JournalofChromatographyA,1410(2015)51–59 ContentslistsavailableatScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic (cid:2) cigarette smokers EstherMarco,JoanO.Grimalt∗ InstituteofEnvironmentalAssessmentandWaterResearch(IDÆA),SpanishCouncilforScientificResearch(CSIC),JordiGirona,18,08034Barcelona, Catalonia,Spain a r t i c l e i n f o a b s t r a c t Articlehistory: Amethodfortherapidanalysisofvolatileorganiccompounds(VOCs)insmokefromtobaccoandelec- Receiv ed15March2015 tr onicciga ret tes andin exhaled b reathof userso fthesesmo kingsy ste mshas been develo ped. Both AReccceepivteedd i2n6 r Jeuvliyse2d0 1fo5rm 23 July 2015 dispos able and re char ge able e-cig arettes w ere co nsi dered. Smoke o r breath w ere colle cted in Bio-V OCs. VOCswerethendesorbedinTenaxcartridgeswhichweresubsequentlyanalyzedbythermaldesorption Availableonline29July2015 coupledtogaschromatography–massspectrometry.Themethodprovidesconsistentresultswhencom- paringtheVOCcompositionsfromcigarettesmokeandtheequivalentexhaledbreathofthesmokers. Keywords: Thedifferencesincompositionofthesetwosampletypesareusefultoascertainwhichcompoundsare Volatileorganiccompounds retainedintherespiratorysystemaftertobaccocigaretteore-cigarettesmoking. Thermaldesorption EElxehcatrleodni bcr ceiagtahrettes breSatrtohnwg hdeifnfecroemncpeasr winegrew iotbhsethrvoesde oinf eth-cei gVaOreCt tceomsmpooksiitnigo.nT ohfe tfoobramcceor icnigvaorlevtetde tsrmanoskfee rasnodf eaxmhaulechd Tobacco largerb urden oforganic comp ounds in tosmokers, including ben zene,to luene,na phthalene an d other Nicotine pollutantsofgeneralconcern.e-Cigarettesledtostrongabsorptionsofpropyleneglycolandglycerinin theusersofthesesystems.Tobaccocigaretteswerealsothoseshowinghighestconcentrationdifferences betweennicotineconcentrationsinsmokeandexhaledbreath.Theresultsfromdisposablee-cigarettes wereverysimilartothosefromrechargeablee-cigarettes. ©2015ElsevierB.V.Allrightsreserved. 1. Introduction frome-cigarettesmokershavebeendevelopedusingsolidphase microextractioninsideabreathcollectiondevice[5]orexposure Electroniccigarettes(e-cigarettes)aredesignedtotransfermix- chamberswhicharesubsequentlysampledbyabsorptionintosolid tures of air and vapors into the respiratory system [1–3]. They phasesorptiontubes.Thesetubesarethenanalyzedbydesorption useplasticormetalcylindersthatcontainelectronicvaporization intogaschromatographycoupledtomassspectrometry(GC–MS) systems, a battery, in some cases, a charger, electronic controls [6].Inothercases,theabsorptioncartridgehasbeeninstalledat and,optionally,replaceablecartridges.Differenthumectants,e.g. theoutletofasmokingmachineandtheretainedcompoundsare propyleneglycolorglycerin,flavoringsandnicotineatvariouscon- elutedwithCS andmethanolforsubsequentanalysisbyGC–MS 2 centrationsaregenerallycontainedinthecartridges.Theycanbe [7]. disposable(Type1e-cigarette)orrechargeable(Type2e-cigarette). In the present study, we describe a simplified method using Concern has been raised for the compounds incorporated into aBio-VOCsexhaledairsamplerdevelopedbytheUKHealthand smokersasconsequenceofe-cigarettevaping. Safety Laboratory (Markes International Ltd, Llantrisant, UK) for Exhaledbreath,namelythealveolarbreath[4],mayprovidesig- the comparison of the smoke generated by Type 1 and Type 2 nificant clues on the compounds that are retained in humans as e-cigarettes,tobaccocigarettesandtheexhaledbreathaftervap- consequence of this activity. Studies on VOCs in exhaled breath ingorsmoking.Thisdevicehasbeenusedintheanalysisofboth exhaled alveolar air and mouth air [8–15]. Now, we are using BIO-VOCs for a rapid method of characterization of the volatile organicconstituentsintobaccocigarettesande-cigarettes.Blend (cid:2)PresentedattheXIVScientificMeetingoftheSpanishSocietyofChromatography typeAm ericantobacc oc igarette swithfilter s(le ngth83mm, length andRelatedTechniques,1–3October2014,Barcelona,Spain. ∗ of filter 23mm, diameter 8mm) were used as test examples. Correspondingauthor.Tel.:+34934006118;fax:+34932045904. E-mailaddress: joan.gr imalt @ida ea.csic.es(J.O .Gr ima lt). Cigaretteswithlownicotinecontent(0.6mg),lowtar(8mg)and http://dx.doi.org/10.1016/j.chroma.2015.07.094 0021-9673/©2015ElsevierB.V.Allrightsreserved. 52 E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 low carbon monoxide (9mg) were chosen. The compounds ana- operatedatacarrierheliumflowof28.5mL/minandanoutletsplit lyzedinthepresentstudyweremostlyinthegasphase.Theresults flowof27mL/min.Totalsplitratiowas95:1. addtothecurrentknowledgeofexposureofsmokerstoorganic compoundsthatsofarhavebeenmostlycharacterizedinparticu- 2.4. GC–MSoperationalconditions latephasetransferprocesses[16–23]. The transfer line introduced the compounds into a Gas Chro- 2. Experimental matograph 7890 (GC; Agilent Technologies Inc., Santa Clara, CA) coupledtoaMassSpectrometer5975CInertXLMSD.TheGCwas 2.1. Samplingcartridges equippedwithaDB-5MSUIcapillarycolumn(length60m;internal diameter 0.32m m;filmt hic kness1(cid:2) m;Agile ntJ&W GC Co lumns). Volatile organic compounds were concentrated by sorption Helium(5Ngrade)wasthecarriergasataflowof1.5ml/min(con- intostainlesssteelsorbentcartridges(89mmlong0.64cmouter stant flow mode). The GC oven temperature program started at diameter) packed with 200 mg of Tenax TA 35/60 mesh (Markes 40◦C (hold ingtime 10m in )then itincreasedt o150◦Ca t5◦C/m in caInontndedrtnihtaeiotninoaentda3 lu3 Ls5tidn◦C,g P fhooenrlt3iuy0cmmlu (in5n,N .UI nKgrl)aa. tTdeher;ec 1so0on0rdb mietinlo/tmn cianinrgt)r caiydtc g3lee2ss0 tw◦hCee rsfeoe rpc r2aer h-- andA t otr 2a1n0sf◦eCr a litn 1e5 h◦ Cea/mt eidn t(ofi n2a8l0 h ◦oC ld cinargr iteimd et h1e0 cmoimn)p.o un ds from tridg es w er e recon dit ion ed at 33 5◦C for 20 min wi th the same fl ow t2h3e0 G◦CC aton dth1e5 M0◦SC. ,Trhees pMeSc tsiovuelryc.eT ahnedM qSuaodpreuraptoeld teinmepleecratrtounreism wpearcet carrier gas. Once cleaned, the cartridges were sealed with brass mode.Thedetectorwasfullscannedbetween30and380amu. SwagelockstorageendcapsfittedwithPTFEferrulesandstoredin solvent-freecleanenvironments. 2.5. Compoundidentificationandquantification 2.2. Sampling VOCswereidentifiedbasedonretentiontimesandlibraryiden- Exhaled breath was sampled with a Bio-VOC system 30min tification ofth emasssp ectrum fr omeach chrom atog raphic peak aftertobacc ocigare tteo re-cigare ttesm o king.Toa voidme tab olic (NIST200 9,M as sSpec tralSearch Prog ram, version2.0f).Qua ntifi- differ encesal lvolunte ers wereaske dtosmok ew ithth etobacco cationwas perfor medbyt heexte rnalstand ardmet hod. cigarettesa nd Type1and 2e-c igarett es conside redi nth isstudy. Cal ibrat ion curves en com passed n ine calib ration solutions in Peopleins pire dand ex pire d deeplythree times,then re tain edthe methanol (Me rck KG aA, Darmstadt , Ger many) at d ifferent co n- breath for20san dbl ewintot heBio- VOCb odythr ough adisposa ble centration in the range between 0.5 and 200(cid:2) g/ ml. They were cardbo ard m o uthp iecea tth eirh ighestc apaci ty.Thea ir remaining preparedfr om com merc ialsolutio ns:U STM odifi edGas olineR ange intheBio- VOCwastran sf erred intothe sorbentc artr idg ebypush- Organics (1000 (cid:2)g/ml in m ethanol; Sup elco, Inc. Bellefont e, PA, in gas crew-in plun gerthrough the Bio- VOCbo dy.Thisp roc edure USA), FIA Paraffi n Stan da rd (Accusta ndard In c., N ew Haven, CT), was r epeatedfi vetimes ineach smo kingtest anda llexh aledVOCs and th e in dividua l standard s: 2-methylbut ane, 1-pen tene, c is-2- were accumu lated inth e same cartridge .Th us,a to talvolum eof pen tene , trans-2-p entene and 4-methyl-1-pent ene, all gra de GC 750m Lofexhaled bre ath wasco llected. Standard (Sigma-AldrichC o.,St .Louis,Mo). T oba cc ocigaret teand e-cig arettesmokeweresampledbycon- ACali brationSolution Loa din gRin g(CSLRTM,MarkesInterna- necting the mouth o utle ts to the B io-VOC outl et. The s cre w-in tiona lLtd.,Llant risant,UK )wasus edto introduc etheca libration plunger was usedto pullsmo ke into theBio-V OCcylin der. Then,the solutio n in to clean sor bent cart ridge s w hich allow ed controlled tobacco ciga rette or e-c igarette sw ere removed andthe cartri dge vaporiza tion and p urging of the sol vent (c arrier g as flow at wascon nectedto th eBio-VOCou tleta ndthescr ew- inp lugerwas 50ml/min du ring 3min). T he diffe rent sta ndard so lutio ns w ere used topushth es mo kepresen tinth eBi o-VO Cintoth ecartr idge dir ectlyin troduce d intot heca rtridgesw hichwer esubsequ ently whic hs orbed the VOCsfr omthes am ple .Thesam pled vol umewith analyzed intheTD- GC–M S.T hisallowe dthed eterm inationoflin- thispr ocedure wa s150 mL. earconce nt ratio nrangesan dlim itsofde tect ion.Recoveries w ere I ndoor amb ient air was also sampled for comparison using det erminedbyintr oductio nof standa rd solutionsi ntotheBio- VOCs thisdevice .Thepro ced urew asth esamea sth atusedforto bacco heated at 5 0◦C . Repetitivit y was also determin ed b y s equential ciga rette an d e- cigarette s mok e bu t wit ho ut co nnec ting any of analysi so fstand ardsintrodu cedin toth eBio-VOCs. thosedev ices tothesorb entcart ridge .Inthis casethepro cedu re wasrepeatedfourtimesandatotalvolumeof600mLwascollected. 3. Resultsanddiscussion 2.3. TransferoftheVOCintotheGC–MS 3.1. Exhaledbreathandairconcentrations VOCstrappedinthesorbentcartridgesweretransferredwith helium (5N grade; no inlet split flow) to a thermal desorption The gas chromatograms corresponding to indoor air from a (TD)instrumentequippedwithaUnitySeries2ThermalDesorber building of Barcelona and exhaled breath of volunteers present andanUltra50:50Multi-tubeAuto-sampler(MarkesInternational in this indoor environment without smoking are compared in Ltd) .Th ecom poun dswerede sorbedfromth ecartrid gesat300◦C Fig . 1. Compou nd identificat ion is re ported in Tab le 1. Aceto ne for 5min (desorption flow 40mL/min) and re-concentrated in a andisoprenewerethemaincompoundsinexhaledbreath.These graphitized carbon sorbent cold trap (U-T11GPC-2S for General are two endogenous compounds usually present in this type of Purpose;Ma rkesInt ernation alLtd )coo ledat−20◦C.T hisc oldtrap sam ple. Bothchroma togramsalso hadsom ecomm on pea kssu ch was heat ed to 30 0◦C over 5m in w hile p ass ing a h elium flow of asbenze ne,t oluene,styrene, benz alde hyde, (cid:3)-limonen e,dec anal, 7.5ml/min(splitflow6ml/min)forVOCtransfertoanuncoatedand nonanoicacid,andasiloxaneseries.Benzeneandtoluenemaycon- deactivatedfused-silicacapillarytransferlineof1mlength(inter- stitutetraceamountsofvehicularexhaustinthearea.Thesiloxane nalandouterdiameters0.25and0.35mm,respectively)heatedat seriesmayrepresentsomebackgroundinputoftheanalyticalsys- 200 ◦C. Totals plitratiow as5 :1. tem. T he o ther com pound s may refle ct a r ela tion ship betw een FortheType2e-cigaretteanalyses,inletsplitflowduringcar- in-dooratmosphericVOCsandexhaledbreathofresidentsinthis tridgedesorptionwas50mL/minanddesorptiontrapconditions environment. E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 53 Table1 Compoundsidentifiedintobaccoandelectroniccigarettes. N RT(min) Compound Nosmoking Tobacco e-cigaretteType1 e-cigaretteType2 Indoorair Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath √ √ √ √ √ √ √ 1 3.768 Sulfur – dioxide + difluorodimethylsilane √ 2 4.098 Butene isomer – – – √ – – – – 3 4.164 Buta-1,3-diene – – – √ – – – – 4 4.259 Butene isomer – – – √ – – – – 5 4.387 Butene isomer –√ –√ – √ – –√ – – 6 4.675 Ethanol – √ – – – 7 4.762 Isopropylethylene – – – √ – – – – 8 4.993 Iso-pentane – – – √ – – – – 9 5.100 Penta-1,4-diene –√ –√ –√ √ – –√ – – 10 5.273* Pent-1-ene √ √ √ – √ – –√ 11 5.327 Acetone –√ √ – – 12 5.393* Pent-2-ene –√ – – – – –√ 13 5.409 Isopropanol – –√ –√ – –√ – √ 14 5.413* n-Pentane –√ –√ √ √ – √ √– √ 15 5.677* Isoprene √ √ √ √ – √ 16 5.797* Pent-2-ene √ √ – – – 17 5.912 Iso-pentene – – √ √ – – – – 18 6.118 Pentadiene – – √ – – – – 19 6.176 Methyl acetate – –√ –√ √ – – – – 20 6.456 Pentadiene – √ – – – – 21 6.514 Cyclopenta-1,3-diene – – – – –√ – –√ 22 6.518 Unknown – – – –√ – – 23 7.025 Cyclopentene – – – √ – –√ – –√ 24 7.041 Propan-1-ol – – –√ √ – – 25 7.351 2-Methylpent-2-ene – – √ – – – – 26 7.618 Methacrolein – – √ – – – – 27 7.623 2-Methylpenta-1,4-diene – – – √ – – – – 28 7.932 Propanenitrile – – – √ – – – – 29 7.994 3-Methylpentane –√ –√ – – –√ – –√ 30 8.229 Acetic acid – – – √ – √ 31 8.303 Unknown (m/z = 155) – – – –√ – – 32 8.286 Methyl vinyl ketone – – – √ – – – – 33 8.356 Hex-1-ene – – – √ – – – – 34 8.468 Butane-2,3-dione – – – √ – – – – 35 8.744 Methyl ethyl ketone –√ –√ –√ √ –√ –√ – –√ 36 8.736* n-Hexane √ √ √ – √ 37 9.053 Methylfuran – – √ √ – – 38 9.168 Methylpentene – – √ √ – – – – 39 9.407 Methylpentene –√ –√ – –√ – –√ 40 9.483 Unknown –√ –√ – – 41 9.506 trans-2-Methylpenta-1,3-diene – – √ √ – – – – 42 9.630 Methylfuran – – √ √ – – – – 43 10.005 Methylpent-2-ene isomer – – √– – – – 44 10.018 Dimethyl carbonate – – –√ –√ – – – 45 10.434 Hexadiene – – √ √ – – – – 46 10.562 Isobutyronitrile – – √ – – – – 47 11.118 Hexadiene – – –√ √ – –√ – –√ 48 11.407 Methyl-1,3-cyclopentadiene – – √ √ – √ – √ 49 11.691 Methyl-1,3-cyclopentadiene – – √ √ – – 50 12.111 Methylcyclopentene – – √ √ – – – – 51 12.243 Methylcyclopentene – – √ √ – – – – 52 12.371 Crotonaldehyde – – √ – – – – 53 12.717 Isovaleraldehyde –√ –√ √ √– –√ –√ –√ –√ 54 12.869* Benzene √ 55 12.969 Unknown – – –√ – √ √– – – 56 12.270 2-Methylbutanal – – √ √– – – 57 13.385 Methyl-1,3-cyclopentadiene – – – – – –√ 58 13.496 Branched heptane – – –√ – – – – 59 13.612 Methyl propenyl ketone –√ –√ – – –√ –√ –√ 60 14.317* Isooctane –√ –√ – 61 14.374 Methyl propyl ketone – – √ √ – – – – 62 14.510 Hept-1-ene –√ –√ √ √ – –√ –√ –√ 63 15.017* n-Heptane √ – √ 64 15.046 Allyl methyl sulfide – – –√ – – – 65 15.170 Pentane-2,3-dione – – – √ – – – – 66 15.215 cis-3-Methylhex-2-ene – – –√ – – – – 67 15.252 Unknown – –√ √ √– – –√ – –√ 68 15.524 2,5-Dimethylfuran – √ – – 69 16.687 Vinylfuran – – √ – – – – – 70 16.823 Hepta-1,5-diene – – √ –√ – – – – 71 17.231 3-Methylbutanenitrile – – – –√ – – 72 17.367 (E)-1-(Methylthio)prop-1-ene – – – – – – – 54 E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 Table1(Continued) N RT(min) Compound Nosmoking Tobacco e-cigaretteType1 e-cigaretteType2 Indoorair Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath √ √ 73 (17.5–23.5) Propylene glycol – – –√ –√ – – 74 17.544 Methyl propenyl ketone – – √ √ – – – – 75 17.566 1-Methyl-1H-pyrrole – – √ √ – – – – 76 17.705 1-Methyl-1,4-cyclohexadiene – – √ – – – – 77 18.039 Pyridine – – – √ – – – – 78 18.282 Pyrrole –√ –√ –√ √ – –√ –√ –√ 79 19.263* Toluene √ √ – √ √ 80 20.277 Unknown (m/z = 229, m/z = 73) –√ – – – 81 20.285 Oct-2-ene – – – – – – – 82 20.603 Cyclopentanone –√ –√ –√ –√ – –√ – –√ 83 20.735* n-Octane √ – – 84 20.838 C12H22O –√ –√ √ √– –√ –√ – –√ 85 21.180 Hexamethylcyclotrisiloxane √ – 86 21.555 Butyl acetate – – –√ – – – – 87 21.588 2,5-Dimethyl-2,4-hexadiene – – √ √– – – – – 88 21.876 Methylpyridine – – –√ – – – 89 22.116 C3H10N2 – – –√ –√ – – – 90 22.251 Methylpyrazine – – √ – – – – 91 22.396 Cresol isomer – – √ √– – – – – 92 22.643 Furfural – – √ √ – – – – 93 22.680 Cyclopentenone – – √ √ – – – – 94 23.138 2-Methylcyclopentanone –√ –√ √ √ –√ –√ – –√ 95 24.044* Ethylbenzene √ √ – 96 24.127 Methylpyridine –√ –√ – –√ – –√ 97 24.374 Unknown (m/z = 289) √ √ –√ –√ –√ √ –√ √ 98 24.436* m-Xylene √ √ √ √ √ √ √ √ 99 24.510* p-Xylene √ √ 100 24.704 Unknown – – – – – √ – 101 25.215 1,2-Propanediol, 2-acetate – – – –√ – – – 102 25.236 1,6-Dimethylhepta-1,3,5-triene –√ –√ –√ √ – – – – 103 25.475 Styrene √ √ √ √ –√ –√ –√ –√ 104 25.516* o-Xylene √ 105 25.697 cis-2,6-Dimethyl-2,6-octadiene – – √ √– – – – – 106 25.990 2-Methyl-2-cyclopenten-1-one – – √ √ – – – – 107 27.313 3,4-Dimethyl-2-cyclopenten-1-one –√ –√ √ √– –√ –√ –√ 108 28.117 Octamethylcyclotetrasiloxane –√ √ 109 28.228 Limonene isomer – – √ √ – – – – 110 28.303 1-Ethyl-2-methylbenzene – – √ – – – – 111 28.509 1-Ethyl-3-methylbenzene – – – – –√ – – 112 28.500 Glycerin –√ –√ – –√ – √ – –√ 113 28.587 Benzaldehyde √ √ – √ – √ – √ 114 28.682 Phenol –√ √ – – 115 28.727 4-Ethenylpyridine – – –√ – –√ – 116 (29.5–34.5) Glycerin – – –√ –√ – – 117 29.139 (Z)-(cis-Geraniol) – – √ – – – – 118 29.444 Benzonitrile – – –√ – – – – 119 29.473 Unknown – – √ √– – – – – 120 29.692 Trimethylbenzene – – √ √ – – – – 121 29.716 Unknown –√ –√ – – – – 112223 2299..794811 O(cid:3)-cCtaanmaplhene – –√ –√ –√ –– –– –– –– 124 30.607 2-Ethylhexan-1-ol – √ √– –√ – – - – 112256 3300..798784 m(cid:3)--LCimymonenene e –√ √√ √ √ –– –√ –– –√ 127 31.246 Eucalyptol – √– –√ – – – – 128 31.258 Ocimene – – √ – – – – 129 31.839 Indene –√ –√ – – – – – 130 32.470 Acetophenone √ √ – – – – – – 131 33.233 Nonanal √ √ – – – –√ – –√ 132 33.331 Decamethylcyclopentasiloxane √ – – – – 133 33.509 Unknown –√ √ – – – – – – 134 34.428 Unknown √ √ – –√ –√ –√ – –√ 135 34.551 Benzoic acid –√ – 136 35.203 2,3-Dimethylphenol – –√ –√ – –√ – –√ 137 35.607 Decanal –√ –√ √ – – 138 35.809* Naphthalene – √ – – – – 139 36.332 2,3-Dihydrobenzofuran –√ –√ –√ – –√ – –√ 140 36.435 Nonanoic acid √ √ – √ √– √ – √ 141 36.773 Dodecamethylcyclohexasiloxane –√ – 142 37.791 Hydroquinone – – √ – – – – – 143 37.931 Unknown – – – – –√ – – 144 38.228 Decanoic acid – – –√ –√ –√ √ –√ –√ 145 38.813* Nicotine – – √ 146 39.702 Vanillin – – – – – – – E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 55 Table1(Continued) N RT(min) Compound Nosmoking Tobacco e-cigaretteType1 e-cigaretteType2 Indoorair Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath √ 147 39.762 7-Methyl-1H-indole – – √– – –√ – –√ 148 39.815 Tetradecamethylcycloheptasiloxane – – –√ –√ – 149 40.729 Myosmine – – – – –√ – 150 40.887 Ethyl vanillin – – –√ –√ –√ –√ √ – 151 41.641 Nicotyrine – – √ – 152 42.585 Dimethylaminocinnamonitrile – – –√ – √ – – – 153 43.723 Isonicoteine – – √– √– – – 154 43.888 Propanoicacid,2-methyl-,1-(1,1- – – – – – – dimethylethyl)-2-methyl-1,3- propanediyl ester √ 155 43.933 Hexadecamethylheptasiloxane – – – – √ – – – 156 44.424 Dimethylaminocinnamonitrile – – – – – – – *Compoundsquantified. 3.2. Smokefromtobaccocigarettesande-cigarettes Inthisrespect,therelativeproportionofbenzeneandtoluenein the samples described in this study, 44% and 56%, respectively, RepresentativechromatogramsoftheVOCinthesmokecom- isinagreementwiththerelativeproportionofthesecompounds positionoftobaccocigarettesandType1andType2e-cigarettes measuredinothertobaccosmokecigarettesmeasuredwithother areshowninFig.2.Asexpectedastrongcontrastwasobserved samplingmethods,43%and57%,respectively[31]. betweentobaccocigaretteande-cigarettesmoke.Theformercon- Other compounds commonly related with traffic emissions tained a wealth of compounds including nicotine and related werealsopresentinthetobaccocigarettesmokechromatogram, productssuchasnicotyrine,7-methyl-1H-indole,myosmine,ison- e.g. n-heptane, n-octane, 1-ethyl-2-methylbenzene, 1-ethyl-3- icoteine.Theoccurrenceofmyosmine,isonicoteineandnicotyrine methylbenzene and naphthalene. The occurrence of these com- together with nicotine in tobacco cigarette smoke has been poundsintobaccocigarettesmokehasalsobeenreported[25,27]. reportedinpreviousstudies[24,25].2,5-dimethylfuranisanother In addition to these VOCs, many polar compounds were compoundcharacteristicoftobaccocigarettesmokethathasbeen also represented in the tobacco cigarette smoke chromatogram, proposed as a specific marker [25–29]. In the present study, e.g. ethanol, acetone, acetic acid, butane-2,3-dione, methyl ethyl thiscompoundwaspresentinthechromatogramofthetobacco ketone,methylfuran,isovaleraldehyde,pyridine,methylpyridine, cigarettesmokeandabsentinthoseofthee-cigarettesmoke(Fig.2; benzaldehyde, phenol, benzonitrile, acetophenone. These com- Table1). poundshavealsobeenfoundintobaccocigarettesmokeinprevious Besidesthesespecificcompoundsseveralaromaticcompounds studies [7,25,26,30,32]. Some aldehydes such as crotonaldehyde suchasbenzene,toluene,xylenes,ethylbenzeneandstyrenewere arealsoidentifiedwiththismethod.Thiscompoundhasalsobeen alsofoundinthechromatogramoftobaccocigarettesmoke(Fig.2). found in tobacco cigarette smoke in analyses using the dinitro- Thesecompoundsarenotspecificfortobaccocigarettesmoke,as phenylhydrazinemethod[33]. severalofthemarefoundintheBTEXmixturesassociatedtotraffic Chromatographic peaks for several unsaturated compounds emissions.However,asdocumentedelsewhere[25–27,30,31],ben- were also found in the tobacco cigarette smoke sample, such as zene,akno wncarcin og en,iscommo nintobac cocigarettesm oke. buta- 1,3-d iene, i sop ren e, hex-1 -ene, hep -1-ene and (cid:3)-lim onen e. Fig.1. Chromatogramsshowingthecompositionofvolatileorganiccompoundsinairfromanin-doorenvironmentandexhaledbreathofavolunteerpresentinthis environmentwithoutsmoking. 56 E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 Fig.2. Chromatogramsshowingthecompositionofvolatileorganiccompoundsinsmokefromtobaccocigarettes,Type1andType2e-cigarettesandinexhaledbreathof smokers.Toavoidmetabolicdifferencesalldisplayedexhaledbreathchromatogramscorrespondtothesamevolunteer. Severalofthemareknownnaturalproductsthatcanalsobefound (Fig.2)indicatingthatmostoftheoriginalsmokecomponentswere inmanyplantspecies.Theirpresenceintobaccocigarettesmokeis retained in the lungs. Thus, the relative intensity of most of the consistentwithpreviousstudies[7,25,27,30]. higher molecular weight VOCs, those of higher chromatographic Theanalyticalapproachofthepresentstudyhasbeendesigned retentiontime,decreasedsignificantly.However,somecompounds for the identification and quantification of the volatile com- thatarespecificoftobaccocigarettesmokesuchasnicotine,nico- pounds. However, some compounds found in the present study tyrine and 2,5-dimethylfuran were found in the exhaled breath. (Table 1) have also been identified in the particulate phase TheiroccurrenceintheVOCcompositioncanbeusedtoindicate in analytical methods specifically designed for the compounds theexposureoftheindividualstotobaccosmokecompounds.Other pr esentinth isphase,e .g.aceticac id,crotona lde hyde ,n-heptane, VOC ssuchas be nze ne,toluene o r(cid:3)-limo nenew erelessspec ificof phenol, (cid:3)- limo nene, ben zoic a cid, hydroquinone, n icotine, 7- tobac cocig ar ettesmok ebutth ey stillweredo mina ntpe aksint he methyl-1H-indole,myosmineandnicotine[23].Thesecompounds exhaledbreathchromatogramsofthetobaccocigarettesmokers. are generally polar and formed by pyrolysis or distillation of Isoprene was the most abundant exhaled breath peak. As men- the tobacco components under the high temperature conditions tionedabove,thisisanendogenouscompound. of smoking. Condensation processes lead to their distribution In the exhaled breath of the e-cigarette smokers the chro- betweenthegasandparticulatephases. matographicpeaksofpropyleneglycolandglycerinwereabsent In contrast, the smoke of the e-cigarettes was mainly com- indicating that they remained in the respiratory system of the posed of propylene glycol and glycerin which is consistent with smokers. Comparison of both original e-cigarette smoke and theproductdescriptionofthemanufacturers(notethatthechro- exhaled breath of the e-cigarette smokers also showed a strong matographicpeaksareoverloaded).Inadditionthesmokeofthe decreaseofthepeakscorrespondingtonicotineandrelatedcom- e-cigarettescontainednicotineandrelatedproductssuchasmios- pounds.Ontheotherhand,twomainpeaksinthechromatograms mineandnicotyrine.ThesmokeofType2e-cigarettealsocontained from exhaled breath were those corresponding to acetone and vanillinandethylvanillinwhichwerelikelyaddedasaflavor. isoprenewhichlikelyrepresentendogenoussources.Inaddition, benzene, toluene and 2,5-dimethylfuran were also found. These peaks were below limit of detection in the e-cigarette smoke 3.3. Exhaledbreathfromtobaccocigaretteande-cigaretteusers vapors .Thei roccurr encei ne xhaledbre ath coul dreflectpas texpo- suresofthevolunteers. Representative chromatograms of the VOCs in the exhaled breathoftobaccocigaretteandType1andType2e-cigaretteusers 3.4. Figuresofmerit are shown in Fig. 2. The chromatogram of exhaled breath of a tobaccocigarettesmokershowedasimplifiedmixtureofthecom- Linear concentration ranges over three magnitudes of con- poundsfoundinthepreviouslydescribedsmokeofthesecigarettes centration were found for most compounds analyzed (Table 2). E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 57 Table2 Figuresofmerit. Compound Rangea(ng) R2 RSDb(%) LODc(ng) Bio-VOC Meand(ng) Repeatability(RSD%) Recovery(%) Pent-1-ene 0.5–10 0.9962 7.1 0.17 10.4 17.7 94 10–250 0.9971 n-Pentane 0.25–10 0.9997 5.5 0.05 12.6 22.7 109 10–250 0.9971 Pent-2-ene 0.5–10 0.9984 4.7 0.12 11.8 18.1 103 10–250 0.9966 Isoprene 0.25–10 0.9982 4.5 0.11 10.7 19.3 92 10–250 0.9969 Pent-2-ene 0.25–10 0.9994 4.1 0.06 11.1 18.6 97 10–250 0.9966 n-Hexane 1–30 0.9977 4.5 0.43 11.5 17.6 89 30–250 0.9965 Benzene 0.25–10 0.9962 3.5 0.16 13.6 12.4 99 10–250 0.9955 Isooctane 0.6–26 0.9996 3.1 0.13 37.5 13.8 114 26–260 0.9977 n-Heptane 0.5–10 0.9983 3.2 0.11 22.4 14.8 96 10–470 0.9920 Toluene 1–25 0.9989 6.1 0.65 12.8 18.3 110 25–250 0.9812 n-Octane 0.5–10 0.9977 4.8 0.13 23.6 11.2 96 10–200 0.9975 Ethylbenzene 0.25–5 0.9987 4.0 0.05 11.5 6.5 92 5–100 0.9990 m-Xylene 0.25–5 0.9965 3.2 0.08 11.4 7.5 92 5–100 0.9988 p-Xylene 0.25–5 0.9979 4.5 0.06 11.3 5.9 97 5–100 0.9983 o-Xylene 0.25–5 0.9987 4.1 0.05 11.4 6.1 94 5–100 0.9987 Naphthalene 0.25–5 0.9978 6.3 0.06 10.6 8.5 92 5–50 0.9989 a Amountintroducedintothecartridges. b Residual standardd eviat ion ofthecalibrationlines. c Limitsof detection . d Meanv al uesofreplicateanalysesforcalculationofrepeatabilityandrecovery. In some cases, e.g. n-hexane, naphthalene, these ranges were 2.2. The highest limits, e.g. toluene (0.65ng), were due to back- about 200. The limits of detection ranged between 0.05 and groundatmosphericlevelsbyuseofthiscompoundinnearbylabs. 0.65ng.Thetransformationoftheselimitsintoconcentrationval- Repeatability (residual standard deviation of ten measurements) ues ( (cid:2)g /m3) must be done by refer ence t o th e sampled volu me ranged betwe en 5.9 an d 23% w hich is co nsi sten t with previous that depends on the number of Bio-VOC replicates (N). Thus, measurements with Bio-VOCs in other studies [11]. Recover- amountdetectionlimit(ng)isequivalenttoconcentrationdetec- ies of standards introduced into the Bio-VOCs and analyzed as tionlimi t((cid:2)g/m3) when mul tip lyingthefo rm erby1000/(15 0×N). des cri bedinthee xperimenta lsect ionr angedbetw een 92and11 4% The number of replicates in the analyses is indicated in section (Table2). Table3 Conce ntrations((cid:2)g/m3)ofselectedVOCinair,smokeandexhaledbreatha. Nosmoking Tobaccocigarettesmoking Type1e-cigarettesmoking Type2e-cigarettesmoking Compound Indoorair Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath Smoke Exhaledbreath Pent-1-ene 0.5 0.6 700 68 nd 0.3 nd nd n-Pentane nd nd 1200 63 nd 7 nd nd Pent-2-ene nd 0.5 625 52 nd 0.3 nd nd Isoprene 0.4 87 2700 670 nd 47 nd 45 Pent-2-ene nd 0.3 460 32 nd 0.2 nd nd n-Hexane 1 nd 975 14 nd nd nd 0.6 Benzene 0.6 4 1100 49 0.6 0.8 nd 0.5 Isooctane 0.4 0.2 nd nd nd 0.2 nd 1.5 n-Heptane 0.2 0.4 890 26 nd 0.3 1 2.1 Toluene 5 11 1400 60 nd 3 4 6.4 n-Octane nd 0.2 560 3 nd nd nd nd Ethylbenzene 0.2 0.6 660 6 1 0.2 nd 0.3 m-Xylene 0.2 0.5 980 7 nd 0.2 nd 0.2 p-Xylene 0.1 0.2 420 2 0.6 0.1 nd 0.1 o-Xylene 0.1 0.2 590 2 0.4 0.1 nd 0.1 Naphthalene 0.05 0.1 240 3 nd nd nd nd Nicotine nd nd 1300 7 720 4 710 1 a Allcompoundswerequantifiedwithauthenticstandardsexceptnicotinethatwasquantifiedwithnaphthalene. 58 E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 3.5. Quantitativedifferences [2] J.-F.Etter,C.Bullin,Electroniccigarette:usersprofile,utilization,satisfaction and perce ive deffica cy,Addicti on106(20 11)2 017–201 8. [3] D.C ressey,Reg ulations tacksupf ore- cigaret tes,Nature501(2013)473. theTthoeb accocnocecingtarraettiotensa nodf es-ocmigea rerettperessmenoktaetiavned ViOnCtsh efoeuxnhda leind [4] bVr. eVaethreabw, Aa y.M:b. rDeiaetthriac nha, lBy.s iAs lffoeer lai,s sMes. sAinggahe,n Tvhire o npmosesnib taillitei exsp owsuilrl e t,aEknev yiroounr. bre ath of th e smoker s are shown in Table 3 . Co nce ntra tions of Sci.Tec hnol.4 5(2011 )8167– 817 5. [5] A.N .Martin,G .R .Farqua c,A.D.Jones,M.Frank,Humanbreathanalysis:method the same compounds in ambient indoor air and in volunteers for s ample colle ction an d re ductio n o f loca lized ba ckgrou nd effect s, Anal. breathing this air without smoking are shown for comparison. Bio anal.Che m.396(20 10) 739–750. Tobacco c igare tte smoke p rovided th e s amples con taining high- [6] J.Czoga la,M.L. Gon iewicz ,B.Fidelius,W.Zielinsnka-Danch,M.J.Travers,A. e(1s3t 0c0o(cid:2)ncg e/nmt3ra)tiiotnc so notfa ianlle dcobmepnozeunn ed,s toa nluaelynzee,dx. y Bleenseidse,se tnhiy clobteinne- [7] STSo. oUbbe.c Rzhaeiyksa,. m1S e6ac ,(o2Tn0.d T1 o4hm)a n6iz5da5 ew–x6ap6,oY2 s..uI rnea tboa ,vNap.oK rusn f urogmita e,Sleicmtruoltnainc ecoigua sredtette esr,m Niincoattii onne zenea ndnaph th aleneinh ighabund ance(110 0,1400, 1500,660 of volatileorg an iccompoun d sandc arb onylsinm ainstreamcig arettesmoking aasndi s 2o4p0re (cid:2) nge/m(237, 0re0s(cid:2)pge/ cmtiv 3e),lyp) e anst -w1-eelnl eas ( 7o0th0e(cid:2)r gc /omm3p),o unn-pdesn s tuanche [8] u(S2.s 0inv1ga3 n)a 3sd1oe– rnb3e7nV.te clda ert,riMdg.e Qfoulilroy wneedn ,byP .twvoa-nst eHpe eel,utDio.nv, aJ.n Ch Srtoemenabteorgg rh. Ae, 1D31if4- (12 00(cid:2)g/m3 ),n-he xane(97 5(cid:2)g/m3),n-h eptan e(1400 (cid:2)g/m3)and fe rence s be tween alve olar air a nd mou th ai r, A nal. Chem. 79 (2 007) others .Thisco mposition was instrong contrastw ithth atofsm oke 3425–34 29. [9] J.W.H.Biesterbos,G.Beckmann,R.B.M.Anzion,A.M.J.Ragas,F.G.M.Russel,P.T.J. farlolyma btsheen et-ecxicgeaprettnteicso itnin ew(h7i1ch0– a7l2l 0th(cid:2)egs/em c3o)m.Pprooupnyldesn ewgelryec ovliratnud- aSnchee(eDp 4e)rasn, dSednesciatmi vee tmhyeltchyocdlo pfoe rn qtausainlo txifiacnaet(ioD n5 )oifn oec ntda-mexeht haylelcdyaci lrobteyttrhaes rilmoxa-l glyc erinwe renot foundin theindoo rairsam ple. deso rptio ng aschromatographymassspec trom et ry,Anal.Che m. 86 (2004) 5794–5799 . Inprinciple,thecompositionsofexhaledbreathreflectedthe differ ences of t he c igarette smok e c omposit ions (Ta ble 3). Th us, [10] IMnv.Ke.s Dtiagsa,t Sio.Cn. oBfisghewndael,r A-s. pDeacsi,fi Dc.e Dxahbarleadl, bAr. eVaatrhsvhonleayto, Vm.Ke.i nBahduimreadndsyb, Ry.G NCaxnGdCa-, tobacco cig are tte smoke wa s the o ne with highe st nico tine con- TOF-MS,Anal .C hem.86(2014) 1229–12 37. [11] D.Dyne, J.Cock er,H.K .W ilson,A noveldeviceforcapturingbreathsamplesfor centration and the highest content of this compound was found so lventa n alysis,S ci.To talEnvi ro n.199 (1997 )83 –89. intheexhaledbreathaftertobaccocigarettesmoking.Inthecases [12] K.Jones ,M.Meld rum ,E.B aird,S.C ottre ll,P.Ka ur,N.Plant,D.Dyne,J.Cocker, sh own inthep resent study ,thedif ferencesi nnicotine co nce ntra- Bi ologica l m onitoring fo r trim et hylbenze n e exp osu re: a hu man vo lunteer tion be tw een smoke a nd exh ale d breath we re highest for tobacco s5t9u3d–y5 9an8d. a practical e xam ple in the workpla ce, Ann. O cc up. Hyg. 50 (2006) cigarettes,indicatingthatthiswasthesmokingsystemwiththe [13] A.Hryniuk,B.M.Ross,Detectionofacetoneandisopreneinhumanbreath highestnic otinetrans fer. us ingacom binat ionof thermald es orptiona nds electedio nfl owtub emass Isopr ene is a n endogenous compound and similar concentra- [14] sJ.pKecwtr aok m, eMtr.yF, aInnt,. SJ.. WM .as Hs aSrpsehcmtrao nm,.C 2.E8.5 G(2a0rr 0i9so) n2 ,6V–3.L0..De rshe m, J. B. Ph illips, tionsshouldbeexpectedinallexhaledbreathsamples.However, C .C. Grig sby , D. K. Ot t, Evaluatio n o f Bio-VOC sam pler for ana lysis of itwa sfound be tween47 an d 87(cid:2)g/m 3 inthe e-cigare ttesmok- vola tile orga nic c ompo unds in e xha led breat h, Metab olite s 4 (20 14) er s an d 670 (cid:2)g/m3 in th e tob ac co cigaret te s mokers (Ta ble 3). 879–88 8. [15] P.T.J.Scheepers,J.Konings,G.Demirel,E.O.Gaga,R.Anzion,P.G.M.Peer,T. rTehsep ohnigdh tcooancceonmtrbaitnioanti oonf tohfisn ocno-mabpsoournbde dinc othmisp ovuonludntferoemr mthaye Dzeongee ,rtooglluue, nSe. Oanr nde xkyteleknine,s Wi n. Tv uanrk Disohoprnr i,m Daer tyersmchino aotli ocnh ioldf reexn pboysuarne a tloy sbise no-f tobacco cig ar ettesmokean dg enerationofh ighyieldof thisc om- breat handby env ironmen tal passive sampling ,Sci.To talEnvir on. 408(201 0) 4863–4 870 . poundaftertobaccocigarettesmoking.Infact,theexhaledbreath ofthet obacc ocigare ttesmoke rshowsh ig herc once ntration sofall [16] rJ.eJ.t MenctAioungihnehy,u Dm.Aa.n Ksnfrigohmt, mA.e Balsaucrke,m C.eJ.n Dtsicokfeenxsh, Ealnevdirsomnomkeenctoaml tpobouacncdos ,smInhokale. ab ove mention edcompo unds,in cludin gbenze ne,toluene,xyl en es, Toxicol.6 (1 994)615 –631 . [17] R.R.Bak er ,M.Dix on,Theretentionoftobaccosmokeconstituentsinthehuman ethylbenzene and naphthalene, than in the other exhaled breath resp iratory tr act,Inh al.T oxicol.18 (2 006)25 5–294. samples. [18] A.K. Armita ge, M . Dixo n, B.E. Fro st, D.C. Mariner, N.M. Sinclair, The effect of in halation v olu me and bre ath-ho ld d uration o n the retentio n of nico- tin eandsolan esolint heh umanrespira torytract and on subsequen tp lasma 4. Conclusions 2n4ic0o– t2in4e9 .concentra tio ns d uring c igarette sm oking , Be it T abak Int. 21 (2004) The analysis of VOCs in smoke from tobacco cigarette and e- [19] S.C.Moldoveanu,W.M.ColemanIII,J.M.Wilkins,Determinationofpolycyclic arom atichydroca rbons inexhale dc igar ettesmok e,BeitTabakI nt. 23(2008) cigarettes and in the exhaled breath of users of these smoking 85–97. systems can be performed by collection with Bio-VOC, absorp- [20] S.C.Moldoveanu,W.M.ColemanIII,Apilotstudytoassesssolanesollevelsin tioninT enax ca rtridgesand an alysisbyT D-GC –MS.This method exh aledcigarette smok e,BeitTab ak In t.23 (2008) 14 4–152 . [21] S.C.Mol doveanu, W.M.Co lem anIII,T he infl uenceo fahumectanonthereten- provides consistent results when comparing the composition of tion byhumanso fsola nesolfrom c igar ettesmok e( P art1,prop yle neg lycol), VOCs in cigarette smoke and exhaled breath of the smokers. It Beit Tab akInt.2 3( 2008)153 –159. alsoa llow sthedisc riminat ionb etweene ndogen ou sand exogeno us [22] S.C. Moldo vean u, W.M.C olemanIII,Theinfluenceofahumectanonthereten- com pounds an d compounds reflecting past expos ures to pollut- tIniotn. 2 b3y( h2u0m09a)n3s7 o7 f– s3o8la3n .esol from cig are tte smoke (P ar t 2, glyceri n), Beit Tabak antsortobaccosmoke.Comparisonoftheconcentrationsbetween [23] S.C. Mo ldovea nu,F.K.St.Charles,Differencesinthechemicalcompositionof smok e andequi valente xhaledbreat ho fth esmokersillust ratedthe the particularpha seofin haledan dexhaledc iga rette mainstre amsmoke,B eit incorpo rati on of highe r burde ns of V OC s in the tob acco cigare tte [24] TJ.aCba aik, BIn.tL. i2u2, Q( 2.0S0u7,)F 2a9s t0–a3n0a2ly.s isof nicotine related alkaloidsint obacco and smokersthaninthee-cigarettesmokers. ci gare tte smo ke by meg aborecap ill arygasc hromato graphy,J .Ch romatog r.A 1017(20 03)187 –1 93. Acknowledgements [25] S.-O.B aek,R. A.Jenkins,Characterizationoftraceorganiccompoundsassociated with aged and diluted sidestreamtobac co smok einac ontrolledatm osphere- volat ile or gani c comp ounds and polycyc lic arom a tic hydrocar bons, Atmos. tiveWnees sthfoarntkh ethEex pSop-aCnoivsh( CMTMin2is0t1r2y- 3o9f 2E9c8o)nfoelmloyw sahnidp .CFoinmapnecitai-l [26] EKn.Sv.iPraonn d. 3ey8, (K2.0-H0 4.K) i6m58,A3–re6v5i9e 9w.of environme ntaltobac cosmokeandit sdeter- support from th eEUproje ctsHEALS(FP7-ENV -2013-603 946)and min ationin air,Tr ends A nal.Ch em .29(2010)804 –819. [27] S.M.Char les ,C. Lia,S.A .Batte rman, C.G odwin ,VOCandparticulateemissions CROME (LIFE12 ENV/GR/001040) is acknowledged. Tfreocmh n coolm.4m2e( r2c0i 0al8 c)i 1g3ar2e4 t–te1s3:3 a1n.alys is o f 2,5-DM F as an E TS tracer, En viron. Sci. References [28] S.M.Cha rle s,S.A.B atterman,C.Jia,CompositionandemissionsofVOCsin main -andsid e-str eamsmoke ofr ese archcigarette s,Atm os.Enviro n.4 1(200 7) [1] M.Williams,T.Talbot,Variabilityamongelectroniccigarettesinthepres- 5371– 5384 . 1su2r7 e6 –d1ro2p8,3 a.ir flo w rate and aeroso l produc tion, Nicot ine Tob. Re s. 13 ( 2011) [29] cMa.t iAolno ntoso e, xJp.Mos. uSaren cmhoenz,i tAonrianlygt, iTcrael ncdhsa lAlennagl.e Cs hine mbr. e4a4t h(2 a0n1a3ly) s7i8s –a8n9d. its appli- E.Marco,J.O.Grimalt/J.Chromatogr.A1410(2015)51–59 59 [30] G.M.Polzin,R.E.Kosa-Maines,D.L.Ashley,C.H.Watson,Analysisofvolatile [32] S.K.Pandey,K.-H.Kim,DeterminationofhazardousVOCsandnicotinereleased organ iccom poun dsinmainstr eam cigarett esm oke,Envi ron.Sci.T ec hnol.41 from mainst ream smok ebythecombi na tionofthe SPME and GC–MSm ethods, (2007)1 297–1302. Sci.W orldJ.10(2 010)13 18 –13 29. [31] S. Mold oveanu, W. Coleman III, J. Wilkins, Determination of benzene and [33] S.M oldove a nu ,W.Co lemanIII,J.Wilkins,Determinationofcarbonylcom- to lueneinexhal edc igarettesm ok e, BeitTaba kInt.23(2008) 10 7–114. po undsinexhal edc igarettes mo ke ,BeitTab akInt.22(2007 )3 46–357.