Z Z Z A quantum phase transition from × to topological order 2 2 2 MohammadHosseinZarei1 PhysicsDepartment,CollegeofSciences,ShirazUniversity,Shiraz71454,Iran 6 1 0 2 r p A 4 ] Abstract h p Althoughthetopologicalorderisknownasaquantumorderinquantummany-bodysystems, - it seems that there is not a one-to-one correspondence between topological phases and quantum t n phases.Asawell-knownexample,ithasbeenshownthatallone-dimensional(1D)quantumphases a aretopologicallytrivial[31].Bysuchfacts,itseemsachallengingtasktounderstandwhenaquan- u tumphasetransitionbetweendifferenttopologicalmodelsnecessarilyrevealsdifferenttopological q classesofthem. Inthispaper, wemakeanattempttoconsiderthisproblembystudyingaphase [ transition between two different quantum phases which have a universal topological phase. We 2 define aHamiltonian as interpolation of the toriccode model withZ2 topological order and the v colorcodemodelwithZ2×Z2 topologicalorderonahexagonallattice. Weshowsuchamodel 6 isexactlymappedtomanycopiesof1DquantumIsingmodelintransversefieldbyrewritingthe 0 Hamiltonianinanewcompletebasis. Consequently,weshowthattheuniversaltopologicalphase 5 ofthecolorcodemodelandthetoriccodemodelreflectsinthe1Dnatureofthephasetransition. 6 WealsoconsidertheexpectationvalueofWilsonloopsbyaperturbativecalculationandshowthat 0 behavioroftheWilsonloopcapturesthenon-topological natureofthequantumphasetransition. . 1 Theresultonthepointofphasetransitionalsoshowthatthecolorcodemodelisstronglyrobust 0 againstthetoriccodemodel. 6 1 : 1 Introduction v i X AfterthesymmetrybreakingtheoryofLandau[46],manythoughtsciencehasreachedacomprehen- r siveunderstandingofdifferentphasesofmatter.However,anewconceptemergedincondensematter a physics by quantum Hall effect [2], quantum spin fluids [3, 4, 5, 6] and superconductors [7, 8, 9] whichwascalledtopologicalorder.Topologicalorderisadifferentphaseofmatterwhichcannotun- derstoodbyLandautheorysothatonecanfinddifferenttopologicalphaseswiththesamesymmetries [10]. Thegroundstateofaquantumsystemwithtopologicalorderexhibitsalong-rangeentanglement[11]. Specifically,thetopologicalentanglemententropyhasbeendefinedasanon-localorderparameterof topologicalorder [12, 13] so that it can characterize a quantum phase transition from a topological phase [14]. Another interesting property of a topological phase is the behavior of the Wilson loop where the expectation value of the Wilson loop is related to perimeter of the loop in a topological phase,whileitisrelatedtoareaoftheloopinanon-topologicalphase[14]. Long-rangeentanglementof the groundstate of a topologicalmatter also leads to some interesting 1email:[email protected] 1 andexoticpropertieswhichhavenotbeenseeninsymmetrybreakingphases. Robustdegeneracyof the groundstate and exotic statistics of excitationsof the system, which are called anyons, are two importantcharacteristicsofthetopologicalphases[15,16,17]. Braidinganyonsleadstoanarbitrary phasefactoronwavefunctionofthesystemintheabelianmodelsandaunitaryoperatorinthenon- abelian models [18, 19]. The robustness of degeneracy of the ground state and braiding operators against local perturbationsis a key propertyof the topologicalphases which has convertedthem to importantcandidatesforfault-tolerantquantumcomputation[20,21,22]. Inspiteofmanyimprovementsondefiningdifferentcharacteristicsofatopologicalphase,recogniz- ingdifferenttopologicalclassesindifferentquantumsystems[23,24,25,26,27,28]isstillanopen problemwhichhasreceivedmuchdealofinterest. Sincetopologicalorderisa kindofquantumor- der, it is clear that the same quantumphases have also the same topologicalphases. Consequently, consideringquantumphasetransition betweendifferenttopologicalmodelsis a usefulapproachfor classificationoftopologicalmodels.Specifically,therearesomerecentpaperswhichshowaquantum phase transition can well reveal different topologicalproperties of two different topological phases [29,30]. This thoughtthat a quantumphase transition revealsnecessarily differenttopologicalclasses of the quantum phases is challenged specifically by 1D quantum models. It has been shown that all 1D quantumphasesbelongtoatrivialtopologicalphase[31]sothatonecanfindaquantumphasetransi- tionbetweentwodifferent1Dquantummodelswhicharetopologicallytrivial[32,33]. Infact,Since topologicalsignatureoftopologicalphasessuchastopologicalentanglemententropyorexpectation valueoftheWilsonloopoperatorscannotbedefinedfora1Dmodel,topologicalorderof1Dmodels onlydefinesasasymmetryprotectedtopologicalphase[31]. Moreover1Dquantummodelswhichareinthesametopologicalphases,therearealsotwo-dimensional (2D)quantummodelswhichbelongtoauniversaltopologicalphase. Awell-knownexampleofuni- versaltopologicalphaseshasbeenseeninthetoriccodemodel(TC)withZ topologicalorder[22] 2 and the color code model(CC) with Z ×Z topologicalorder [34]. Since the TC and CC model 2 2 havedifferentgaugesymmetries,degeneraciesofthegroundstateofthemaredifferent.WhiletheTC modelprovidesafour-folddegenerategroundstatewhichcanbeusedasarobustquantummemory, degeneracyofthe groundstate oftheCCmodelissixteen-fold. Furthermore,unlikethe TCmodel, thereisalsopossibilityofapplyingunitaryCliffordgroupinatopologicalway[34]. Recently,there isalsoanexperimentalrealizationofthecolorcodeontrapped-ionqubits[35]. AlthoughdifferentdegeneraciesoftheCCmodelandtheTCmodelshowthattheyareintwodifferent quantumphases,othertopologicalcharacteristicsofbothmodelsarecompletelythesame. Especially, itis possibleto showa CC modelandtwo copiesof theTCmodelare in thesame quantumphases [36, 37]. In [36], the authors have emphasized that since there is an adiabatic evolution without quantumphasetransitionbetweenaCCmodelandtwocopiesoftheTCmodel,theyhavethesame topologicalphases. ThisresultshowsthatdifferentquantumphasesoftheTCandtheCCmodelare completelyrelatedtotheirdifferentgaugesymmetriesandhasnotatopologicalnature. By above facts, there is a good chance that one considers how the same topologicalcharacteristics of the CC and the TC modelreflects in the propertiesof a quantumphase transition betweenthem. Tothisend,inthispaperweconsideraCCmodelonahexagonallatticebesidesasingleTCmodel insteadoftwocopiesofitonthesamelattice. WeshowtheuniversaltopologicalphaseoftheCCand theTCmodelreflectsinpropertiesofthequantumphasetransitionwhereweshowthatthequantum phasetransitionhasa1Dnature.Ourresultisalsoanotherprooffortheuniversaltopologicalphaseof theCCmodelandtheTCmodel.Weemphasizethatourproofhasarecentandimportantpointwhere generallyshowshow the universaltopologicalphase oftwo 2D topologicalmodelscan be revealed eveninpresenceofaquantumphasetransition. Toderivingresults,wedefineaspecificversionoftheTCmodelonthehexagonallattice. Weshow that a model Hamiltonian as interpolation of the CC and the TC model is mapped to many copies of1DIsingmodelsintransversefieldwhichbelongtothe2DclassicalIsinguniversalityclass. The 2 mappingisbasedonre-writingtheHamiltonianofthe modelina newcompletebasis. Ourmethod isequivalentwithunitarytransformationontheHamiltonianwhichdoesnotchangespectrumofthe model. WealsostudythebehaviorofWilsonloopsandexplicitlyshowthattheexpectationvalueof theWilsonloopsinourmodelcapturesthenon-topologicalnatureofthephasetransition. Fromanotherpointofview,wefindthepointofthephasetransitionofourmodelwhichisthesame as 1D Ising model in transverse field at gt = 1 [38] where g and g are the couplings of the TC gc t c andtheCCmodels,respectively. ItshowswhenweaddtheTCHamiltonianasasmallperturbation againsttheCCmodel,suchaperturbationcannoteverchangethequantumphaseoftheCCmodel. Thequantumphasetransitionoccursonlywhenaconsiderableperturbationg >g isapplied. Such t c a result show that unlike the small robustness of the CC model against local perturbations such as magneticfieldorIsinginteraction[39,40,41,42,43],itisstronglyrobustagainstatopologicalper- turbationliketheTCmodel. Insection(2),wereviewdifferentpropertiesofthetopologicalphasesoftheTCandtheCCmodel.In Section(3),wepresentourmodelasainterpolationoftheCCandtheTCmodel.Wedefinebothtopo- logicalmodelsonahexagonallatticeandqualitativelyshowhowaquantumphasetransitionhappens. Insection(4),weuseamathematicalmethodtomapourmodelto1DIsingmodelsintransversefield whichhavea well-knownphasetransitionpoint. Finally,in section (5) we considerthe behaviorof Wilsonloopoperatorsbyaperturbativeapproachtoshowthequantumphasetransitioninourmodel hasnotatopologicalnature. 2 Brief review of the toric code and the color code model In this section we review the topological structure of the TC and the CC models. We specifically emphasizeondifferenttopologicaldegeneraciesanddifferenttopologicalstructuresofthembyrepre- sentationofthegroundstatesasaloop-condensatestates. Formoredetails,thereisalsoacomparative studyofthesemodelswhichhasdonein[44]. 2.1 Toriccode model A TC modelis ordinarilydefined as the groundstate of a model Hamiltonianon an oriented graph where qubitslive on edgesof the graph. Two commutativeoperatorsB and A are defined corre- p s sponding to each plaquette and vertex of the graph in the following form, See figure (1, left) for a squarelattice: Bp =YZi , As =YXi (1) i p i s ∈ ∈ wherei ∈ prefersto qubitsaroundofa plaquetteandi ∈ s refersto qubitsaroundofa vertexand Z ,X arethePaulioperators.TheHamiltonianofthemodelisassummationoftheseoperatorsonall plaquettesandverticesofthegraphasthefollowingform: H =−XBp−XAs. (2) p s Bythefactthatthevertexandplaquetteoperatorscommutewitheachother,itissimpletoshowthe followingstateisagroundstateofHamiltonian(2): |φti=Y(1+Bp)|+++...+i (3) s wherethestate|+iiseigenstateoftheoperatorX correspondingtoeigenvalue+1andweignorethe normalizationfactorforthisstate. 3 L1 L1 x z Z L0 Bp As e m m x m e X e e L0 m z Figure 1: (Color online)Left: the plaquette and vertexoperatorshave been shown by two different colorscorrespondingtoverticesandplaquettesofthelattice. Therearefournon-trivialloopoperators which describe topologicaldegeneracy. Right: two charge(flux) anyonsare generated by applying Z (X)operatoroneachqubit. ByapplyingasequenceofZ (X)operatorsonqubitsitispossibleto moveacharge(flux)anyononthelattice. There is also a simple representation for the state (3) which helps for better understanding of the topologicalorder of such a state. To this end, let us span the productof operators(1+B ) on all p plaquettesintherelation(3)asthefollowing: Y(1+Bp)=1+XBp+XBpBp′ +... (4) p p p,p′ wheretherighthandofthisrelationisthesummationofallpossibleproductsoftheplaquetteopera- tors. Sinceeachplaquetteoperatorcanbeinterpretedasaloopoperatoronthelattice,righthandof therelation(4)isthesummationofallpossibleloopoperators. Finally, since Z|+i = |−i wherethe state |−iis the eigenstateof theoperatorX correspondingto eigenvalue−1, the groundstate of theTCmodel(3) canbe interpretedasuniformsuperpositionof allloopconstructionsofqubits|−iintheseaofqubits|+iwhichiscalledtheloopcondensation. Such a state has a topological order which leads to a robust degeneracy in the ground state of the modelwhenwedefinethemodelHamiltonianonatorus. Infact,onatorustopology,therearealso non-contractibleloopoperatorsintheformof: LσZ = Y Zi (5) i Lσ ∈ where i ∈ Lσ refers to the qubits which live on a non-contractible loop around the torus in two differentdirectionsσ = 0or 1,seefigure(1,left). Therefore,fourthefollowingquantumstatesare thedegenerategroundstatesofHamiltonian(2): |ψ i=(L0)i(L1)j|φ i (6) i,j z z t wheretheindicesi,j ={0,1}refertofourdifferentquantumstates. TopologicalorderoftheTCmodelareunderstoodbythreeimportantproperties,robustdegeneracy, non-localorderparameterandanyonicexcitations. Therobustdegeneracyisduetothisfactthatfourdegenerategroundstates(6)cannotbeconverted toeachotherbyanylocalparametersothedegeneracyisrobustagainsteachlocalperturbation. Another property is that any local operator can not distinguish four degenerate ground states. In fact,therearetwonon-localoperatorswhichhavedifferentexpectationvaluesindifferentdegenerate 4 groundstates. Suchoperatorsaredefinedinthefollowingform: LσX = Y Xi (7) i Lσ ∈ where i ∈ Lσ refers to the qubits which live on a non-contractible loop around the torus in two differentdirectionsσ = 0or1,seefigure(1,left). Theexpectationvaluesoftheseoperatorsineach oneofthefourdegenerategroundstatesareasfollows: hψ |L0|ψ i=1 , hψ |L1|ψ i=1 00 x 00 00 x 00 hψ |L0|ψ i=−1 , hψ |L1|ψ i=1 01 x 01 01 x 01 hψ |L0|ψ i=1 , hψ |L1|ψ i=−1 10 x 10 10 x 10 hψ |L0|ψ i=−1 , hψ |L1|ψ i=−1 (8) 11 x 11 11 x 11 Thereforethesetwonon-localoperatorscandistinguishthedifferentgroundstates. Finally,excitationsoftheTCmodelarequasi-particleswithanyonicstatistics. Anexcitationisgener- atedbyapplyingthePaulioperatorsX orZ onaqubitofthelattice,seefigure(1,right). Anoperator X on a qubit does not commute with two plaquette operators which are shared in that qubit and it is interpreted as two flux anyons m in two corresponded plaquettes. Also an operator Z does not commutewithtwoneighborvertexoperatorsanditisinterpretedastwochargeanyonseintwocorre- spondedvertices.ByapplyingastringofX (Z)operators,aflux(charge)anyonmovesonplaquettes (vertices)ofthelattice,seefigure(1,right).Itissimpletoshowthatifachargeanyonwindsarounda fluxanyon,itleadstoaminussignonwavefunction.Suchafactorshowsthatchargeandfluxanyons arenotfermionsorbosons. 2.2 Colorcodemodel TheCCmodelisanotherwell-knownkindofthetopologicallatticemodelswithZ ×Z topological 2 2 order. Although topological properties of this model seems similar to the TC, additional freedom degreeofcolorinthismodelleadstosomeimportantdifferenceswiththeTC.SpecificallytheCCis moreefficientthantheTCforcomputationaltasks. ForexamplesintheCConanhexagonallattice, alltheCliffordoperatorscanbeappliedinatopologicalwaywhileitisnotpossibleintheTCmodel [34]. TheCCmodelcanbedefinedonthree-colorablelatticeswhichtechnicallycalledcolexesandcanbe generalizedtoarbitrarydimensions[45]. Asanexampleweconsiderahexagonallatticewherequbits liveonverticesofthelattice,seefigure(2). Correspondingtoeachhexagonalplaquetteofthelattice whichisdenotedbysymbol”h”,wedefinetwooperatorsinthefollowingform: hx =YXi , hz =YZi (9) i h i h ∈ ∈ wherei∈hreferstoallqubitsbelongingtotheplaquetteh. TheHamiltonianofthemodelisdefined as H =−Xhx−Xhz. (10) h h Sinceallplaquetteoperatorscommutewitheachother,thegroundstateofthisHamiltonianisinthe followingsimpleform: |φci=Y(1+hz)|++...+i (11) h 5 L1,r L1,g L1,b z z z L0,b L0,b z x L0,r L0,r z x L0,g L0,g z x L1,g L1,r L1,b x x x Figure2: (Coloronline)Left: thequbitsliveontheverticesofthe latticeandtwooperatorsh and x h areattachedtoeachhexagonalplaquette. Edgesofthelatticearecoloredbythreedifferentcolors z correspondingtothreedifferentcolorsofthehexagonalplaquettes. Therearetwelvenon-trivialloop operatorscorrespondingtotwodirectionsontorusandthreedifferentcolorsoftheplaquettes. Right: correspondingtoeachhexagonalplaquetteofthelattice,thereisatriangularplaquettewhere twoqubitsliveoneachedge.Inthisway,therearethreetriangularlatticeswiththreedifferentcolors. Since thereare two triangularplaquetteswith differentcolorscorrespondingto each hexagonalpla- quette,onlytwocolorsareenoughforre-presentationofplaquetteoperatorsonthetriangularlattices. where we ignore the normalization factor. Similar to the TC model, there is a loop re-presentation for the state (11). To this end, let us span productof operators(1+h ) in the relation (11) as the z followingform: Y(1+hz)=1+Xhz+Xhzh′z +.... (12) h h h,h′ We colorall plaquettesofa hexagonallattice by threedifferentcolors, red, blue, greenso thatany twoneighborplaquettesofthelatticearenotinthesamecolor,seefigure(2,left). wealsocolorall the edgesof the hexagonallattice with three colorsso that eachtwo plaquetteswith the same color connecttogetherwithanedgewiththesamecolor. Eachhexagonalplaquetteofthehexagonallattice canalsobeconsideredasatriangleplaquetteofatriangularlatticewheretwoqubitsofeachhexago- nalplaquetteliveoneachedgeofthistriangularplaquette,seefigure(2,right).Inthisway,theedges ofthelatticeinsertinthreecategoriescorrespondingtoeachcolorandwecandrawatriangularlattice correspondingtoeachcategoryofcolorededges,seefigure(2,right). Finally,weinterpreteachplaquetteoperatoroftheCCmodelbyatriangularcoloredloopononeof thethreetriangularlattices. By suchainterpretation,the summationintherelation(12) isregarded assuperpositionofallpossibleloopoperatorswiththreedifferentcolorsonthetriangularlattices. A closerlooktothehexagonallatticeshowsthataplaquetteoftheinitialhexagonallatticecorresponds totwodifferenttrianglesoftwodifferentcoloredtriangularlattices, seefigure(2, right). Therefore, wehavethisfreedomtoselectoneofthecolorsforeachhexagonalplaquette.Bysuchafreedom,itis simpletoshowthattherelation(12)canbeinterpretedassuperpositionofallloopoperatorswithonly two differentcolors. Therefore,it is well understoodthatthe topologicalorderin the CC is similar totheTCwithadditionalfreedomdegreeofcolor. SuchaorderiscalledZ ×Z topologicalorder 2 2 versustheZ topologicalorderfortheTC. 2 The topological order in the CC also leads to some important properties similar to the TC such as robustdegeneracy,non-localorder parameterand anyonicexcitations. as a sample, if we insert the 6 hexagonallatticeonatorus,therewillbemanynon-contractibleloopoperatorswhichleadtodegen- eracyofthegroundstates. TheseloopoperatorsaredefinedsimilartotheTCmodelwithadifference that there are three kinds of loop operators corresponding to each color, see figure (2, left), in the followingform: Lσz,r = Y Zi i Lσ,r ∈ Lσz,g = Y Zi i Lσ,g ∈ Lσz,b = Y Zi (13) i Lσ,b ∈ where i ∈ Lσ,r(g,b) refersto the qubitswhich live ona non-contractiblelooparoundthe toruson a red(green,blue)triangularlatticeintwodifferentdirectionsσ =0or1. Sincethreeaboveoperators are not independentso that the product of them as Lσ,rLσ,gLσ,b is equal to a productof plaquette z z z operators, we can generatethe sixteen degenerategroundstates of the model by applyingonly two coloredloopoperatorsasthefollowingform: |φ i=(L0,r)i(L1,r)j(L0,b)k(L1,b)l|φ i (14) i,j,k,l z z z z c wheretheindicesi,j,k,l = {0,1}refertosixteengroundstatesofthemodel. SimilartoTCmodel, therearealsofournon-localorderparametersasthefollowingformwhichcancharacterizedifferent groundstatesoftheCCmodel,seefigure(2,left). Lσx,r = Y Xi i Lσ,r ∈ Lσx,b = Y Xi (15) i Lσ,b ∈ whereweapplyoperatorsX onnon-contractibleloopswithtwodifferentcolors. 3 Interpolation of the CC and the TC In this section, we consider both the TC and the CC model on the same lattice and define a new Hamiltonianasthefollowingform: H =−g H −g H (16) t t c c whereH andH areHamiltoniansoftheTCandtheCCmodel,respectively.SuchaHamiltonianis t c definedonthequbitswhichliveontheverticesofahexagonallattice. DefinitionoftheCConsuchalatticeisthesameasweexplainedintheprevioussection.Sincequbits liveontheverticesofthislatticewecannotdefineanordinaryTCmodelonsuchalattice. However, thereisa simpleway topresenta TCmodelonsuchlattice. Tothisend, we divideeachhexagonal plaquette to two Trapezoid-shaped parts as it is shown in figure(3). Then we paint all trapezoids as chess-patternwith dark and light colors. In this way, we can use a rotated version of the Kitaev model [44] where we relate an operator B = Z Z Z Z to each light plaquette and an operator p 1 2 3 4 A = X X X X toeachdarkplaquette,seefigure(3). Itisverysimpletoshowthatsuchamodel s 1 2 3 4 isexactlythesameTCmodel.Specifically,onecancheckthatthegroundstateofthismodelis: |ψi=Y(1+Bp)|++...+i (17) p 7 B p L0,b L0,b L0 A L0 z x x s z L0,r L0,r x z Figure3: (Coloronline)Eachhexagonalplaquetteofthelattice hasbeendividedtotwo Trapezoid- shaped parts. By a chess-pattern painting of such a lattice, a TC model can be defined where the operatorsB arerelatedtolightplaquettesandtheoperatorsA arerelatedtodarkplaquettes. Two p s non-contractibleloopswhicharetopologicallydifferentintheCCmodelconverttogetherwithproduct ofoperatorsA orB whichareinvolvedbythenon-contractibleloops.Itshowthatnon-contractible s p loopswithdifferentcolorsaretopologicallythesameintheTCmodel. Suchastateisthesameasequation(3)inthedefinitionoftheTCmodel. AfterdefinitionoftheTCandtheCCmodelonthesamehexagonallattice,wearereadytostudythe propertiesoftheHamiltonian(16). Ontheonehand,inlimitofg ≫g ,wehaveaTCmodelwhich t c haveafour-folddegeneracy.Ontheotherhand,inlimitofg ≪g ,wehaveaCCmodelwhichhave t c asixteen-folddegeneracy. Hence,bytuningofthecouplingg fromzerotoinfinityweexpecttosee t aquantumphasetransition. Sincenon-contractibleloopoperatorsgeneratedegeneracyintheCCandtheTCmodels,itisuseful toconsiderhowthesubspaceofthegroundstatesintheCCmodelchangesbyaddingtheTCmodel. To this end, consider non-trivialloop operatorsin the TC and the CC on the hexagonallattice. As itisshowninfigure(3), weconsiderfournon-trivialloopoperatorsL0,r,L0,r, L0,b andL0,b forthe x z x z CCmodelandtwonon-trivialloopoperatorsL0 andL0 fortheTCmodel. Itispossibletodescribe x z sixteen-folddegeneratesubspaceoftheCCbytheprojectorswhichareconstructedbynon-trivialloop operatorsasthefollowingform: (1+(−1)iL0,r)(1+(−1)jL0,b)(1+(−1)kL0,r)(1+(−1)lL0,b) (18) x x z z wherei,j,k,l = {0,1}. LetuscompareabovesubspacewithdegeneratesubspaceoftheTCmodel. Asitisshowninfigure(3), fournon-trivialoperatorsoftheCC modelonthehexagonallattice can alsobeconsiderednon-trivialoperatorsoftheTCmodel. Butthereisadifferencethattwooperators L0,r andL0,bareinthesamehomologyclassintheTCsothattheyconverttoeachotherbyapplying x x productofplaquetteoperatorsA whichareinvolvedbythetwonon-trivialloops.Thesamesituation s isforoperatorsL0,r andL0,bwheretheyconverttoeachotherbyapplyingproductofplaquetteoper- z z atorsB whichareinvolvedbytwonon-trivialloopsL0,r andL0,b. Inthisway,byperturbingtheCC p x x modelbytheTCperturbation,homologyclassesofthenon-trivialloopschangesothattwonon-trivial loopswithdifferentcolorsbelongtothesamehomologyclassandaquantumphasetransitionoccurs. Itisalsointerestingifweexplainequivalencyofnon-trivialoperatorsintheTCmodelinaanyonic picture. InfactintheCCmodeltwooperatorsL0,r andL0,b canbeinterpretedasgeneratingoftwo z z chargeanyonse and e which turnaroundtorusand annihilateagain. In the CC model, these two r b chargeanyonsarenotequivalentandtheycannotfusetogether. Consequentlytheygeneratenewde- generatestateswhileintheTCmodel,thereisonlyonechargeanyonsothate ande areequivalent r b andtheycanfusetogether. 8 Such an interpretation of the quantum phase transition emphasizes on the role of color in the CC modelsothatwecanclaimthattheCCmodelistopologicallyequivalentwithtwoTCmodelswith twodifferentcolors.Thisresultisexplicitlyderivedin[36]whereauthorsshowedthattheCCmodel islocalequivalentwithtwocopiesoftheTCmodel. Inthenextsection,we showthisresultbyex- plicitanalysisofthequantumphasetransitionwherewe showthequantumphasetransitionhasnot a topologicalnature. As another point, it is also usefulto emphasize on the role of differentgauge symmetriesoftheTCandtheCCmodelinthequantumphasetransition. Infact,theTCisrelatedto theuniversalityclassofthe2DIsingmodel(classical)withZ symmetry,whiletheCCisrelatedto 2 theuniversalityclassofthe2Dthree-bodyIsingmodelwithZ ×Z symmetry[46]. Therefore,itis 2 2 expectedthatsuchaquantumphasetransitioncanbecharacterizedasasymmetrybreakingprocess andhasnotatopologicalnature. 4 Explicit analysis of the quantum phase transition Asitwasexplainedintheprevioussection,accordingto[36],becauseofequivalencyofaCCmodel withtwocopiesofTCmodel,bothmodelshaveauniversaltopologicalphase.Inthissection,wewant to considerpropertiesof the phase transition betweenthe CC andthe TC modelto understandhow theuniversaltopologicalphaseofthemrevealsinthepointofquantumphasetransition. Werewrite Hamiltonian Eq.(16) in a new basis and show that it convertsto many copiesof 1D Ising modelin transversefieldwhichbelongsto2DIsinguniversalityclass. Finally,weconcludethattheuniversal topologicalphaseofthosemodelsreflectsin1Dnatureofthephasetransition. Considerasetofquantumstatesasthefollowingform: |ψ{i,rjp,ws}i=(1+(−1)iL0Z)(1+(−1)jL0x)Yp (1+(−1)rpBp)Ys (1+(−1)wsAs)|φci (19) where|φ i = (1+h )|Ωi is thegroundstate ofthe CC model. Using |φ i inabovedefenition c Qh z c isnecessarytofind theeffectofoperatorsoftheCC modelonthe state (19). Thevaluesof0,1for indicesrefertodifferenteigenstatesofthisbasis. Suchabasishasbeenconstructedbytheprojector operatorsrelatedtoloopoperatorsoftheTCmodel. Itissimpletocheckthatsuchstatesgeneratea completebasis. Infact,theindicesi,jcharacterizetopologicaldegeneratesubspaceoftheTCmodel andr s(w s)refertobinaryvariableswhichcorrespondtoeachlight(dark)plaquetteofthelattice, p s wecallthemthevirtualspinswhichareequivalentwithanyonicexcitationsoftheTCmodel.Inother words, the values 0 and 1 for a virtual spin correspond to presence or absence of an anyon in the relatedplaquettes. ItisclearthattheoperatorsBpandAsinthisnewbasishaveasimpleform.SinceBp(1+(−1)rpBp)= t(h−e1s)trapte(1|ψ+i,j(−1)ripBasp|)r,w,rec,o..n.ic|lwud,ewtha,t..B.ipw|ψh{ie,rrjpe,w|rs}iia=nd(−|w1)irpa|rψe{ie,rijpg,ewnss}tia.teWsoefcoapnearlastoorreZproefstehnet virtualspin{srwp,whisc}hlivei1nt2hecente1rof2eachlightandpdarkplasquetteofthelattice, respectively. By suchadefinition,SinceBp|r1,r2,...i|w1,w2,...i = (−1)rp|r1,r2,...i|w1,w2,...i,itisclearthatthe operatorB playsroleofthePaulioperatorZ onavirtualspincorrespondingtolightplaquettep. p p ThereissimilarsituationforoperatorsAs. SinceAs(1+(−1)wsAs)=(−1)ws(1+(−1)wsAs),we wPaiulllihoavpeerAatso|rψZ{i,rjpo,wnsa}ivi=rtu(a−ls1p)iwnsc|ψor{ir,rjeps,pwos}nid.inCgotnosdeaqrukepnltalyq,utehteteosp.eTrahteorreAfosrea,ltshoepTlaCyms roodleeloinf tthhee s newbasisiswrittenasthefollowingform: Hkitaev =−XZp−XZs (20) p s ItisclearthattheoperatorsoftheTCmodeldonoteverchangeindexesi,jinthebasis(19).Inother 9 B B B 1 2 3 h h' A A A a b c Figure4: (Coloronline)Left: anoperatorh (h )doesnotcommutewithtwolight(dark)plaquette x z operatorB (A ) and B (A ) and it is equivalentwith operatorX X (X X ) on virtualspins in 1 a 2 b 1 2 a b the center of the light (dark) plaquettes. Similarly, the operatorh (h ) is equivalentwith operator ′x ′z X X (X X ) on virtual spins living in the center of light (dark) plaquettes which are denoted by 2 3 b c greencircles(redstatrs). Right: Byapplyingallhexagonaloperatorsinthenewbasis, wewillhave 2N copiesof1DIsingmodelcorrespondingtoeachrowofthelattice. words,wehavefourdegeneratesubspaceswheretherearethesameformsfortheHamiltonianofthe TCmodel. InterestingpointisthatthereisthesamesituationintheHamiltonianoftheCCmodel. It issimpletoshowthatthenon-trivialoperatorsL0 andL0 commutewith alloperatorsh andh in z x x z theHamiltonianoftheCCmodel. Consequently,theHamiltonianoftheCCmodelhasalsothesame forminthefourdegeneratestatesoftheTCmodelsothattheHamiltonianoftheCCcannotgenerate anytransitionbetweenthosestates. Byattentiontoaboveargument,weconsiderjustoneofthedegeneratesubspacesoftheTCmodelfor rewritingHamiltonian(16). Finally,weconsiderfollowingstatesasnewbasis: |ψ{rp},{ws}i=(1+L0Z)(1+L0x)Y(1+(−1)rpBp)Y(1+(−1)wsAs)|φci. (21) p s We are ready to find the new form of the CC modelin above basis. In the CC modelwe have two operatorsh andh correspondingtoeachhexagonofthehexagonallattice. weshouldfindtheeffect x z ofsuchoperatorsonthestates(21). To this end, consider a hexagon h of the hexagonal lattice as it has been shown in figure(4). The correspondedhexagonaloperatorh involvessixqubitswhicharecommonwith fewdarkandlight x plaquettesoftheTCmodel. Itisclearthattheoperatorh commuteswithalloperatorsA ondark x s plaquettes and all operators B on light plaquettes except of two light-plaquette operators B and p 1 B which have only one joint qubit with the hexagon h, see figure (4, left). Therefore, we have 2 h (1+(−1)r1B )(1+(−1)r2B )=(1+(−1)r1+1B )(1+(−1)r2+1B )h . Sinceh |φ i=|φ i, x 1 2 1 2 x x c c weconcludethattheeffectofoperatorh onthestate(21)leadstorisingbinaryvariablesr andr . x 1 2 SuchaoperationisthesameasoperatorX X onthebasisofvirtualspinsin(21). 1 2 Thesituationisthesameforoperatorsh . Thisoperatordoesnotcommutewithtwodarkplaquettes z A andA ofthe TCmodel, see figure(4, left). Therefore,the effectofoperatorh isthe same as a b z operatorX X onthebasis(21). a b Inthenextstep, consideranotherhexagonalplaquetteinthe neighboroftheplaquetteh, we denote it by h, see figure(4, left). similar to plaquette h , operator h dose not commute with two light- ′ ′x plaquette operatorB and B so that it is equalto a operatorX X on virtualspins in (21). If we 2 3 2 3 repeatthisworkforotherplaquettesofthelatticewhichareinthesamerowwithhandh’,wewillhave anIsingmodelas X X onvirtualspinswhichliveinlight-plaquettesofthecorrespondedrow P i,j i j ofthelattice,seefiguhrei(4,right). Thesamesituationisforoperatorh whereitisequaltooperator ′Z 10