A PROOF OF AN OPEN PROBLEM OF YUSUKE NISHIZAWA FOR A POWER-EXPONENTIAL FUNCTION Branko Maleˇsevi´ca,∗, Tatjana Lutovaca, Bojan Banjaca,b aFaculty of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia 6 bUniversity of Novi Sad, Faculty of Technical Sciences, 1 Computer Graphics Chair, Trg Dositeja Obradovi´ca 6, 0 21000 Novi Sad, Serbia 2 g u A Abstract 5 1 This paper presents a proof of the following conjecture, stated by Yusuke Nishizawa in [Appl. Math. Comput. 269, (2015), 146–154.]: for 0 < x < π/2 the inequality A] sinx> 2 + π−2(π2−4x2) θ(x)holds, where θ(x)=−(48−24π+π3)x3 + π3 . x (cid:18)π π3 (cid:19) 3(π−2)π3 24(π−2) C h. Keywords: mixed logarithmic-trigonometric polynomial functions and inequalities t 2000 MSC: 26D05; 41A10 a m [ 1. Introduction 3 v In [1], Nishizawa proved the following power-exponential inequalities: 3 Theorem 1. For 0<x<π/2, we have 8 θ ϑ 0 2 1 sinx 2 1 0 + (π2 4x2) < < + (π2 4x2) π π3 − x π π3 − 0 (cid:18) (cid:19) (cid:18) (cid:19) with the best possible constants θ =1 and ϑ=0. . 1 0 Theorem 2. For 0<x<π/2, we have 6 2 π 2 θ sinx 2 π 2 ϑ 1 + − (π2 4x2) < < + − (π2 4x2) π π3 − x π π3 − : (cid:18) (cid:19) (cid:18) (cid:19) v with the best possible constants θ =π3/(24(π 2))=1.13169 and ϑ=1. i − ∼ X Theorem 3. For 0<x<π/2, we have ar sinx < 2 + 1 (π2 4x2) θ(x) x π π3 − (cid:18) (cid:19) where θ(x)=4x2/π2. The open problem of Yusuke Nishizawa. Considering the previous theorems, Nishizawa stated the following open problem (Problem 3.1 of [1]): ∗Correspondingauthor. AuthorsweresupportedinpartbySerbianMinistryofEducation,ScienceandTechnological Development, ProjectsON174032, III44006andTR32023. Email addresses: [email protected] (Branko Maleˇsevi´c), [email protected] (Tatjana Lutovac), [email protected] (Bojan Banjac) Preprint submitted to arXiv.org August 16, 2016 For 0<x<π/2, we have θ(x) sinx 2 π 2 > + − (π2 4x2) (1) x π π3 − (cid:18) (cid:19) (48 24π+π3)x3 π3 where θ(x) is the function of x and θ(x)= − + . − 3(π 2)π3 24(π 2) − − This paper provides a proof of Nishizawa’s open problem, using approxima- tions andmethods from[4]and[14]. Letusnotice thatmethodfrompaper[14] relates to proving mixed trigonometric polynomial inequalities n f(x)= α xpicosqixsinrix>0, (2) i i=1 X where α R, p ,q ,r N , n N and x (δ ,δ ), δ 0 δ , with δ <δ . The i i i i 0 1 2 1 2 1 2 ∈ ∈ ∈ ∈ ≤ ≤ function f(x) is called mixed trigonometric polynomial function. In this paper the power-exponential inequality (1) can be rewritten as one example of the inequality of the following form: m F(x)=f(x)+ P (x)ln(f (x))>0, (3) j j j=1 X wheref(x)andf (x)aremixedtrigonometricpolynomialfunctions,withf (x)> j j 0 for x 0,π ; P (x) is a real polynomial of degree k and m N. The func- ∈ 2 j j ∈ tion F(x) is called mixed logarithmic-trigonometric polynomial function and (cid:0) (cid:1) the inequality F(x) > 0 is called mixed logarithmic-trigonometric polynomial inequality. Assuming that in mixed logarithmic-trigonometric polynomial function ap- pear only monomials and logarithmic functions, and no trigonometric sine and cosine functions, we can call that function mixed logarithmic polynomial func- tion. One application of mixed logarithmic polynomial functions, in purpose of provingsomepower-exponentialinequalities,wasgiveninthepapers[1],[9],[10]. Let us assume that the degree of the zero polynomial is 1. Then, for a − mixed logarithmic-trigonometric polynomial function F(x) it is not difficult to show the following result: The derivative F(K+1)(x) is quotient of two mixed trigono- (4) metric polynomial functions, where K=max kj j=1,...,m . { | } In the proof of Nishazawa’s open problem, we will use the following state- ment. Theorem4. LetΦ:(0,δ) R(δ>0),bea(K+1)-timesdifferentiablefunction (K N 0 ) such that −→ ∈ ∪{ } (i) lim Φ(x) 0, x→0+ ≥ (ii) lim Φ(j)(x) 0 holds true for every j 1,2,...,K , x→0+ ≥ ∈{ } (iii) Φ(K+1)(x)>0 for 0<x<c where c (0,δ]. ∈ Then, for 0<x<c, inequality Φ(x)>0 (5) holds true. 2 In the next section the proofof Nishizawa’s openproblem also makes use of thefactthatfortheconstantπ andagivenrationalfunctionR(x),itispossible to determine either R(π) > 0 or R(π) < 0. Stated is a consequence of the fact that for an arbitrarily small ε > 0, there exist fractions p/q and r/s such that p/q >π >r/s and p/q r/s <ε. Fractions p/q and r/s can be chosen as two − consequential convergents in the development of continued fractions of π. 2. The proof of Nishizawa’s open problem As sinx > 0 and 2 + π−2(π2 4x2) > 0 for x (0,π/2), the power- x π π3 − ∈ exponential inequality (1) is equivalent to the following inequality: sinx 2 π 2 θ(x) ln > ln + − (π2 4x2) (6) x π π3 − (cid:18) (cid:19) or sinx 2 π 2 ln θ(x)ln + − (π2 4x2) > 0, (7) x − π π3 − (cid:18) (cid:19) (π3 24π+48)x3 π3 where θ(x)= − + . − 3(π 2)π3 24(π 2) − − Let us notice that the previous inequality is a mixed logarithmic-trigonometric polynomial inequality 2 π 2 F(x)=lnsinx lnx θ(x)ln + − (π2 4x2) >0 (8) − − π π3 − (cid:18) (cid:19) for x (0,π/2). ∈ Let us further consider the following mixed logarithmic-trigonometric poly- nomial function 2 π 2 F (x)=lnsinx lnx θ (x)ln + − (π2 4x2) (9) 1 − − 1 π π3 − (cid:18) (cid:19) (π3 60π+120) π3 where θ (x)= − x2+ . 1 720(π 2) 24(π 2) − − As 2 π 2 2 π 2 + − (π2 4x2) < + − π2 = 1 (10) π π3 − π π3 we can conclude that for x (0,π/2): ∈ F(x) F (x) 0 1 − ≥ θ(x) θ (x) 0 ⇐⇒ − 1 ≥ (11) 1 π3 60π+120 π3 24π+48 − + − x x2 0. ⇐⇒ −3(π 2) 240 π3 ≥ − (cid:18) (cid:19) π3 60(π 2) π3 Asthelastinequalityholdsfor x (0,c], where c= − − = ∈ −240(π3 24(π 2)) (cid:0) − −(cid:1) 1.342... we distinguish two cases x (0,c] or x (c,π/2). ∈ ∈ 3 2.1. The case 1: x (0,c] ∈ It is enough to prove that F (x)>0 for x (0,c]. We have: 1 ∈ 2A(x) sin3x + B(x)cosx ′′′ F (x) = (12) 1 45x3C(x) sin3x where C(x) = 64(π 2)3x6 + 48π3(π 2)2x4 12π6(π 2)x2 +π9 − − − − − (13) = (π3 4(π 2)x2)3, − − B(x) = 90x3 π3 4(π 2)x2 3 = 90x3C(x) (14) − − and (cid:0) (cid:1) A(x) = 8(π 2)2(π3 60π+120)x8 − − 6(π 2)(π6 100π4+200π3 480(π 2)2)x6 − − − − − +3π3(π6 720(π 2)2)x4 (15) − − +540π6(π 2)x2 − 45π9. − Letusdeterminethesignofthepolynomials C(x), B(x)and A(x)forx (0,c]. ∈ Bysubstituting t=4(π 2)x2 forx (0,c],thepolynomial C(x)canbetrans- − ∈ formedintothepolynomial C (t) = (π3 t)3for t (0, 4(π 2)c2]. Obviously, 1 thesignofthepolynomialC (t)coincides−withthes∈ignofthe−polynomialπ3 t 1 − for t (0, 4(π 2)c2]. ∈ − π3 60(π 2) 2 Since − − < 1, we have π3 24(π 2) (cid:18) − − (cid:19) (π3 60(π 2)) 2 π3 4(π 2)c2 = π3 4(π 2) − − π3 − − − − 240(π3 24(π 2)) (cid:18) − − (cid:19) 1 (π3 60(π 2)) 2 = π3 1 (π 2) − − π3 − − 14400(cid:18)(π3−24(π−2))(cid:19) ! (16) 1 > π3 1 (π 2) π3 − − 14400 (cid:18) (cid:19) 14400 (π 2)π3 = π3 − − 14400 (cid:18) (cid:19) > 0. Therefore,we canconclude thatC (t)>0for t (0, 4(π 2)c2] (0,π3), i.e. 1 ∈ − ⊂ C(x) > 0 for x (0, c] and B(x) > 0 for x (0, c]. ∈ ∈ Let us prove that A(x)<0, (17) 4 for x (0, c]. We note that A(x) can be written as ∈ A(x) = 2(π 2)x6ϕ (x) + 3π3x2ϕ (x) 45π9, (18) 1 2 − − where ϕ (x)=4(π 2)(π3 60π+120)x2 3 π6 100π4+200π3 480(π 2)2 (19) 1 − − − − − − and (cid:0) (cid:1) ϕ (x) = (π6 720(π 2)2)x2 + 180π3(π 2). (20) 2 − − − As π3 60π 120 < 0 and π6 720(π 2)2 > 0, we have the following − − − − estimation, for x (0,c]: ∈ A(x) 2(π 2)c6ϕ (0) + 3π3c2ϕ (c) 45π9 = 138097.868... < 0. (21) 1 2 ≤ − − − In view of all the above, we can conclude that for x (0, c]: ∈ C(x)>0, B(x)>0 and A(x)<0. (22) Now we prove that g (x)=2A(x) sin3x+B(x) cosx > 0 (23) 1 for x (0,c]. Let us note that g (x) is a mixed trigonometric polynomial 1 ∈ function, and that the proof of previous inequality will be proved applying the methods from [4] and [14]. In particular, we use the following inequalities from [14]: x2 x4 x6 cosx>1 + , x (0,c) (0,√90) ; (24) − 2! 4! − 6! ∈ ⊆ and (cid:0) (cid:1) x3 x5 sinx>x + , x (0,c) (0,√72) . (25) − 2! 5! ∈ ⊆ Therefore, for x (0,π/2), we have: (cid:0) (cid:1) ∈ x3 x5 3 g (x) = 2A(x)sin3x+B(x)cosx > 2A(x) x + 1 − 2! 5! +B(x)(cid:16)1 x2+x4 (cid:17)x6 (26) −2! 4!−6! x9 (cid:16) (cid:17) = P (x), 14 864000 where P (x) is the polynomial of the 14th degree, as follows: 14 14 i P14(x) = aix Xi=0 =8 π3−60π+120 (π−2)2x14 −6(π(cid:0)−2) π6−20π(cid:1)4+40π3−5280π2+21120π−21120 x12 +3 π9+40(cid:0)(π−2) 3π6−214π4+428π3−7680π2+3072(cid:1)0π−30720 x10 −20(cid:0) 9π9+(π−2) 4(cid:0)41π6−44320π4+88640π3−762240π2+3048960π−(cid:1)3(cid:1)048960 x8 +15(cid:0)309π9+400(π(cid:0)−2) 17π6−2552π4+5104π3−24576π2+98304π−98304 x6(cid:1)(cid:1) −300(cid:0) 215π9+72(π−2)(cid:0) 13π6−6880π4+13760π3−34560π2+138240π−(cid:1)1(cid:1)38240 x4 +540(cid:0)0 91π9−80(π−2)(cid:0) 13π6+1744π4−3488π3+1920π2−7680π+7680 x2 (cid:1)(cid:1) −36000(cid:0)π3 47π6−1440(π(cid:0)−2) π3+20π−40 . (cid:1)(cid:1) (cid:0) (cid:0) (cid:1)(cid:1) (27) 5 Therefore, for inequality (23) it is sufficient to prove that P (x) > 0, (28) 14 forx (0,c]. Itiseasytocheckthatnon-zerocoefficientsa , i 14,12,10,8,6, i ∈ ∈{ 4,2,0 of the polynomial P (x) satisfy the following conditions: a < 0, 14 14 } a >0, a < 0, a > 0, a < 0, a > 0, a < 0 and a > 0. Thus, for 12 10 8 6 4 2 0 the proof of P (x) = x12 a x2+a +x8 a x2+a +x4 a x2+a 14 14 12 10 8 6 4 + a x2+a > 0, for x (0,c], it is sufficient and easy to check that the 2 0 (cid:0)∈ (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) followinginequalitieshold: a c2 +a > 0, a c2+a > 0, a c2+a > 0 14 12 10 8 6 4 (cid:0) (cid:1) and a c2 + a > 0. Thus we may conclude that P (x) > 0 and based on 2 0 14 F′′′(x) = g (x)/ 45x3C(x) sin3x > P (x)x9/ 38880000x3C(x) sin3x the 1 1 14 inequality (cid:0) (cid:1) ′′′ (cid:0) (cid:1) F (x)>0 (29) 1 was proved for x (0,c]. Let us notice that ∈ ′′ lim F (x)=0, (30) x→+0 1 ′ lim F (x)=0 (31) x→+0 1 and lim F (x)=0. (32) 1 x→+0 Then based on Theorem 4 we can conclude that F (x)>0 for x (0,c] (33) 1 ∈ which also proves that F(x) > 0 for x (0,c]. ∈ 2.2. The case 2: x (c,π/2) ∈ π In this subsection we prove that F(x) > 0 for x c, . Let us consider ∈ 2 the mixed logarithmic-trigonometricpolynomial functio(cid:16)n (cid:17) G(x)=F(π−x)=lncosx−ln π x −ω(x)ln 2+π−2 π2−4 π−x 2 , (34) 2 2− π π3 2 (cid:16) (cid:17) (cid:18) (cid:18) (cid:16) (cid:17)(cid:19)(cid:19) where ω(x)=θ π x = (cid:0)π3−24π+48(cid:1)(cid:0)π2 −x(cid:1)3 + π3 and x 0,π . 2 − − 3(π−2)π3 24π−48 ∈ 2 We have to pro(cid:0)ve the(cid:1)following mixed logarithmic-trigonometric poly(cid:16)nomi(cid:17)al inequality G(x)>0 (35) π for x (0,c ), where c = c=0.228.... Let us further consider the new 1 1 ∈ 2 − mixed logarithmic-trigonometricpolynomial function π 2 π 2 π 2 G (x)=lncosx ln x ω (x)ln + − π2 4 x , (36) 1 − 2− − 1 π π3 − 2− (cid:16) (cid:17) (cid:18) (cid:18) (cid:16) (cid:17) (cid:19)(cid:19) 6 x where ω (x) = + 1 and x (0,c ). Based on the inequality (10) we can 1 1 5 ∈ conclude that for x (0,c ): 1 ∈ G(x)>G (x) 1 ω(x)>ω (x) 1 ⇐⇒ x 20π3 480π+960 x2 (37) ⇐⇒ (π 2)π3 − − +(cid:16)(cid:0) 30π4+720π2 1(cid:1)440π x − − +(cid:0)15π5 12π4 336π3+7(cid:1)20π2 >0. − − (cid:17) As the last inequality holds for x (0,c ), in order to prove (35), it is enough 1 ∈ to prove G (x)>0, (38) 1 for x (0,c ). We have: 1 ∈ P(x)cos2x sin2xQ(x) ′′ G (x)= − (39) 1 Q(x)cos2x where P(x) = 80π2+320π 320 x6 − − + (cid:0)240π3 992π2+108(cid:1)8π 128 x5 − − + (cid:0) 260π4+1216π3 1344π2 (cid:1)576π+960 x4 − − − + (cid:0)120π5 728π4+720π3+1472π2 1920π(cid:1) x3 (40) − − + (cid:0) 20π6+212π5 132π4 1184π3+1440π(cid:1)2 x2 − − − + (cid:0) 24π6 16π5+408π4 480π3 x (cid:1) − − − + (cid:0)11π6 52π5+60π4 (cid:1) − and Q(x)=5 (π 2x)2 ( 2π+4)x2+ 2π2 4π x+π2 2. (41) − − − Obviously, Q(x) > 0 for x (0(cid:0),c1). Let us pro(cid:0)ve that P((cid:1)x) > 0 f(cid:1)or x (0,c1). ∈ ∈ Note that P(x) can be written as P(x)=φ (x)+4x3(π 2) ( 20π+40)x3+φ (x) , (42) 1 2 − − where (cid:0) (cid:1) φ (x) = 20π6+212π5 132π4 1184π3+1440π2 x2 1 − − − + (cid:0) 24π6 16π5+408π4 480π3 x (cid:1) (43) − − − + (cid:0)11π6 52π5+60π4 (cid:1) − and (cid:0) (cid:1) φ (x) = 60π2 128π+16 x2 2 − + (cid:0) 65π3+174π2+(cid:1)12π 120 x (44) − − + (cid:0)30π4 122π3 64π2+240π(cid:1) − − (cid:0) (cid:1) 7 are quadratic trinomials. Let us denote by y the minimum of the trinomial 1 φ (x) and by y the minimum of the trinomialφ (x) over[0,c ] respectively. It 1 2 2 1 then becomes possible to verify that y >271 and y =φ (c )> 815. Thus 1 2 2 1 − P(x) y +4x3(π 2) ( 20π+40)x3+y 1 2 ≥ − − > 271+4x3(π 2(cid:0)) (40 20π)x3 815(cid:1) − − − (45) > 271 4 23 3(π (cid:0)2) (20π 40) 23(cid:1)3+815 − 100 − − 100 > 225 > 0(cid:0), (cid:1) (cid:16) (cid:0) (cid:1) (cid:17) for x 0, 23 . Therefore P(x)>0 for x (0,c ) 0, 23 . ∈ 100 ∈ 1 ⊂ 100 Now w(cid:0)e prove(cid:1)that: (cid:0) (cid:1) g (x)=P(x)cos2x Q(x)sin2x>0 (46) 2 − for x (0,c ). Let us note that g (x) is a mixed trigonometric polynomial 1 2 ∈ function, and that the proof of previous inequality will be proved applying the methods from [4] and [14]. In particular, we use the following inequalities from [14]: x2 cosx>1 , x (0,c ) (0,√30) , (47) 1 − 2 ∈ ⊆ and (cid:0) (cid:1) sinx<x, x (0,c ) (0,√20) . (48) 1 ∈ ⊆ Therefore (cid:0) (cid:1) x2 2 g (x)>T (x)=P(x) 1 Q(x)x2 (49) 2 10 − 2 − (cid:18) (cid:19) for x (0,c ) and it is enough to prove 1 ∈ T (x)>0, (50) 10 for x (0,c ). For the polynomial 1 ∈ T (x) = 20π2+80π 80 x10 10 − − + (cid:0)60π3 248π2+27(cid:1)2π 32 x9 − − + (cid:0) 65π4+304π3 336π2 (cid:1)144π+240 x8 − − − + (cid:0)30π5 182π4+180π3+400π2 608π(cid:1)+128 x7 − − + (cid:0) 5π6+53π5 33π4 392π3+424π2+896π(cid:1) 1280 x6 − − − − + (cid:0) 6π6 4π5+190π4+200π3 2464π2+3008π 128(cid:1) x5 (51) − − − − + (cid:0)960+2400π3 2784π2 576π 413π4+11/4π6 45(cid:1)π5 x4 − − − − + (cid:0)4π6+196π5 1136π4+1200π3+1472π2 1920π x(cid:1)3 − − + (cid:0) 36π6+264π5 192π4 1184π3+1440π2 x2 (cid:1) − − − + (cid:0) 24π6 16π5+408π4 480π3 x (cid:1) − − − + (cid:0)11π6 52π5+60π4 (cid:1) − 8 we form the polynomials: ψ (x) = ( 20π2+80π 80)x+(60π3 248π2+272π 32) x9, 1 − − − − (cid:16) (cid:17) ψ (x) = ( 65π4+304π3 336π2 144π+240)x2 2 − − − (cid:16)+(30π5 182π4+180π3+400π2 608π+128)x − − +( 5π6+53π5 33π4 392π3+424π2+896π 1280) x6, − − − − (cid:17) ψ (x) = ( 6π6 4π5+190π4+200π3 2464π2+3008π 128)x2 3 − − − − (52) +(cid:16)(960+2400π3 2784π2 576π 413π4+11π6 45π5)x − − − 4 − +(4π6+196π5 1136π4+1200π3+1472π2 1920π) x3, − − (cid:17) ψ (x) = ( 36π6+264π5 192π4 1184π3+1440π2)x2 4 − − − (cid:16)+( 24π6 16π5+408π4 480π3)x − − − +(11π6 52π5+60π4) . − It is easy to check that (cid:17) ψ (x)>0, 1 ψ (x)>0, 2 ψ (x)> ( 6π6 4π5+190π4+200π3 2464π2+3008π 128) 23 2 3 − − − − 100 (cid:18) +(960+2400π3 2784π2 576π 413π4+11π6 45π5)(cid:0) 23(cid:1) − − − 4 − 100 +(4π6+196π5 1136π4+1200π3+1472π2 1920π) (cid:0)23 (cid:1)3 − − 100 (53) (cid:19) > 27, (cid:0) (cid:1) − ψ (x)> ( 36π6+264π5 192π4 1184π3+1440π2) 23 2 4 − − − 100 (cid:18) +( 24π6 16π5+408π4 480π3) 23 (cid:0) (cid:1) − − − 100 +(11π6 52π5+60π4) 23 3 (cid:0) (cid:1) − 100 (cid:19) >54, (cid:0) (cid:1) for x (0,c ) 0, 23 . Thus we may conclude that ∈ 1 ⊂ 100 T10(cid:0)(x)=(cid:1)ψ1(x)+ψ2(x)+ψ3(x)+ψ4(x)>27>0, (54) for x (0,c ). Based on G′′(x) = g (x)/ Q(x)cos2x > T (x)/ Q(x)cos2x , ∈ 1 1 2 10 the inequality ′′ (cid:0) (cid:1) (cid:0) (cid:1) G (x)>0, (55) 1 was proved for x (0,c ). Let us notice that 1 ∈ ′ 1 π 2π−6 1 π 2π−6 G (0) = ln = ln 1+ 1 1 5 2 − π 5 2− − π 1 4(cid:16) (cid:17)(cid:0)π−1(cid:1)2k−1 (cid:0)π−(cid:16)1(cid:1)2k(cid:16) 2(cid:17)π(cid:17)−6 > 2 2 (56) 5 2k−1 − 2k − π k=1(cid:18) (cid:19) X = − π8 + π7 −7π6+7π5−7π4+7π3−7π2 + 4π−3561+6 >0 10240 560 480 100 32 15 10 5 1400 π and G (0)=0. (57) 1 9 Based on Theorem 4 it follows that G (x) >0 for x (0,c ). This also proves 1 1 thatG(x)>0forx (0,c ),whichinturnprovestha∈tF(x)>0forx c,π . ∈ 1 ∈ 2 Therefore, we can conclude that F(x) > 0 for any x 0,π . The proof of ∈ 2 (cid:0) (cid:1) Nishizava’s open problem is now completed. (cid:0) (cid:1) 3. Conclusions This paper proved an open problem stated by Nishizawa in [1], applying computation method from [4] and [14]. We note that proofs of polynomial in- equalities(17),(28),(45)and(50)canbebasedonreducing(bydifferentiation) of the corresponding polynomials to polynomials of a degree up to four (as il- lustrated in papers [12]−[15]), which allows symbolic radical representation of roots. Our approach, based on the fact (4), allows new proofs of some power- exponential inequalities from papers [1], [5]−[12] and monographs [2], [3]. Acknowledgement. TheauthorsaregratefultoProfessorG.Milovanovi´cand Professor C. Mortici for valuable comments on earlier draft of the paper. References [1] Y.Nishizawa: SharpeningofJordan’stypeandShafer-Fink’s typeinequal- ities with exponential approximations, Appl. Math. Comput. 269 (2015), 146–154. [2] D.S. Mitrinovic´: Analytic Inequalities, Springer-Verlag, 1970. [3] G.Milovanovic´,M.Rassias(ed.),AnalyticNumberTheory, Approxima- tion Theory and Special Functions,Springer2014,Chapter:G.D. Ander- son, M. Vuorinen, X. Zhang: Topics in Special Functions III,297–345. [4] C. Mortici: The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14:3 (2011), 535–541. [5] C.-P. Chen, W.-S. Cheung: Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl. 2011:136 (2011), 1–6. [6] Z.-H. Yang: New sharp Jordan type inequalities and their applications, Gulf. J. Math. 2:1 (2014), 1–10. [7] B.A. Bhayo, J. Sandor: On certain old and new trigonometric and hy- perbolic inequalities, Anal. Math. 41:3 (2015), 3–15. [8] C.-P. Chen, J. Sandor: Sharp inequalities for trigonometric and hyper- bolic functions, J. Math. Inequal. 9:1 (2015), 203–217. [9] Y. Nishizawa: Sharp Becker-Stark’s type inequalities with power exponen- tial functions, J. Inequal. Appl. 2015:402 (2015), 1–11. [10] M. Miyagi, Y. Nishizawa: A stronger inequality of Cirtoaje’s one with power-exponential functions, J. Nonlinear Sci. Appl. 8 (2015), 224–230. [11] Z.-H.Yang,Y.-M. Chu: A Sharp double inequalityinvolving trigonomet- ric functions and its applications, J. Math. Inequal. 10:2 (2016), 423–432. 10