ebook img

A Proof of the Herschel-Maxwell Theorem Using the Strong Law of Large Numbers PDF

0.07 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Proof of the Herschel-Maxwell Theorem Using the Strong Law of Large Numbers

A Proof of the Herschel-Maxwell Theorem Using the Strong Law of Large Numbers Somabha Mukherjee ∗ Department of Statistics, Wharton School, University of Pennsylvania 7 1 January10, 2017 0 2 n a Abstract J In thisarticle, weuse the strong law of large numbers to give a proof of the Herschel-Maxwell theorem, 3 which characterizes the normal distribution as the distribution of the components of a spherically symmetric randomvector,providedtheyareindependent. Wepresentshorterproofsunderadditionalmomentassumptions, ] R andincludearemark,whichleadstoanotherstrikinglyshortproofofMaxwell’scharacterizationusingthecen- trallimittheorem. P . h KEYWORDS: Sphericallysymmetric;Normaldistribution;Characteristicfunction;Stronglawoflargenum- t a bers;Centrallimittheorem. m [ 1 Contents v 8 2 1 Introduction 1 2 2 2 SomeBasicPropertiesofaSphericallySymmetricDistribution 2 0 1. 3 TheSphericalSymmetryCharacterizationanditsProof 2 0 7 4 ShorterProofsUnderAdditionalMomentAssumptions 3 1 : 5 Conclusion 4 v i X 1 Introduction r a TheHerschel-Maxwelltheoremisoneofthemanybeautifulcharacterizationsofthenormaldisribution. Itstates that if the distribution of a random vector with independent components is invariant under rotations, then the componentsmustbeidenticallydistributedasanormaldistribution. Asmentionedin[2],J.C.Maxwelladdressedthefollowingquestion: Whatisthedistributionofvelocitiesof the gas particles? The argumentbehind Maxwell’s claim that velocities are normally distributed, hinged upon twoverynaturalassumptionsaboutthedistributionfunction,independenceandrotationinvariance. Evenbefore Maxwell, astronomer J.F.W. Herschel addressed a similar issue while characterizing the errors in astronomical measurements. Heassumedthatthecomponentsofthetwo-dimensionalerrorsinmeasurementareindependent, andthatthedistributionoftheerrorisindependentofitsdirection. Inthis paper, we givea proofof the Herschel-Maxwelltheoremusing the stronglaw of largenumbers, and givea remarkaboutanotherunbelievablyshortproofofthe theoremusing the centrallimit theorem. The main toolsofouranalysisarecharacteristicfunctionsandHaar’sTheoremforrotation-invariantmeasuresonthesurface oftheunitsphereinEuclideanspaces. ∗Electronicaddress:[email protected], [email protected] SomabhaMukherjee Herschel-MaxwellTheorem 2 Some Basic Properties of a Spherically Symmetric Distribution Definition2.1. ArandomvectorXtakingvaluesinRnissaidtohaveasphericallysymmetricdistribution,ifX andHXhavethesamedistributionforeveryn nreal,orthogonalmatrixH. × Inthefollowingtwotheorems,westatesomebasicpropertiesofasphericallysymmetricdistribution. Theorem2.1. Theentriesofasphericallysymmetricrandomvectorhavethesamedistribution.Moreover,ifthat distributionhasafinitemean,thenthemeanmustbe0,andifthatdistributionhasfinitesecondmoment,thenany twodistinctentriesoftherandomvectorareuncorrelated. Theorem2.2. TherandomvectorX = (X ,...,X )T hasasphericallysymmetricdistributionifandonlyifits 1 n characteristicfunctionφsatisfiesφ(t)=Eei||t||X1 forallt Rn. ∈ ItfollowsimmediatelyfromTheorem2.2, thatif a randomvector(X ,...,X )T followsa sphericallysym- 1 n metricdistribution,thensodoesallitssubvectors. Wenowstateandprovesomesortofa“converse”ofthisfact, underanadditionalassumption,whichwillplayacrucialroleinourmainproof. Theorem 2.3. Let F be a distribution on R with the propertythat if X and X are independentobservations 1 2 fromF,then(X ,X )Thasasphericallysymmetricdistribution.Thenforeveryn,ifX ,...,X areindependent 1 2 1 n observationsfromF,(X ,...,X )T hasasphericallysymmetricdistribution. 1 n Proof. In view of Theorem 2.2, it suffices to show that EeiPnj=1tjXj = Eei(√Pnj=1t2j)X1 for all n and for all t ,...,t . By Theorem 2.2, this is true for n = 1 and 2. Assume that the proposition holds for some n. Let 1 n X ,...,X ,X be(n+1)independentobservationsfromF. Then,byourinductionhypothesis,wehave: 1 n n+1 EeiPnj=+11tjXj = EeiPnj=1tjXj Eeitn+1Xn+1 = Eei(√Pnj=1t2j)X1 Eeitn+1Xn+1 =Eei(cid:16)qPnj=+11t2j(cid:17)X1 (cid:16) (cid:17)(cid:0) (cid:1) (cid:16) (cid:17)(cid:0) (cid:1) forallt ,...,t . Wearedone. 1 n+1 Theorem 2.4. Let X and Y be two independent random variables. Suppose that (X,Y)T has a spherically symmetricdistribution.Then,P(X =0)iseither0or1. Proof. Suppose, towardsa contradiction, that 0 < P(X = 0) < 1. By Theorem2.1, X and Y have the same distribution.SinceX =d Xcosθ+Y sinθforeveryθ R,wehaveforallθ R: ∈ ∈ P(Xcosθ+Y sinθ =0,(X,Y)=(0,0)) 6 = P(Xcosθ+Y sinθ =0) P(X =0,Y =0) − = P(X =0) P(X =0)P(Y =0) − = P(X =0)(1 P(X =0))>0. − However, the sets (x,y) = (0,0) : xcosθ+ysinθ = 0 0 θ π are pairwise disjoint, and they form 6 ≤ ≤ 2 an uncountablecol(cid:8)lection. This contradictsthe factthatfor(cid:9)an(cid:0)yset in this(cid:1)collection, the probabilityof (X,Y) belongingtothatsetispositive. 3 The Spherical Symmetry Characterization and its Proof We willrequirea simpleversionofHaar’sTheoremforrotation-invariantmeasureson n 1, thesurfaceofthe − unitsphereinRn. Itisstatedbelow. S Theorem3.1. Let µ be a rotation-invariantBorelprobabilitymeasureon n 1 i.e. µ(HB) = µ(B) for every − BorelsetB n 1andeveryn northogonalmatrixH. Then,µistheuSniformmeasureon n 1. − − ⊆S × S ItfollowsfromTheorem3.1,thatifXisaunitnorm,sphericallysymmetricrandomvectorinRn,thenXhas theuniformdistributionon n 1. Wearenowreadytostateandprovethemainresultofthispaper. − S Theorem 3.2. Let X and Y be two independent random variables. Suppose that (X,Y)T has a spherically symmetric distribution. Then, X and Y are identically distributed as a normal distribution with mean 0 (and possibly0variance). 2 SomabhaMukherjee Herschel-MaxwellTheorem Proof. ByTheorem2.1,X andY havethesamedistribution,sayF. ByTheorem2.4,P(X =0)iseither0or1. Inthelattercase,X hasthenormaldistributionwithmean0andvariance0. So,assumethatP(X =0)=0. Generate a sequence X of independent random variables from the distribution F, and a sequence Z ofindependentN{(0n,}1∞n)=ra1ndomvariables.Foreachn,callX =(X ,...,X )TandZ =(Z ,...,Z )T. {Itfonl}lo∞nw=1sfromTheorem2.3thatX hasasphericallysymmetricdistrinbutioni.1e.forevneryn nnorthogo1nalmantrix n H,X andHX havethesamedistribution.So, × n n X HX X n =d n =H n X HX X n n n || || || || || || for every n and every n n orthogonalmatrix H. Thus, Xn is a unit norm spherically symmetric random X vector in Rn, and hence,×follows the uniformdistribution on|| nn|| 1. By the same argument, Zn also follows − Z S || n|| the uniformdistribution on n 1. Hence, Xn =d Zn for all n. This, in turn, implies that √nX1 =d √nZ1 − X Z X Z foralln. BytheStrongLawSofLargeNumb||erns,||theri||ghnt||handsideconvergesalmostsurelytoZ||. On|b|serve||thna||t 1 EX2 < , since otherwise, by the Strong Law of Large Numbers for independentand identically distributed 1 ∞ random variables with expectation+ , it would follow that the left hand side convergesalmost surely to 0, a ∞ contradiction. So, by the Strong Law of Large Numbers for finite mean, the right hand side convergesalmost surelyto X1 . Hence, X1 =d Z andwearedone. √EX2 √EX2 1 1 1 Remark1. AslightmodificationoftheproofofTheorem3.2yieldsthefollowingresult: Theorem3.3. Supposethat X isasequenceofrandomvariablessatisfyingthefollowingconditions: 1. P(X =0)=0, { n}∞n=1 1 2. EX4 < , 1 ∞ 3. (X ,...,X )T issphericallysymmetricforalln 1, and 1 n ≥ 4. Cov(X2,X2)=0forall1 i<j. i j ≤ Then,X ,X ,...areidenticallydistributedasanormaldistributionwithmean0andpositivevariance. 1 2 TheonlyobservationneededbeforereplicatingtheproofofTheorem3.2isthat,undertheaboveconditions, ||√Xnn|| −→P EX12. Theorem3.3isprobablyinterestingonlyfromtheanglethattheindependenceoftheXn’scan berelaxedpinlieuofsomeadditionalassumptions,inordertoarriveatthesamenormalcharacterization. 4 Shorter Proofs Under Additional Moment Assumptions Theorem3.2hasshorterproofsunderadditionalassumptionsoffinitenessofthefirstandsecondmomentsofX. SupposethatweonlyhaveEX < . SinceXhasasymmetricdistributionaround0,thisconditionisequivalent totheexistenceofEX. Inth|isc|ase,∞thecharacteristicfunctionφofX isdifferentiableonR. ByanapplicationofTheorem2.2,wehaveφ(s)φ(t)=φ √s2+t2 foralls,t R. SincethedistributionofX issymmetricaround0,φisarealvalued,evenfunction. W(cid:0)eclaimth(cid:1)atφ(t) > 0∈forallt R. Ifnot,thensince ∈ 2 φ(0)=1,bytheintermediatevaluetheorem,thereisat R,suchthatφ(t )=0. Sinceφ(t)= φ t for 0 ∈ 0 h (cid:16)√2(cid:17)i 2n allt R,aneasyinductiongivesφ(t)= φ t forallt Randalln 1. Thisimpliesthatφ t0 =0 n n ∈ h (cid:16)22 (cid:17)i ∈ ≥ (cid:16)22 (cid:17) foralln 1,whichisnotpossible,sinceφiscontinuousat0andφ(0)=1. Thisprovesourclaim. ≥ If we denote logφ by ψ, then we have ψ(s) +ψ(t) = ψ √s2+t2 for all s,t R. Taking partial deriva- ∈ tivewithrespecttosonbothsidesoftheaboveidentity,we(cid:0)get: (cid:1) s ψ (s)=ψ s2+t2 forall (s,t)=(0,0). ′ ′ (cid:16)p (cid:17)(cid:18)√s2+t2(cid:19) 6 This implies that there is a constantc such that ψ′(s) = c for all s = 0. Solving this differentialequation and s 6 rememberingthatψiscontinuousat0withψ(0)=0,wegetψ(s)= cs2 foralls R. Sinceψ(s) 0foralls, 2 ∈ ≤ wemusthavec 0. Now,φ(s)=ecs22 foralls RimpliesthatX N(0, c)andwearedone. ≤ ∈ ∼ − Iffurther,weassumethatEX2 < ,theproofturnsouttobesurprisinglyshort,andisgivenbelow. ∞ 3 SomabhaMukherjee Herschel-MaxwellTheorem Lemma4.1. Let X beasequenceofindependentandidenticallydistributedrandomvariables,satisfying that(X ,...,X )T{hans}a∞ns=p1hericallysymmetricdistributionforalln. Foreachn,denotethepartialsum n X 1 n i=1 i bySn. Then, √Snn (n=1,2,...)areidenticallydistributedasX1. P Proof. For each n, let H denote the orthogonal matrix whose first row is 1 , 1 ,..., 1 and let X = n √n √n √n n (cid:16) (cid:17) (X ,...,X )T. SinceX andH X havethesamedistribution,theirfirstentrieshavethesamedistribution. 1 n n n n Now,considerprovingTheorem3.2undertheassumptionEX2 < . ThecaseEX2 =0istrivial,soassume thatEX2 > 0. AsintheproofofTheorem3.2,generateasequence ∞X ofindependentrandomvariables fromthecommondistributionofX andY,andforeachn,letS = { nn}X∞n=1. ByTheorem2.3andLemma4.1, n i=1 i X =d Sn foralln. ByTheorem2.1, EX = 0. Hence,bytheCentrPalLimitTheorem, Sn d N(0,EX2). So, 1 √n √n −→ X N(0,EX2). 1 ∼ Remark2. If{Xn}∞n=1 isani.i.d. sequenceofrandomvariableswithSn d=ef ni=1Xi,andif √Snn convergesin distributionto a limit, then EX2 < (see exercise3.4.3 of [3]). The finitenPess of EX2 is now an immediate 1 ∞ consequenceofthisfactandLemma4.1,whichinturngivesasecondproofofTheorem3.2. 5 Conclusion Theorem3.2 appearsin [2] (Theorem0.0.1) and an early proofof it appearsin [1]. The treatmentin [1] is howevernotveryrigorousonprobabilisticgrounds.Corollary10of[4]isaconsequenceofTheorem3.2. Ourfirst proofof Theorem3.2 can be dividedinto two broadideas. Thefirst idea is to derivethe spherical symmetrypropertyofanynumberofindependentobservationsfromadistributionbasedontheknowledgeofthe sphericalsymmetryoftwoindependentobservationsfromthatdistribution.Thesecondideaistousetheoutcome of the first idea along with the Strong Law of Large Numbers, to conclude the result. In the process, the unit normsphericalsymmetrycharacterizationoftheuniformdistributiononthesurfaceofanndimensionalsphere was crucially used. The main advantageof this proofis that it is free of any calculation trickery, and is purely conceptual. It is possible to give a more “direct” proof of Theorem 3.2 by solving the functional equation φ(s)φ(t) = φ √s2+t2 foralls,t R, forageneralcharacteristicfunctionφ. However,thisapproachreliesstronglyon ∈ th(cid:0)eindepend(cid:1)enceassumptionoftherandomvariables,andcannot,forexample,beusedtoproveTheorem3.3. Acknowledgement TheauthorthanksProfessorJ.MichaelSteeleforoneofhisassignmentproblemsintheSTAT930courseoffered bytheUniversityofPennsylvania,whichwasthesourceoftheideabehindtheproofofTheorem3.2. References [1] Bartlett,M.S.(1934),Thevectorrepresentationofasample,Math.Proc.Cambr.Phil.Soc.30,pp.327-340. [2] Bryc, W. (2005), NormalDistribution characterizationswith applications, Lecture Notes in Statistics 1995, Vol100. [3] Durrett,R.(2013),Probability:TheoryandExamples,CambridgeUniversityPress. [4] Meckes,E.S.&Meckes,M.W.(2007),TheCentralLimitProblemForRandomVectorsWithSymmetries,J Theoret.Probab.20,pp.697-720. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.