 0.014±0.010 0.021±0.001 P13 ... 30.0±0.8 24.3±0.6 1.10±0.15 E(B-V)references:P08:Pignataetal.(2008);C14:Cartieretal.(2014)B14:Burnsetal.(2014);P13:Patatetal.(2013) Table 2. Values of the coefficients for correlations between tion between explosions (Branch 1992; Khokhlov, Mueller, & L andt intheindividualfilters Hoeflich 1993). These early papers found rather large ranges max 2 with 0.75 < α < 1.4 depending on the exact explosion model and the amount of assumed mixing Branch (1992); Khokhlov, Filter ai bi Mueller,&Hoeflich(1993).MorerecentlyBlondinetal.(2013) Y 0.041±0.005 −0.065±0.122 foundarangeofαwithin10%of1fordelayeddetonationmod- J 0.039±0.004 0.013±0.106 els.Thesemodelsarenotapplicableforlow-luminositySNeIa. H 0.032±0.008 0.282±0.174 Should α systematically depend on explosion characteristics thenthederivednickelmassesmaysufferfromasystematicdrift notcapturedinourtreatment.Theseuncertaintiesmustbetaken intoaccountfortheinterpretationofthederived56Nimass. Intheinterestofacleanlowextinctionsample,wehavere- moved7objectswithE(B−V) <0.1buttotalE(B−V)≥ host 3.2.1. Arnett’srulewithindividualrisetimes 0.1. Interestingly, several of the excluded objects are amongst themostluminousSNeIainthesample.Evenaftertheremoval Arnett’srulestatesthattheluminosityoftheSNatpeakisgiven of these 7 objects we do not derive a significant correlation for bytheinstantaneousrateofenergydepositionfromradioactive theH bandlightcurvesfromoursample.Itwillhavetobeseen, decays inside the expanding ejecta (Arnett 1982; Arnett et al. whether future data will reveal a correlation or whether the H 1985). light curves are not as sensitive to the nickel mass as the other Thisissummarizedas(Stritzingeretal.2006): NIRfilters.Therelationsareidenticalforthefullandrestricted sample within the uncertainties listed in Table 2. We combine L (t )=αE (t ), (2) max R 56Ni R therelationsfromthetwobandsforextrapolatingthevaluesof Lmaxinthefollowinganalysis.WeassumetheY bandestimate where E56Ni is the rate of energy input from 56Ni and 56Co tobeequivalenttothevalueintheJ bandandcalculatetheslope decaysatmaximum,tR istherisetimetobolometricmaximum andinterceptwiththephotometryofbothfilters,whichleadsto and α accounts for deviations from Arnett’s Rule. The energy improvedstatistics. outputfrom1M(cid:12)of56Niis(α=1): 3.2. DerivingM56Ni fromLmax (cid:15)Ni(tR,1M(cid:12))=(6.45·1043e−tR/8.8+1.45·1043e−tR/111.3)ergs−1 (3) WepresentthreedifferentmethodstoderiveM fromL , 56Ni max Weusetherelationforestimatesusingdifferentrisetimesin namelyusingArnett’srulewithanindividualrisetimeforeach theBfilterforeachSNfollowing, SN Ia, using Arnett’s rule with an assumed constant rise time applied to all SNe Ia and by calculating Lmax from delayed tR,B =17.5−5·(∆m15−1.1) (4) detonation models with different M yields (Blondin et al. 56Ni 2013). Arnett’s rule states that at maximum light the bolomet- fromScalzoetal.(2014)whichcoversthet –∆m param- R,B 15 ricluminosityequalstheinstantaneousrateofenergyinputfrom eter space of Ganeshalingam, Li, & Filippenko (2011). Like theradioactivedecays.Anydeviationsfromthisassumptionare Scalzo et al. (2014) we apply a conservative uncertainty esti- encapsulated in a parameter α below. It is quite possible that mate of ±2 days. The bolometric maximum occurs on average αdependsontheexplosionmechanismandshowssomevaria- 1daybeforeB (Scalzoetal.2014). max 3 S.Dhawanetal.:NickelmassinSNeIa Table 3. M measurements for low reddening SNe Ia. The components of the error from L and rise time are given along 56Ni max withthetotalerror. SN M −Arn err(L ) err(risetime) M −Arn(fixedrise) err(L ) err(risetime) M −DDC Ni max Ni max Ni (M(cid:12)) (M(cid:12)) (M(cid:12)) (M(cid:12)) (M(cid:12)) (M(cid:12)) (M(cid:12)) SN2002dj 0.59±0.16 0.12 0.10 0.63±0.16 0.13 0.10 0.61±0.13 SN2002fk 0.68±0.16 0.11 0.12 0.71±0.17 0.12 0.12 0.76±0.13 SN2005M 0.59±0.14 0.10 0.10 0.60±0.14 0.10 0.10 0.59±0.11 SN2005am 0.47±0.13 0.08 0.10 0.55±0.14 0.10 0.10 0.52±0.11 SN2005el 0.45±0.10 0.05 0.09 0.51±0.11 0.06 0.09 0.48±0.07 SN2005eq 0.67±0.15 0.10 0.11 0.66±0.15 0.10 0.11 0.67±0.11 SN2005hc 0.69±0.19 0.15 0.12 0.68±0.19 0.15 0.12 0.71±0.16 SN2005iq 0.48±0.13 0.09 0.09 0.54±0.14 0.11 0.09 0.51±0.10 SN2005ki 0.45±0.14 0.11 0.09 0.51±0.17 0.14 0.09 0.49±0.14 SN2006bh 0.37±0.10 0.06 0.08 0.43±0.11 0.08 0.07 0.40±0.07 SN2007bd 0.55±0.13 0.06 0.11 0.61±0.12 0.07 0.10 0.59±0.10 SN2007on 0.23±0.06 0.03 0.05 0.30±0.07 0.05 0.05 0.28±0.05 SN2008R 0.20±0.06 0.04 0.05 0.27±0.07 0.05 0.05 0.25±0.06 SN2008bc 0.60±0.14 0.09 0.11 0.62±0.15 0.10 0.11 0.63±0.11 SN2008gp 0.62±0.13 0.06 0.11 0.65±0.11 0.07 0.09 0.64±0.09 SN2008hv 0.48±0.11 0.07 0.09 0.54±0.12 0.08 0.09 0.52±0.09 SN2008ia 0.50±0.12 0.06 0.10 0.57±0.11 0.07 0.09 0.55±0.09 SN2011fe 0.50±0.12 0.07 0.10 0.55±0.12 0.08 0.09 0.52±0.10 3.2.2. Arnett’srulewithafixedrisetime Originally M was determined from L for a fixed rise 56Ni max time of 19 days for all SNe Ia (Stritzinger et al. 2006). Similar 9 var totheseanalyseswepropagateanuncertaintyof±3daystoac- countforthediversityintherisetimes. 6 Thepeakluminositythenbecomes(Stritzingeretal.2006) L =(2.0±0.3)·1043(M /M )ergs−1. (5) 3 max 56Ni (cid:12) Asdescribedabove,weassumedα=1(seeStritzingeretal. 0 2006;Mazzalietal.2007),whichistheanalyticalapproximation 9 fixed ofArnett(1982).FortheDDCmodelsofBlondinetal.(2013) αiswithin10%of1forallbuttheleastluminousmodel. N6 S N 3.2.3. Interpolatingusingdelayeddetonationmodels 3 WeinterpolatetherelationbetweenL (inagivenfilterset,u max 0 →Hinthiscase)andM foundfromagridofChandrasekhar 56Ni 9 DDC massdelayeddetonationmodelsofBlondinetal.(2013)tode- rivea56Nimassfromtheobservedpeakluminosityforthesam- plepresentedinTable1.Theresulting56Nimassestimatesare 6 presented in the bottom panel of Figure 2. For all but the least luminousofthesemodels,αiswithin10%of1(Blondinetal. 3 2013). 0 M 56Ni 3.3. Comparisonofdifferentmethods InFigure2,weplotthedistributionsoftheM ,inferredfor 56Ni thelow-reddeningsample,fromthedifferentmethods. Figure2.Thehistogramsshowthedifferentmethodstoestimate Similar to previous studies we find that there is a large dis- theM56Ni fromtheLmax.ThevaluesfoundfromArnett’srule tributionintheM valuesforthesampleinTable1.Wenote with fixed and individual rise times are plotted in the top and 56Ni a over a factor of 2 difference between the lowest and highest middle panels. The bottom panel displays the values estimated M56Ni values(afactorof∼3forthevariablerisetimeformal- by usingthe relation between Lmax and M56Ni found fromthe ism).Unlikepreviousstudies,thissampledoesn’tincludefaint, DDCmodels. 91bg-like objects, since their NIR light curves do not display a secondmaximum.Theseobjectsarefoundtohaveamuchlower M ∼0.1M (Stritzingeretal.2006;Scalzoetal.2014)from higher and lower masses. A further difference can be seen in 56Ni (cid:12) their peak luminosities. There is clearly a majority of objects Fig.2wherethemassdistributionbetweenthecaseofindivid- withnickelmassesbetween0.4and0.7M withextensionsto ual and the fixed rise times is slightly different due to the fact (cid:12) 4 S.Dhawanetal.:NickelmassinSNeIa that observed rise times often are shorter than the assumed 19 relation of the second maximum in the NIR light curves is en- days. couraging. The individual errors clearly dominate over the differences As a second case, we determine the bolometric peak lu- between the methods and the results are not influenced by the minosity L and the nickel mass M based on t to max 56Ni 2 chosenmethod.Thereappearsasmallsystematicoffsetbetween the heavily extinguished SN 2006X. Wang et al. (2008) de- the 56Ni masses derived from DDC models and the ones with rived a peak luminosity for this SN from multi-band photom- Arnett’s rule and fixed rise time. The 56Ni masses from the etry and a correction for dust absorption in the host galaxy. DDC models are about 0.05 M smaller, however, well within TheydeterminedabolometricpeakluminosityforSN2006Xof (cid:12) the overall uncertainties, which are typically around 0.15 M (1.02±0.1)·1043ergs−1,whichcompareswellwithourmea- (cid:12) (Tab.3). surementof(1.14±0.16)·1043ergs−1.Wangetal.(2008)de- For SN2011fe Pereira et al. (2013) report a rise time of terminedM56Ni =0.50±0.05M(cid:12),whichshouldbecompared 16.58days. Using this rise time, we obtain an M56Ni of 0.49 to M56Ni = 0.57 ± 0.11 M(cid:12) found from t2 using the fixed M(cid:12) whichisa0.06M(cid:12) shiftfromthevalueusinga19drise. rise time formalism. The measured rise time for SN 2006X is Thisshiftissmallerthantheuncertaintyonthe56Nimass.For tR(B)=18.2±0.9d,whichleadstoM56Ni =0.55±0.10M(cid:12). the low-reddening sample we note that the average difference Table5presentsseveraladditionalhighlyreddenedSNeIa, betweenthefixedriseandvariableriseformalismsis0.04M . which had a previous determination of the nickel mass. The (cid:12) Forthefollowinganalysis,wecalculatetheM56Ni usingt2. M56Ni fortheseobjectswerecalculatedinthesamewayasfor BysubstitutingtherelationderivedbetweenL andt (equa- SN2014JandSN2006X. max 2 tion(1)andequation(3)),weobtain FromTable 5,wecanseethat1986Ghasalowervalueof M than the other heavily reddened objects. This is consis- 56Ni M a ·t (i)+b tent with the observed optical decline rate and lower B band 56Ni = i 2 i . (6) luminosity (Phillips et al. 1987). Using nebular spectra, Ruiz- M α·(cid:15) (t ,M ) (cid:12) Ni R (cid:12) Lapuente&Lucy(1992)calculatetheM forSN1986Gand 56Ni Wemostlywillusethefixedrisetimeformalisminthefol- findavalueof0.38±0.03M(cid:12).Thisisfullyconsistentwiththe estimatefromt . lowinganalysis,althoughinspecialcases,wewillalsomakeuse 2 Scalzo et al. (2014) give M for SN 2005el and ofthemoreaccuratelyknownrisetime. 56Ni SN 2011fe. The comparison for SN 2011fe shows M = 56Ni 0.52±0.15M(cid:12)fromtheNIRlightcurves,whereasScalzoetal. 4. Test with well observed SNe Ia (2014)findM56Ni =0.42±0.08M(cid:12).Thedifferenceismostly intheadoptedvalueofα,1.2inScalzoetal.(2014)comparedto DustinthehostgalaxyandtheMilkyWaymakesthedetermina- 1inthisstudy.RescalingthevaluefromScalzoetal.(2014)to tionofthepeakluminosityuncertain.ManynearbySNeIahave α=1,weobtainM56Ni=0.50±0.08M(cid:12),whichisfullyconsis- shownmarkeddeviationsinthehostgalaxydustpropertiesfrom tentwithourvalue.Pereiraetal.(2013)reportnickelmassesfor thoseobservedintheMilkyWaymostlyfavouringasmallerR SN2011fefordifferentvaluesofα.Theirnickelmassforα=1 V value (Goobar 2008; Phillips et al. 2013). The extinction cor- isM56Ni = 0.53±0.11M(cid:12) ,nearlyidenticaltoourdetermi- rectionsarenotoriouslyuncertainanddirectlyaffectourability nation. For SN 2005el, Scalzo et al. (2014) obtain an M of 56Ni to measure peak bolometric luminosities of SNe Ia. Since t is 0.52±0.12M .Scaledtoanα = 1,thisgivesM =0.62. 2 (cid:12) 56Ni independentofreddening,wecanusethederivedcorrelationto WefindM =0.51±0.11M ,whichisbroadlyconsistent 56Ni (cid:12) determine the peak luminosity and estimate the 56Ni mass for withthevaluefoundinScalzoetal.(2014). heavilyreddenedSNeIa. FromthecomparisonsinTable 5,weconcludethatthereis WetestthisrelationonSN2014J,whichhasadirectγ−ray good agreement between our values and those published in the detection from the 56Ni → 56Co decay chain (Churazov et al. literature. For SN 2001el we see that the error in the estimate 2014; Diehl et al. 2015). Using the best fit relation for the from t2 is substantially smaller than from the bolometric light reddening-freesample,weobtainM =0.64±0.15M for curve. 56Ni (cid:12) at = 31.99±1.15daysandarisetimeof19days.Sincethe One significant outlier is SN2007if. This was presented as 2 error on the rise time is taken as ±3 days, we expect the error asuper-Chandrasekhar-massexplosion(Scalzoetal.2010)with onM todecreasewithalessconservativeerrorestimateon atotalluminosityof3.2·1043 ergs−1.Thereddeningfromthe 56Ni t .Goobaretal.(2015)usedPalomarTransientFactory(PTF) host galaxy is somewhat unclear. There is no indication of Na R andKilodegreeExtremelyLittleTelescope(KELT)datatomea- foreground absorption, while the colour evolution and the Lira sure the rise time of SN 2014J. They find t = 17.25 days. lawwouldindicatesomereddening.Anyreddeningwouldonly R Weplaceaconservativeerrorestimateof1dayandevaluatethe increase the luminosity and the derived nickel mass based on M56Ni =0.60±0.10M(cid:12)whichhasalowererrorbarthanfrom Arnett’srule.TheM56Ni estimatefromt2 forSN2007ifissig- thefixedrisetimeformalism. nificantly lower than the mass estimate through the bolometric The direct measurement of M for SN 2014J through peak luminosity by Scalzo et al. (2010). If we recalculate the 56Ni theγ−raydetectiongivesanindependentandfairlysecureesti- M56Ni fromthebolometriclightcurvepresumingnoextinction mateofthenickelmass.Churazovetal.(2014)derive56Ni = fromthehostgalaxy,weobtainM56Ni =1.6M(cid:12).Thisisafac- 0.62±0.13M .Diehletal.(2015)findaslightlylowermassof torof∼2largerthanourestimate.Wediscussthissupernovain (cid:12) M =0.56±0.10M . Section6. 56Ni (cid:12) Adetailedcomparisonofthederived56Nimassesisgivenin Table4.Thedifficultyoftheextinctioncorrectionandtheadvan- 5. The luminosity function of SNe Ia at maximum tageofthemethodpresentedhereareobvious.Theuncertainty in the γ−ray determination is due to the weakness of the sig- We are now in a position to derive L for all SNe Ia with a max nalandleadstoslightlydifferentinterpretations.Theverygood reliably measured t (as given in Tables 1 and 6) and establish 2 correspondencebetweenthedirectM measurementandour thebolometricluminosityfunctionofSNeIaatmaximumlight. 56Ni 5 S.Dhawanetal.:NickelmassinSNeIa Table 4. Comparison of different methods to estimate M for SN 2014J. All measurements assume a distance modulus of 56Ni 27.64±0.10. M (inferred) σ Method Reference Ni 0.62 0.13 γraylines Churazovetal.(2014) 0.56 0.10 γraylines Diehletal.(2015) 0.37 ... BolometriclightcurveA =1.7mag Churazovetal.(2014);Marguttietal.(2014) V 0.77 ... BolometriclightcurveA =2.5mag Churazovetal.(2014);Goobaretal.(2014a) V 0.64 0.13 NIRsecondmaximum thiswork(combinedfit) 0.60 0.10 NIRsecondmaximum+measuredrise thiswork Table5.M estimatesforobjectswithhighvaluesofE(B−V) .Comparisonwithindependentestimatesfromtheliterature 56Ni host aregivenwhereavailable. SN t M (inferred) M (Lit.Val.) PercentDifference Referencea 2 56Ni 56Ni (d) (M(cid:12)) (M(cid:12)) SN1986G 16.4±1.4 0.33±0.08 0.38±0.03 15.15 RL92 SN1998bu 29.9±0.4 0.58±0.12 0.57 1.7 S06b SN1999ac 27.0±2.0 0.53±0.12 0.67±0.29 26.4 S06a SN2001el 31.2±0.7 0.62±0.12 0.40±0.38 33.8 S06a SN2002bo 28.9±0.7 0.56±0.12 0.52 7.1 St05 SN2003cg 30.2±1.5 0.59±0.13 0.53 10.1 ER06 SN2003hv 22.3±0.1 0.43±0.11 0.40±0.11 6.9 L09 SN2006X 28.2±0.5 0.57±0.11 0.50±0.05 12.2 W08 SN2007if 32.3±0.8 0.65±0.16 1.6±0.1 158.3 S10 a ThereferencesfortheM measurementsareRL92:Ruiz-Lapuente&Lucy(1992),S06a:Stritzingeretal.(2006),S06b:Stritzingeretal. 56Ni (2006),St05:Stehleetal.(2005),ER06:Elias-Rosaetal.(2006),L09:Leloudasetal.(2009),W08:Wangetal.(2008),S10:Scalzoetal.(2010) Forobjectsinthelow-reddeningsample,weusetheL deter- 6. Discussion and Conclusion max minedfromt andthebest-fitlinearrelation(greenhistogramin 2 Figure 3).Sincethephaseofthesecondmaximuminthenear Using the relation derived from the low-reddening sample we infrared is independent from the reddening we can derive the extrapolateanL valuefor58SNeIaobjectshavingamea- max reddening-freedistributionoftheluminosityfunctionofSNeIa suredt .Theestimateoft ,alongwiththisrelation,providesa 2 2 (Fig. 3). We show here the histogram of 58 SNe Ia as derived method to deduce the bolometric peak luminosity, independent fromtheY andJ lightcurves.Theluminosityscaleisbasedon of a reddening estimate, distance measurement (relative to the thecalibrationsampleoflow-reddeningobjects(Section3). calibrationofourlow-absorptionsample)andwithoutrequiring multi-bandphotometry.Wehencehaveestablishedareddening- freeluminosityfunctionofSNeIaatpeak(Fig.3). The luminosity function of SNe Ia is clearly not symmet- ric. The luminosity range spans slightly over a factor of 2. We We established an intrinsic luminosity function and 56Ni findnoobviousdifferencebetweenthefullsampleandthelow- massdistributionforallSNeIawithat measurement(Tab.5). 2 reddening sample used to calibrate the relation between t2 and The distribution of Lmax has a standard deviation of 0.2 ·1043 Lmax.Ifanythingthecalibrationsamplehasaflatterdistribution ergs−1 andM56Ni hasastandarddeviationof0.11M(cid:12).Scalzo withmostSNearound0.9·1043 ergs−1,whilethefullsample et al. (2014) find a similar distribution of M with a σ of 56Ni includes more luminous objects. This could be an effect of the 0.16M .WetestourmethodonSN2014J,aheavilyreddened (cid:12) magnitudelimitofthesearches.Theexactbiasesinoursample SN Ia in the nearby galaxy M82 and find good agreement be- aredifficulttodefineasitisnotvolumelimited. tween the estimates from the γ−ray observations (Churazov et al.2014;Diehletal.2015,seeTable4).Faint,91bg-likeSNeIa, Thebolometricluminosityfunctioncanbecomparedtothe whichshowtypicallylowerluminosities(Filippenkoetal.1992; R filter luminosity function derived by Li et al. (2011) based Leibundgut et al. 1993), do not display a second maximum in on 74 SNe Ia including the low-luminosity objects missing in theirNIRlightcurvesandarenotinoursample.Therefore,the our sample. The Li et al. (2011) magnitude-limited luminosity true dispersion, in peak luminosity and M56Ni, for SN Ia will function(theirFig.10)peaksatanabsolutemagnitudeof≈−19 likelybelargerthanwhatisderivedhere.Stritzingeretal.(2006) withafewobjectsabove−19.5andatailtofainterobjectsdown findadispersionofafactorof∼10,sincetheirsampleincluded to−17.Thisisalsoreflectedinourluminosityfunction(Fig.3), peculiarSNeIalikeSN1991bgandSN1991T. whereweobserveaclearpeakatL =1.3·1043ergs−1with max Our reddening-free estimate of the M can be compared 56Ni some more luminous objects and a tail to fainter objects. The to independent 56Ni mass estimates, e.g. from the late-time (≥ rangeisalsocomparabletotheonefoundbyLietal.(2011). 200d)pseudo-bolometriclightcurve.Itshouldalsobepossible todeterminetheamountofradiationemittedoutsidetheUVOIR In the next step we derive the distribution of M for all region of the spectrum at late phases and a bolometric correc- 56Ni SNeIawithsufficientinfraredlightcurvedatausingequation6 tion (e.g. Leloudas et al. 2009). There are very few objects for andafixedrisetimeandα = 1.Table6andFig.3presentthe which both NIR data to measure t and nebular phase pseudo- 2 SNIanickelmassfunction. bolometricobservationsarepresent,makingaquantitativecom- 6 S.Dhawanetal.:NickelmassinSNeIa Table 6. M and L measurements for the M 56Ni max 56Ni completesampleofobjectswitht2measurements 0.3 0.4 0.5 0.6 0.7 21 LFouwll -SRaemddpelening SN M56(NMi(cid:12)) σ L(m10a4x3erg/σs) 1980N 0.42 0.10 0.84 0.21 1981B 0.63 0.13 1.26 0.21 1986G 0.33 0.07 0.66 0.18 18 1998bu 0.58 0.12 1.16 0.20 1999ac 0.53 0.12 1.05 0.20 1999ee 0.68 0.15 1.36 0.21 2000E 0.62 0.14 1.24 0.22 15 2000bh 0.65 0.14 1.30 0.22 2001bt 0.55 0.12 1.10 0.20 2001cn 0.58 0.13 1.19 0.20 2001cz 0.67 0.14 1.33 0.22 2001el 0.61 0.13 1.22 0.21 12 N 2002bo 0.56 0.11 1.12 0.21 NS 2003cg 0.64 0.13 1.19 0.22 2003hv 0.43 0.10 0.84 0.17 2004ey 0.57 0.14 1.14 0.20 9 2004gs 0.43 0.11 0.85 0.18 2004gu 0.71 0.17 1.42 0.23 2005A 0.56 0.13 1.12 0.18 2005al 0.49 0.13 0.97 0.21 6 2005na 0.64 0.15 1.28 0.22 2006D 0.49 0.13 0.98 0.19 2006X 0.57 0.11 1.13 0.19 2006ax 0.62 0.15 1.24 0.21 3 2006et 0.64 0.16 1.27 0.22 2006gt 0.39 0.09 0.77 0.18 2006hb 0.41 0.11 0.81 0.19 2006kf 0.47 0.12 0.94 0.19 2007S 0.71 0.16 1.41 0.22 0 0.6 0.8 1.0 1.2 1.4 2007af 0.57 0.14 1.16 0.20 L (1043ergs 1) 2007as 0.47 0.14 0.94 0.25 max − 2007bc 0.55 0.14 1.09 0.20 2007bm 0.54 0.13 1.08 0.20 Figure3.HistogramdistributionofL derivedfromtherela- max 2007ca 0.66 0.16 1.29 0.22 tionsforthefullsampleofobjects.Green:EstimatesofLmaxfor 2007if 0.65 0.16 1.30 0.22 thelow-reddening,calibrationsample.Yellow:Estimatesforall 2007jg 0.53 0.14 1.06 0.20 objectswithat measurementinthefullsample.Theaxislabels 2007le 0.61 0.15 1.21 0.20 2 ontopcorrespondtotheM estimate.Weusethecombined 2007nq 0.46 0.13 0.92 0.20 56Ni fittoobtainthefinalvalues. 2008C 0.63 0.16 1.26 0.23 . 2008fp 0.62 0.13 1.24 0.21 2014J 0.64 0.13 1.28 0.22 parison for a sample of objects extremely difficult. Thus, we stronglyencouragemorelate-timeobservationsofSNIa. TheobservedL andM distributionsdirectlyconnect servationsforSNewitharangeofpeakluminosities.Theyfinda max 56Ni tothephysicaloriginofthediversityamongstSNeIa.Apossi- verygoodagreementoftheirmodelswithphotometricandspec- ble explanation is the difference in the explosion mechanism. troscopic observations at maximum. The range of M pro- 56Ni Pure detonations of M WDs (Arnett 1969) were seen to be ducedbytheirmodelscorrespondswellwiththeobservationsin ch unfeasiblesincetheyburntheentirestartoirongroupelements Figure3,makingthesemodelsastrongcandidatetoexplainthe anddonotproducetheintermediatemasselements(IMEs)ob- observeddiversity. servedinSNIaspectra.Puredeflagrations(e.g.Travaglioetal. M explosion models can possibly account for the ob- Ch 2004)canreproduceobservedpropertiesofSNewithM ≤ serveddistributioninM .Recentstudies(e.g.vanKerkwijk, 56Ni 56Ni 0.4M . Deflagration models however, cannot account for SNe Chang, & Justham 2010) on the other hand posit sub- (cid:12) withhigherM andhence,cannotexplaintheentiredistribu- Chandrasekhar mass explosions as a progenitor scenario for 56Ni tioninFigure3. SNe Ia (for e.g., see Woosley & Weaver 1994). This sce- Delayed-detonation models (e.g. Khokhlov 1991; Woosley nario is attractive since it can account for the progenitor statis- 1990)aremoresuccessfulinproducinghigherM .Inthisex- tics from population synthesis (see Livio 2000; Ruiter et al. 56Ni plosionmodelasubsonicdeflagrationexpandsthewhitedwarf 2013).Moreover,studieslikeStritzingeretal.(2006)andScalzo to create low densities for IMEs to be produced in a super- et al. (2014) find a significant fraction of SNe Ia to have sonic detonation phase which is triggered at a deflagration-to- M < 1.4M , providing observational evidence for the sub- ej (cid:12) detonationtransitiondensity(ρ ). M progenitor scenario. We compare the luminosity function tr Ch Recent1DstudiesbyBlondinetal.(2013)confrontasuiteof in Figure 3 to the one obtained by Ruiter et al. (2013), using Chandrasekharmass(M )delayeddetonationmodelswithob- theirviolentmergermodels.Theypresentarelationbetweenpri- Ch 7 S.Dhawanetal.:NickelmassinSNeIa mary white dwarf mass (MWD) and peak brightness for a grid ofS.B.toGarching.WewouldliketothankRahmanAmanullahforproviding of sub-M models. For objects in the lowest two bins of our publishedphotometryofSN2014Jinthenearinfrared. Ch luminositydistribution,theM correspondsto1to1.1 .For WD (cid:12) thehighestluminosityobjects,themodelsindicateanM of WD References 1.28M . Thus, the luminosity function corresponds to a range (cid:12) of sub-Chandrasekhar MWD, which provides further evidence ArnettW.D.,1969,Ap&SS,5,180 fortheplausibilityofsub-M explosionsasaprogenitorsce- ArnettW.D.,1982,ApJ,253,785 Ch nario. The 56Ni mass distribution (Fig. 3) is comparable to the ArnettW.D.,BranchD.,WheelerJ.C.,1985,Nature,314,337 BiscardiI.,etal.,2012,A&A,537,A57 yields from the models of Sim et al. (2010). Our L and max BlondinS.,DessartL.,HillierD.J.,KhokhlovA.M.,2013,MNRAS,429,2127 M distributionsdonotallowustodistinguishwhichexplo- 56Ni BlondinS.,DessartL.,HillierD.J.,2015,MNRAS,448,2766 sionmechanismisresponsiblefortheobservedvariety. BranchD.,1992,ApJ,392,35 We note that our sample includes one peculiar, super- BurnsC.R.,etal.,2011,AJ,141,19 M event, SN 2007if (Scalzo et al. 2010), with an estimated BurnsC.R.,etal.,2014,ApJ,789,32 Ch CardelliJ.A.,ClaytonG.C.,MathisJ.S.,1989,ApJ,345,245 M56Ni = 0.65±0.16M(cid:12) usingourtechnique.Thisissignifi- CartierR.,etal.,2014,ApJ,789,89 cantly lower than the value estimated in Scalzo et al. (2010) of ChotardN.,etal.,2011,A&A,529,L4 1.6±0.1M .Thet estimateforthisobjectisnotexceptionally ChurazovE.,etal.,2014,Nature,512,406 (cid:12) 2 high,indicatingasubstantialbutnotexceptionalamountof56Ni ChurazovE.,etal.,2015,ApJ,812,62 ContardoG.,LeibundgutB.,VaccaW.D.,2000,A&A,359,876 (similar to 91T-like SNe). One of the possible reasons for this ContrerasC.,etal.,2010,AJ,139,519 discrepancycouldbethatthepeakluminosityisnotjustaprod- DadoS.,Dar,A.,2015,ApJ,809,32 uct of 56Ni decay. This idea has been entertained in theoretical Dhawan S., Leibundgut B., Spyromilio J., Maguire K., 2015, MNRAS, 448, modelsforthesesuper-M SNIa.Themodelsadvocateasce- 1345 Ch narioofejectainteractionwithcircumstellarmaterial(CSM;see DiehlR.,etal.,2015,A&A,574,A72 Elias-RosaN.,etal.,2006,MNRAS,369,1880 Hachingeretal.2012;Dado&Dar2015).Thereisalsoanindi- FilippenkoA.V.,etal.,1992,AJ,104,1543 cationofashellinteractioninthissupernova(Scalzoetal.2010) FriedmanA.S.,etal.,2015,ApJS,220,9 and if this interaction results in increased peak luminosity then GaneshalingamM.,LiW.,FilippenkoA.V.,2011,MNRAS,416,2607 the 56Ni mass through Arnett’s rulewould be overestimated. It GoobarA.,2008,ApJ,686,L103 GoobarA.,etal.,2014,ApJ,784,L12 could well be that additional energy is emitted in these super- GoobarA.,etal.,2015,ApJ,799,106 M objects. A significant, but not extreme, amount of 56Ni Ch HachingerS.,MazzaliP.A.,TaubenbergerS.,FinkM.,PakmorR.,Hillebrandt producedintheexplosionalongwithinteractionwiththeCSM W.,SeitenzahlI.R.,2012,MNRAS,427,2057 couldthenexplaintheobservedproperties,e.g.lowerejectave- HillebrandtW.,NiemeyerJ.C.,2000,ARA&A,38,191 locities(∼9000kms−1)andhighpeakluminosity.InHachinger KasenD.,2006,ApJ,649,939 KhokhlovA.M.,1991,A&A,245,114 etal.(2012),thelowerlimitonM56Niis∼0.6M(cid:12)whichagrees KhokhlovA.,MuellerE.,Ho¨flichP.,1993,A&A,270,223 wellwithourestimate. LeibundgutB.,etal.,1993,AJ,105,301 The literature for such super-M objects with NIR light LeloudasG.,etal.,2009,A&A,505,265 Ch curves is still limited. Using the data in Taubenberger et al. LiW.,etal.,2011,MNRAS,412,1441 Livio M., 2000, in: Type Ia Supernovae, Theory and Cosmology, ed. J. C. (2011)forSN2009dc,weobtainat (J)of31.7±6.2 dwhich 2 Niemeyer&J.W.Truran,Cambridge:CambridgeUniversityPress,33 corresponds to an M of 0.65 ± 0.18M . Taubenberger et 56Ni (cid:12) MarguttiR.,ParrentJ.,KambleA.,SoderbergA.M.,FoleyR.J.,Milisavljevic al.(2013)alsoargueforlessextremeM56Nibasedonlatephase D.,DroutM.R.,KirshnerR.,2014,ApJ,790,52 photometry and spectroscopy, although they prefer a compara- MazzaliP.A.,Ro¨pkeF.K.,BenettiS.,HillebrandtW.,2007,Science,315,825 tivelyhigherM (∼1M )thanourinferredvalue.Onepos- NadyozhinD.K.,1994,ApJS,92,527 56Ni (cid:12) NobiliS.,GoobarA.,2008,A&A,487,19 sible reason could be that the high ejecta densities lead to an PatatF.,etal.,2013,A&A,549,A62 earlier onset of the recombination wave than expected for nor- PatatF.,etal.,2015,A&A,577,A53 malIa’sandhenceanearliert thanisexpectedforagiven56Ni PereiraR.,etal.,2013,A&A,554,A27 2 mass. This would lead to an inference of lower M from t PhillipsM.M.,2012,PASA,29,434 56Ni 2 PhillipsM.M.,etal.,1987,PASP,99,592 forsuper-M SNe. Ch PhillipsM.M.,etal.,2013,ApJ,779,38 If we assume that the inferred 56Ni mass from t indi- 2 PignataG.,etal.,2008,MNRAS,388,971 cate the core 56Ni for all SNeIa the peak luminosity of super– RuiterA.J.,etal.,2013,MNRAS,429,1425 M SNeIa would be boosted by an additional energy source, Ruiz-LapuenteP.,LucyL.B.,1992,ApJ,400,127 Ch like shell interaction within the explosion. A good indicator ScalzoR.A.,etal.,2010,ApJ,713,1073 ScalzoR.,etal.,2014,MNRAS,440,1498 couldbethelatebolometricdeclinephaseandluminosity.This SimS.A.,Ro¨pkeF.K.,HillebrandtW.,KromerM.,PakmorR.,FinkM.,Ruiter comparison would be much closer to the 56Ni determitation of A.J.,SeitenzahlI.R.,2010,ApJ,714,L52 thesecondpeakthanthepeakbolometricluminosity. StehleM.,MazzaliP.A.,BenettiS.,HillebrandtW.,2005,MNRAS,360,1231 Larger samples of well-observed SNe (e.g. Friedman et al. StritzingerM.,LeibundgutB.,WalchS.,ContardoG.,2006,A&A,450,241 StritzingerM.,MazzaliP.A.,SollermanJ.,BenettiS.,2006,A&A,460,793 2015)willhelpinimprovingthestatisticsofsuchastudy.Future StritzingerM.D.,etal.,2011,AJ,142,156 investigationswithadetailedcomparisonbetweenobservations Suntzeff N. B., 1996, in: Supernovae and supernova remnants, ed. Richard andasuiteofsub-MCh detonationmodelswillhelpshedmore McCray&ZhenruWang,Cambridge:CambridgeUniversityPress,41 light on the nature of the progenitor scenario and explosion Suntzeff,N.B.2003,in:FromTwilighttoHighlight,ThePhysicsofSupernovae, mechanismofSNIa.Moreover,futuretheoreticalstudiesofpe- ed.W.Hillebrandt&B.Leibundgut,Heidelberg:Springer,183 TaubenbergerS.,etal.,2011,MNRAS,412,2735 culiar, super-M SNe will help in deciphering the nature of Ch TaubenbergerS.,etal.,2013,MNRAS,432,3117 theseextremeexplosions. TravaglioC.,HillebrandtW.,ReineckeM.,ThielemannF.-K.,2004,A&A,425, 1029 Acknowledgements. This research was supported by the DFG Cluster of TruranJ.W.,GlasnerA.S.,KimY.,2012,JPhCS,337,012040 ExcellenceOriginandStructureoftheUniverse’.B.L.acknowledgessupportfor vanKerkwijkM.H.,ChangP.,JusthamS.,2010,ApJ,722,L157 thisworkbytheDeutscheForschungsgemeinschaftthroughTRR33,TheDark WangX.,etal.,2008,ApJ,675,626 Universe.WeallaregratefultotheESOVisitorProgrammetosupportthevisit WoosleyS.E.,1990,BAAS,22,1221 8 S.Dhawanetal.:NickelmassinSNeIa WoosleyS.E.,WeaverT.A.,1994,ApJ,423,371 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.