ebook img

A real-space study of random extended defects in solids : application to disordered Stone-Wales defects in graphene PDF

0.33 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A real-space study of random extended defects in solids : application to disordered Stone-Wales defects in graphene

A real-space study of random extended defects in solids : application to disordered Stone-Wales defects in graphene. SumanChowdhurya,SantuBaidyab,DhaniNafdayb,SoumyajyotiHaldard,MukulKabirc,Biplab Sanyald,TanusriSaha-Dasguptab,DebnarayanJanaa,AbhijitMookerjeeb 4 1 aDepartmentofPhysics,UniversityofCalcutta,92AcharyaPrafullaChandraRoad,Kolkata700009,India 0 bDepartmentofCondensedMatterandMaterialsScience,S.N.BoseNationalCentreforBasicSciences,BlockJD,SectorIII,SaltLake, Kolkata700098,India 2 cDepartmentofPhysics,IndianInstituteofScienceEducationandResearch,PuneSaiTrinityBuilding,Pashan,Pune411021,India n dDepartmentofPhysicsandAstronomy,UniversityofUppsala,Uppsala,Sweden a J 9 ] i Abstract c s Weproposehereafirst-principles,parameterfree,realspacemethodforthestudyofdisorderedextendeddefects - l in solids. We shall illustrate the power of the technique with an application to graphene sheets with randomly r t placedStone-Walesdefectsandshallexaminethe signatureof suchrandomdefectsonthe densityofstates as a m functionof their concentration. The techniqueis generalenoughto be appliedto a whole class of systems with . latticetranslationalsymmetrybrokennotonlylocallybutbyextendeddefectsanddefectclusters. Therealspace t a approachwillallowustodistinguishsignaturesofspecificdefectsanddefectclusters. m Keywords: Extendeddisordereddefects,realspacerecursionmethod - d PACS:73.22.Pr;63.22.Rc;61.72.-y;46.35.+z n o c [ 1. Introduction 2 Theeffectofrandomdefectsonthepropertiesofsolidsisanimportantareainthestudyofmaterials. Defects v areubiquitousin solids[1]. Eitherformednaturallyduringtheirpreparationorartificiallyengineered,theymay 0 9 profoundlyaffect their physicalproperties. Chemical reactions, phase transitionsor plastic deformationsduring 2 theformativestagemayleavetheirimprintsasdefects. Thesedefectsmaybelocal,likevacancies[2,3],substi- 0 tutionalimpurities[4] oradatoms[5]. Defectscanalso beextended,likedislocations,stackingfaults, twinsand . 1 grainboundaries. ExtendeddefectshavebeenvisualizedbySTM images[6]. Itis importantthereforeto setup 0 a first-principles,essentially parameterfree,theoreticalmethodologyforthe signatureofrandomdefects, andto 4 distinguish,in particular,the roleofdisorder. Localrandomdefectshasbeenthoroughlystudiedusingsophisti- 1 catedmean-fieldapproacheslike theitinerantcoherentpotentialapproximation(ICPA)[7], thetravellingcluster : v approximation(TCA)[8],bothderivedfromtheparentformalism: theaugmentedspaceformalism(ASF)[9,10]. i X However,mostoftheworkonextendeddefectshaveinvolvedsuper-cellmethods.Theseworkslookatessentially periodicarraysofdefectswithdisorderstretchingonlyoverthefinitesuper-cell[11–13]. Longrangeddisorderis r a notaccessibletothesereciprocalspacebasedmethods. Noneofthesupercellmethodscanaccuratelycapturethe disorderinducedsmearingofthedensityofstatesduetotheself-energyarisingoutofscatteringofBlochwaves by configurationfluctuations. This ‘life-time’effect is experimentallyaccessible throughneutronscatteringand hasbeenfoundtobestronglydependentbothontheenergyEandthewave-vector~k. Inthisworkweshallpropose afullyrealspacetechnique,wherethestructureandHamiltonianoftherelaxeddefectedlattice goesasaninput intoarecursivealgorithmwhichgivesustheelectronicstructurecarryingthesignaturesofdisorder.Althoughthe PreprintsubmittedtoPhysicaE January10,2014 applicationwillbetoaspecificproblem,themethodisgeneralenoughtobeappliedinanysolidcarryingrandom extendeddefects. Electronicstructureoflow-dimensionalsolidswithextendeddefectshavebeenaddressedearlier[11–13]. Let usquoteShirodkarandWaghmare[13]: “Ourwork,alongwithotherwork[11,12]hasinvolvedaperiodicarrayofSWdefects,whereasSW defectsarerandomlydistributedinarealsample.” Theauthorsgoontoremarkthatalthoughthisdisordermaynotaffectthevibrationalspectrumsignificantly,the electronic structure obtained from a periodic array of SW defects needs to be interpreted with care. Our real space recursion approach [42] makes no appeal to lattice translational symmetry and is thus ideal for studying topologicaldisorderand its effecton electronicstructure. The illustrationof this pointis the justification of our proposedmethodologyandthemainfocusofthiscommunication. 2. Therealspacerecursivealgorithm Early in the seventies Heine and co-workersintroduced [41, 42] the recursion method based on a fully real spacetechniqueto dealwithlattices withoutanytranslationsymmetry. Theessentialinputsarethe geometryof thelatticeandatight-binding,sparseHamiltonian. As anexample,andinview ofourlater applications,letuslookata honeycomblattice andmapitsvertices ontothesetofpositiveintegers. Themappingisnotunique,butnecessarilyone-to-one(Fig.1). Thegeometryof thelatticeisuniquelydescribedbyaconnectivitymatrixC(n,m)whichgivesusthem-thneighbourofthevertex labelled as n. The central panel of Fig.1 shows a model in which up to third neighbouroverlapsare taken into account.Theconnectivitymatrixis: 1 2 3 4 5 6 7 8 9 10 11 12 13 2 9 10 1 3 4 12 11 ... ... 5 8 ...   C(n,m)= 34 ..67....58... 11 131 142 22 1133 ...... ...... 76 190 ......  (1) Thetight-bindingHamiltoniancanbewrittenas: H = ǫ P + t (n−m)T (2) α nα αβ nα,mβ Xn Xα Xn,mXαβ 13 6 3 5 11 2 1 2 1 2 1 2 1 2 1 Ct’’ tC’ 1 2 1 10 a 2 A B 2 7 4 1 2 1 t’ t’ t’ 1 1 2 2 D’ D 2 1 2 8 9 nseecaorensdt nneeaigrh nbeoigrsh b 0o.r5s7 7 aa 1 2 1 1 2 1 1 2 1 12 third near neighbors 1.154a Figure1:(Colouronline)(leftpanel)Themappingoflatticesitesonahoneycomblatticeontoadenumerablesetofpositiveintegers.(center) Thenearest,next-nearestandthirdnearestneighbourvectorsonahoneycomblattice.(rightpanel)LatticedistortionsandchangeinHamiltonian elementsaroundastructuraldefect. 2 Here, PandT areprojectionandtransferoperatorsonthetight-bindingbasislabelledbyn,α,wherenisthe vertexlabelandαallotherpossible degreesoffreedomassociated with it. Similarly,we describea honeycomb latticewithastructuraldefectshownintherightmostpanelofFig.1. Welabelthedistortedsitessaywithalabel γ,thenwheneverα,β,γ,t (n−m) = t(n−m)andotherwiset (n−m) = t′(n−m). αβ αβ With this recursion method, we shall study the representationsof the Green operator or the resolventof the Hamiltonian, G(z)=(zI−H)−1 wherezisacomplexvariable.Mostphysicallymeasurablequantitiesdescribingtheelectronicpropertiesofasolid arerelatedtodifferentmatrixelementsofG(z). Inparticular,thelocal(atomprojected)densityofstates(LDOS) n(E)andthetotaldensitiesofstates(TDOS)n(E): i 1 − lim ℑmG (z) = n(E) πz→E−ı0+ ii i 1 1 − lim ℑmTrG(z) = n(E) (3) πz→E−ı0+ N Where N is the number of atoms in the system. It would be interesting to note that although the super-cell basedmethodscaneasilyaccessboththebandprojectedpartialdensityofstates(PDOS)andthetotaldensityof states(TDOS),itisonlythereal-spacebasedmethodsthatcangiveisasingleatomoranatomicclusterprojected localdensitiesofstates(LDOS). In this basis the representation of the Hamiltonian is a matrix of infinite rank. The solution of the Kohn- ShamequationofanelectroninthissystemcanbesimplifiedenormouslyiftheHamiltonianhaslatticetranslation symmetry. InthatcasetheBlochtheoremintroducesthequantumlabel~kandreducestheeffectivelyinfiniterank matrix representationof the Hamiltonianto a manageablefinite rank equalto the numberof bands(in this case two).Consequently,crystallinesystemsarealwaysstudiedinthisBlochrepresentation.Butindisorderedsystems, particularlywherethedisorderisatopologicaldistortionofthelatticeandthesedefectsaredistributedrandomly throughoutit,suchperiodicityisabsentandthereciprocalspacerepresentationisnolongerstrictlyvalid. Insuch situationsweneedtolookforreal-spacebasedtechniques. Calculation of the resolvent requires inversion of a matrix of infinite rank. Haydock et.al. [41] proposed a techniquetodoso. Westartfromasuitablevertexat|1i. Itessentiallyinvolvesgenerationofanewbasisthrough athreetermrecurrencerelation: ‘ |1} = |nαi |2} = (H−α )|1} 1 |n+1} = (H−α )|n}−β2 |n−1} (4) n n+1 {n|H|n} {n|n} α = and β2 = (5) n {n|n} n {n−1|n−1} Haydocket.al.[41]showedthatthematrixelementoftheresolventmaybewrittenasacontinuedfraction. 3 1 hnα|G(z)|nαi = {1|G(z)|1}= β2 z−α − 2 1 β2 z−α − 3 2 β2 z−α − 4 3 ...z−α −β2T(z) N N (6) Rightatthestartweemphasizedthatwehavechosenarealspacealgorithmovermean-fieldandsupercellap- proaches,becausewedonotwishtointroduceartificialperiodicityandconfinerandomnessoverafinitevolume. But the problem with any numericalcalculation is that we can deal with only a finite number of operations. In therecursionalgorithm,we cangoupto afinitenumberofstepsleadingtoexactlywhatwewishtoavoid. The analysisoftheasymptoticpartofthecontinuedfractionthenisofprimeinteresttous. Thisisthe“termination” procedureinwhichtheasymptoticbehaviourisassessedfromthewaythecoefficients{α ,β }behaveasn → ∞. n n Different terminators have been discussed in detail by Haydock and Nex [50], Luchini and Nex [51], Beer and Pettifor[52]andinconsiderabledepthbyViswanathandMuller[53]. Theterminatorwhichdescribestheasymp- toticallyfarenvironmentmustsatisfycertainbasicproperties:Thisterminationprocessisadelicatemathematical approximation. We wouldlike tomaintainthe Herglotzanalyticpropertiesof theresolventaftertermination. A functionT(z)iscalledHerglotzif: (i) AllsingularitiesofT(z)lieontherealz-axis. (ii) SingularitiesofT(z)formaboundedset. (iii) ImT(z)≥0ifImz<0;ImT(z)≤0ifImz>0. (iv) ReT(z)→0asRez→ ±∞ Thenextstepistoanalyzeourresolventtolocatesingularitiesonitscompactspectrum.Majorityofresolvents with bounded spectra have singularities at the band edges. The termination of continued fractions describing spectraldensitieswithcompactsupportandsingularitiesexceptatthebandedgeshavebeendescribedindetailin earlierworks[50–53]. Thebestillustrationofthistechniqueistoapplyittoaninterestingmaterialwherealternativemethodsalways leadstoproblemsofonesortoranother.WehavechosentostudygraphenewithrandomStone-Walesdefects. 3. TherelaxedgraphenelatticewithrandomStone-Walesdefects. Inthiswork,weshallbeinterestedinintrinsicextendedstructuraldefectslikeStone-Wales(SW)defects[14] ingraphene.Thestudyofgraphene,thetwo-dimensionalallotropeofCarbonisanareaofintenseinteresttoboth theoreticalandexperimentalresearchersforvariousreasons.Thefirstisthepossibletechnologicalapplicationsof graphene[15–19]. Second,grapheneseemstodefythetheoremofMerminandWagner[20]andformastabletwo- dimensionalstructure. Finally, the electrons in graphene behave like massless charged particles, something not encounteredinourthreedimensionalworld[21]. Therehasevenbeenfancifulapplicationsofgeneralrelativistic ideasingraphene. TheSWdefectsareformedby90◦ rotationofaC-Cbond. Aftersucharotation,subsequent re-bondingleadstotheformationoftwopentagonalandtwoheptagonalcarbonrings. ThisisillustratedinFig.2. These defects are responsible not only for bringing about fractures and embrittlement [22, 24–26], but also for alteringthechemicalreactivityandtransportproperties[27–29]andforcausingtheripplingbehaviorofgraphene sheets [30]. SW defects can lead to out-of-planedisplacementof carbon atoms in graphene[31–34] and induce 4 Figure2:(Colouronline)SWdefectformationduetoaπ/2rotationofaC-Cbond curvature[35]. Recently, based on these three-dimensionalrippleson the graphenesheets with SW defects, the assumptionthatSWdefectsareperfecttwodimensionalhasbeenquestioned[27,28,36–40]. For setting up the lattice model, we have started with a flat graphene sheet cluster, containing 3200 atoms. Different concentrations of Stone-Wales defects were then created by randomly choosing bonds on the lattice, rotatingbyπ/2andrebondingasshowninFig. 2. Thefirststepofrelaxationsalllayonthegraphenesheetand involved mainly on-plane relaxation of the C-atoms. The left panel in Fig.3 shows a vertical SW defect in the unrelaxedlatticewhiletherightpanelshowstheeffectofrelaxationonthedefect. Latticerelaxationwascarriedoutusingthedensityfunctionaltightbindingmethodasimplementedinasparse- matrix based DFTB+ code [43]. In this method, a first-principlesformof density functionalis used and hence, largesystemscouldbehandledwithreasonableaccuracy.Wehaveusedtheconjugategradientmethodtorelaxthe internalcoordinateswith 10−2 eV/Aforceconvergenceforthe ionicrelaxationand10−4 eV energyconvergence fortheelectronicrelaxation. GeometryoptimizationsweredoneusingcalculationsattheΓpointintheBrilluoin zone(BZ).TheFermismearingmethodhasbeenusedwithanelectrontemperatureof100K. ThisrelaxationfirstcausestherotatedC-Cbondlengthtocompressto1.32Afromitsunrelaxedvalueof1.44A. Asaconsequenceofthisshorteningofbondlength,thebondangleattheapexofthepentagoncompressesfrom 140degreeto115degree,whichis 18.5%. Becauseoftheselargechangesthesystemexperiencesacompressive stressalongthedirectionofunrotatedC-Cbonds,andtensilestressalongtherotatedC-Cbond.Thegraphenesheet thenreducesthisinplanestressbybucklinginthez-direction,forminganon-planar,rippledstructure.Onstructure relaxationthesystemenergyislowered. Once the in-plane relaxation was completed we went a step further and relaxed the lattice in full three di- mensions,allowingmovementofatomsperpendiculartotheoriginalgrapheneplane. ThetopleftpanelofFig. 4 showstheripplingofthegraphenesheetonasingleSWdefect.Theotherthreepanelsshowripplinginasheetwith higherconcentrationsofSW-defect. Fulllatticerelaxationisthusextremelyimportantforthestructuralchanges 1.43 1.32 140 140 115 115 Figure3:(Left)AverticalSWdefectintheunrelaxedlattice(Right)Thesamedefectafterplanarrelaxation. 5 Figure4:(Top,Left)RipplingofthegraphenelatticeonasingleSWdefect.(Top,RightandBottom)Ripplingofagraphenesheetwithvarying concentrationsofSW-defects. onrelaxationmayhaveveryimportanteffectontheelectronicstructureofthe materials. We shalldealwith the effectsofstructuralchangeswithHarrisonscaling[45,46]. 4. FirstPrinciplesderivationoftheHamiltonian. OncewehaveconstructedtherelaxedgraphenesheetswithSWdefects,thenextstepistoobtainaHamiltonian forthebandduetotheπ-bonded p electronsfromfirst-principles,asfarfreefromfittedparametersaspossible. z Thecalculationsbeginwithaself-consistentgroundstatecalculationforthesinglelayergrapheneusingthetight- binding, linear muffin-tin orbitals (TBLMTO) method within the atomic sphere approximation. Three empty spheres were needed to achieve space filling. The muffin tin radii used for carbon (C) and the empty spheres were1.56a.u. and2.76a.u. respectively. Theminimalbasissetfortheself-consistentcalculationconsistedofC s,p ,p ,p andemptyspheresstates. Fig.4leftpanelshowsthefullTB-LMTObands. x y z Theactiveorbitalswererecognizedasthe p . Theremainingdegreesoffreedomwereintegratedout[44,47] z usinga downfoldingprocedure. Formally,we partitiontheHilbertspaceH inwhichtheHamiltonianisdefined Figure5: (Colouronline)(Leftpanel)TheTB-LMTObands forpristinegraphene (Rightpanel) TheNMTOdown-folded bandsduetoπ bondingbetweenthepzstates. 6 (eV) ε t t t 1 2 3 -0.291 -2.544 1.668 -1.586 Table1:Tight-bindingparametersgeneratedbyNMTO. intoonewhichisspannedbytheactiveorbitalsH andtherest,whichweshallcallthe‘bath’: H =H ⊗H act act B sothat H H′ H = act H′ HB ! ThepartitionordownfoldingtheoremgivestheeffectiveHamiltonianinthesubspaceH : act H = H +H′†G (ε )H′ eff act B n G iscalculatedbyinverting(ε I−H )inthebathsubspaceH . Forthepresentstudy,onlytheC-p orbitals B n B B z werekeptactive.AllothersincludingC-s,p ,p andemptyspheres-orbitalsweredownfolded.Theintegratedout x y orbitalsrenormalizedtheactiveC-p orbital. TherenormalizedC-p NMTOswereconstructedusingfourenergy z z meshpointsε -ε whichgives3rdordermuffintinorbitals.TheenergymeshusedfortheconstructionofNMTOs 0 3 were chosen to be in the energy window spanning the C-p bands. The minimal set of C-p NMTOs serve the z z purposeofeffectivelocalizedC-p Wannierfunctions. z (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) miltonian element (eV)----21100.....05050 t2 t3 t4 t5 t6 t7 Ha -2.5 t1 -3.00.5 1.0 1.5 2.0 Distance (units of a) Figure6:(Colouronline)(Left)pzorbitalsperpendiculartothegrapheneplane.(Right)Hamiltonianparameters TheeffectiveC-p -C-p hoppinginteraction:t(R,R′),connectingC-p NMTO-sχ(R)centeredatthesiteRto z z z theneighbouringC-p NMTOχ(R′)centeredattheR′,wereobtainedbyFouriertransformationofthelowenergy z C-p HamiltonianH (~k)[47,48]. TheseareshowninFig.6andTable1. z pz The downfolded bands are shown on the top right panel of Fig.5. The corresponding t(R) is shown in the bottomrightpanelofFig.5andTable1. Pleasenotethattheoverlapisreasonablylongranged. Thussomeofthe earliercalculationswithasimplenearestneighbouroverlap(Reichet.al.[49])maynotshowtheaccuratepicture. Longerrangedoverlapmodelshavealsobeenattempted. However,allofthemarefittingprocedurestothesingle C-p bands. Our procedure of getting the bands from first-principles DFT calculations and then systematically z down-foldingawaythenon-activebandsisbothphysicallymoreappealingandmathematicallymorerigorous. 5. TheTerminator HavingobtainedtheonebandHamiltonian(arisingfromtheπbonded p orbitals),wecarryouttherecursion z algorithm up to a finite number of steps. As discussed earlier, from the asymptotic behaviour of the recursion 7 coefficientsweestimatetheterminator. Weanalyzeourresolventtolocatesingularitiesonitscompactspectrum. Majority of resolventswith boundedspectra have singularities at the band edges. The terminationof continued fractionsdescribingspectraldensitieswith compactsupportandsingularitieson ithave beendescribedin detail inearlierworks[50–53]. Forgraphene,weexpecttheπbandstohaveaspectraldensitywhichhasanadditional singularityattheDiracpoint. TerminatorsappropriatetosuchproblemshavebeendiscussedbyMagnus[54]and ViswanathandMu¨ller[53]. Theyproposeaterminatoroftheform: 2π(E )(α+2β+1)/2) T(z)= m |z−E |α{(z−E )(E −z)}β (7) 0 1 2 B α+1,1+β 2 (cid:16) (cid:17) 25 0.2 20 0.18 2βn 0.16 15 -1V)0.14 100 2 4 6 8 10 n 12 14 16 18 20 States (e0.01.21 T(E) in scaled units Density of 0000....00002468 0-8 -6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2Ene0rgy (eV2) 4 6 8 Energy (eV) Figure7: (Left,Top)Theterminatorwithaninternalsingularityappropriateforgraphene. (Left,bottom)Asymptoticpartsofthecalculated pristinegrapheneGreenfunctioncontinuedfractioncoefficientsobtainedbyrecursion. (Right)TheTDOSofpristinegraphenetakingupto thirdnearestneighbouroverlaps. Inourproblem,E istheDiracpointandE ,E arethespectralbounds,E2 =E E ,α = β = 1. 0 1 2 m 1 2 Magnus[54]hascitedaclosedformforthecontinuedfractioncoefficientsoftheterminator: 4E2n(n+1) E2(2n+2)(2n+4) β2 = m β2 = m (8) 2n (4n+2)(4n+4) 2n+1 (4n+4)(4n+6) Theparametersoftheterminatorareestimatedfromtheasymptoticpartofthecontinuedfractioncoefficients calculatedforourproblem.ThetopleftpanelinFig.7showsthecontinuedfractioncoefficientsfortheViswanath- Mullerterminatorshowninthebottomleftpanelofthisfigure.Thecalculatedcontinuedfractioncoefficientsfrom recursionareshownintherightpanel. Theparametersoftheterminatorcoefficientsarefittedfromtheseresults. The resultant density of states is shown in the right panel of Fig.7. Unlike the usual nearest neighbour models the density is not symmetric round the Dirac point. If we write the Green function as contributions from non- intersectingpaths(basedonFeenbergperturbation[51])theninthenearestneighbourmodelallnon-intersecting pathsareofevenlengthandall{α }isaconstant,leadingtoasymmetricdensity. Assoonasweintroducelonger n rangedt,oddlengthnon-intersectingpathsappear.Thenα varywithnandthedensitybecomesnon-symmetric. n 6. ResultsandDiscussion. SincetheaxisoftheSWdefectsarealongthebondwhichisrotatedinitsformation,wenotethatthedefects areeither verticalor atangles60o tiltedto the leftandrightofthe vertical. Closeupsoftwo suchisolated tilted defectsareshownonthetoprowofFig.8. We alsoshowadoubledefectonetiltedtotheleftandanothertothe rightsharinga commonhexagon. In the sampleswith higherconcentrationsof defectswe also have clustersof connecteddefects. TwosuchexamplesofdefectclustersareshowninthebottomrowofFig.8. 8 Inordertoanalyzethesignatureofindividualdefectswefirstshowthetotaldensityofstatesforseveraldefect concentrationsThisisshowninthetoppanelsofFig.9. Wenotethattheoccupiedpartofthespectrumbelowthe Diracpointshowverylittle change. Theisolateddefectsshowadefectstatearound1eVabovetheDiracpoint. For the double defect this structure widens. There is also a defect induced signature around 3-4 eV above the Diracpoint.ThesesignatureswerealsoobservedbyShirodkarandWaghmare[13](comparewiththeirFig. 5).Of course,inourrealspacepicturethereisnoconceptofdefect‘bands’,butthespectralsignaturesareverysimilar. Thesupercellapproachesindicatethelocaldefectlevelsareverysimilartoourrealspaceapproach. However it has been known that the effect of the far disordered environmentleads to a ’self-energy’ [1], the real part of whichshiftsthedefectlevelsandtheimaginarypartcausesthemtowiden.Inourcontinuedfractionapproachthe terminatorplaystheroleoftheself-energy. Asaresultweclearlyseethewideningofthedefectstructureswith increasingdisorder. Noperiodicsupercelltechniquecangivethisdisorderbroadeningwithaccuracy. Oneadded advantageofthe realspaceapproachisthatwe canfocusofthe atomorclusterprojectedlocaldensityofstates andassigndifferentsignaturesinthespectrumtoparticularisolateddefectsordefectclusters. We proposethattherealspacerecursionmethodisapowerfultechniqueforthestudyofextendeddefectsin disorderedsolids. OurapplicationtorandomStone-Wellsdefectsingraphenejustifiesourproposal. Acknowledgements SCwouldliketothankDST,IndiaforfinancialsupportthroughtheInspireFellowship. Thisworkwasdone undertheHYDRAcollaborationbetweenourinstitutes. References [1] J.Ziman,ModelsofDisorder:TheTheoreticalPhysicsofHomogeneouslyDisorderedSystems, (Cambridge University Press,UK) (1979) [2] M.H.Gass,U.Bangert,A.L.Bleloch,P.NairandA.K.Geim,NatureNanotechnology5(2008)676 [3] J.C.Meyer,C.Kisielowski,R.Erni,M.D.Rosell,M.F.CrommieandA.Zettl,NanoLetters8(2008)11 [4] Y.Gan,L.SunandF.Banhart,Small4(2008)587 Figure8:(Toppanel)Singleandconnecteddoubledefectssharingahexagon. (Bottom)Connectedclustersofdefectsinsystemswithhigher defectconcentrations. 9 0.15 0.15 0.77% 1.44% 0.10 0.10 0.05 0.05 1) -V0.00 0.00 e -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 S (0.15 0.15 O 1.62% 2.32% D T 000...001050-3 -2 -1 0 1 2 3 000...001050-3 -2 -1 0 1 2 3 Figure9: (Colouronline)(Top)ThetotaldensityofstatesnearEF forfourdifferentSWdefectconcentrations. (Bottom,left)Thesupercell resultsofShirodkarandWaghmare. [5] J.C.Meyer,C.O.Girit,M.F.CrommieandA.Zettl,NatureLondon454(2008)319 [6] G.Y.Guo,B.C.PanandL.Shi,PhysicalReviewB76(2007)155414 [7] S.Ghosh,P.L.LeathandM.H.Cohen,PhysicalReviewB66(2002)214206 [8] R.MillsandP.Ratanavararaksa,PhysicalReviewB18(1978)5291 [9] A.Mookerjee,JournalofPhysicsC:SolidStatePhysics6(1973)L205 [10] I.Dasgupta,T.SahaandA.Mookerjee,PhysicalReviewB51(1995)3413 [11] X.PengandR.Ahuja,NanoLetters8(2008)4464 [12] V.N.Popov,L.HenrardandP.Lambin,Carbon47(2009)2448 [13] S.N.ShirodkarandU.Waghmare,PhysicalReviewB86(2012)165401 [14] A.J.StoneandD.J.Wales,ChemicalPhysicsLetters128(1996)501 [15] A.H.CastroNeto,F.GuineaandN.M.R.Peres,PhysicalReviewB73(2006)205408 [16] A.H.CastroNeto,F.GuineaandN.M.R.Peres,PhysicsWorld19:11(2006)33 [17] A.K.GeimandK.S.Novoselov,NatureMaterials6(2007)183 [18] K.S.Novoselov,A.K.Geim,S.V.Morosov,D.Jiang,M.I.Katsnelson,I.V.Grigorieva,S.V.DubunosandA.A.Firsov,NatureLondon 438(2005)197 [19] Y.Zhang,T.Yan-wen,L.S.HorstandP.Kim,NatureLondon438(2005)201 [20] N.D.Mermin,PhysicalReviewB176(1965)250 [21] J-NFuchsandM.O.Goerbig,IntroductiontothePhysicalPropertiesofGraphene,chapter2(2008) [22] B.R.Eggen,M.I.Heggie,G.Jungnickel,C.D.Latham,R.JonesandP.R.Briddon,Science272(1996)87 [23] C.P.Ewels,M.I.HeggieandP.R.Briddon,ChemicalPhysicsLetters351(2002)178 [24] M.B.Nardelli,B.I.YakobsonandJ.Bernholc,PhysicalReviewLetters81(1998)4656 [25] M.B.Nardelli,B.I.YakobsonandJ.Bernholc,PhysicalReviewB57(1998)R4277 [26] G.G.SamsonidzeandB.I.Yakobson,PhysicalReviewLetters88(2002)065501 [27] J.Kang,J.Bang,K.RyuandK.J.Chang,PhysicalReviewB77(2008)115453 [28] J.CarlssonandM,Scheffler,PhysicalReviewLetters96(2006)046806 [29] D.W.BoukhvalovandM.I.Katsnelson,NanoLettres8(2008)4373 [30] I.Zsoldos,Nanotechnology3(2010)101 [31] S.BhowmikandU.V.Waghmare,PhysicalReviewB81(2010)155416 [32] E.J.Duplock,M.SchaefflerandP.J.D.Lindan,PhysicalReviewLetters92(2004)225502 [33] F.OuYang,B.Huang,Z.Li,J.Xiao,H.WangandH.Xu,JournalofPhysicalChemistryC12003(2008) [34] Y.Zhao,R.E.SmalleyandB.I.Yakobsen,PhysicalReviewB66(2002)195409 [35] H.TerronesandA.L.MacKay,Carbon30(1992)1251 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.