A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods ∗† Tao Lin ‡, Qing Yang§, Xu Zhang¶ 5 1 0 Abstract 2 n Inthispaper, wederivea priorierrorestimatesforaclassofinteriorpenaltydiscontinuousGalerkin a (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface J problem. The error estimation shows that these methods can converge optimally in a mesh-dependent 3 energy norm. The combination of IFEs and DG formulation in these methods allows local mesh re- 1 finement in the Cartesian mesh structure for interface problems. Numerical results are provided to demonstrate the convergence and local mesh refinement features of these DG-IFE methods. ] A N 1 Introduction . h t Let Ω be a rectangular domain in R2, and let Γ Ω be a smooth curve separating Ω into two sub- a ⊂ m domainsΩ− andΩ+ withΩ− Ω+ = (seethefirstplotinFigure1). Weconsiderthefollowingtypical ∩ ∅ elliptic interface problem [ 1 (β u)=f, in Ω+ Ω−, (1.1) −∇· ∇ ∪ v u=0, on ∂Ω, (1.2) 2 4 where the diffusion coefficient β is a positive piecewise constant function: 1 3 (cid:26) 0 β(X)= β−, X ∈Ω−, (1.3) . β+, X Ω+. 1 ∈ 0 According to the conservation laws, the following jump conditions are required on the interface: 5 1 v: (cid:20)(cid:20) [[u(cid:21)(cid:21)]]Γ = 0, (1.4) ∂u i X β = 0. (1.5) ∂n Γ r a Interface problems arise in many applications where mathematical simulations are carried out in a domaincontainingmultiplematerials. Theellipticinterfaceproblem(1.1)-(1.5)consideredinthisarticle appearsfrequentlybecausetheinvolveddifferentialequationcapturesmanybasicphysicalphenomenons. Awidevarietyofnumericalmethodshavebeendevelopedforinterfaceproblems,amongwhichthefinite element methods are advantageous for their capability to handle simulation domains with complicated geometry. Itiswell-knownthatconventionalfiniteelementmethodsgenerallyrequirethemeshtofitthe ∗Key words: immersed finite element, discontinuous Galerkin, Cartesian mesh, interface problems, local mesh refinement †This work is partially supported by NSF grant DMS-1016313 ‡Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, [email protected] §School of Mathematical Science, Shandong Normal University, Jinan 250014, P. R. China ¶Department of Mathematics, Purdue University, West Lafayette, IN, 47907, [email protected] 1 interface geometry (see the second plot in Figure 1); otherwise, the convergence cannot be guaranteed [3,6,10]. However,foraproblemwithacomplicatedmaterialinterface,constructingasatisfactorybody- fitting mesh is often costly, and this burden becomes more severe if the simulation involves a moving interface[21,31,35]becausethemeshhastobegeneratedrepeatedlyaccordingtoeachinterfacelocation tobeconsidered. Inaddition,somesimulations,suchastheparticle-in-cell(PIC)method[5,24,40],can be carried out more efficiently on structured/Cartesian meshes. Due to these reasons, a wide variety of numerical methods based on Cartesian meshes have been developed. For an overview of these methods, we refer to [14, 15, 23, 27, 33, 34] and the references therein. Immersedfiniteelement(IFE)methodswererecentlyintroducedforsolvinginterfaceproblems. The main feature of IFE methods is that they can use meshes independent of the interface location, i.e., they allow interface to cut through the interior of elements in a mesh (see the last two plots in Figure 1). Hence, Cartesian (triangular or rectangular) meshes can be preferably employed in IFE methods to solve interface problems. We refer the readers to [11, 25, 26, 28, 29] for more features about IFE methods basedon triangularmeshes, and[17, 19, 30,39] for IFEmethods basedon rectangular meshes. We note that IFE methods in these literatures are applied in the continuous Galerkin formulation. Ω+ Γ −→ Ω− ∂Ω −→ Figure 1: from left: a simulation domain, a body-fitting triangular mesh, a non-body-fitting Cartesian mesh, and a non-body-fitting triangular mesh. The discontinuous Galerkin (DG) methods for elliptic boundary value problems can be traced back to1970s(see[4,36])andtheybecomeincreasinglypopularrecentlyasindicatedbythesesurveyarticles and books [2, 12, 22, 37]. Because there is no continuity imposed on the approximating function across theelementboundary,DGmethodscanlocallyperformh-,p-,andhp-refinementflexiblyandefficiently. For elliptic and parabolic equations, the interior penalty DG (IPDG) methods [1, 13, 38, 41] are well understood and widely used. The main feature of IPDG methods is that penalty terms are added on interior edges to stabilize the bilinear form of the scheme, so that the linear system is positive definite. In[16,18], theIFEandIPDGideaswerecombinedtogetherforsolvinginterfaceproblemsonCartesian meshes with local refinement capability. To alleviate the issue of higher degrees of freedom in usual DG formulation, authors in [20] considered the so-called selective DG-IFE methods that employ DG formulation in selected elements while using the usual Galerkin formulation in the rest of the solution domain. Numerical examples have demonstrated that these DG-IFE methods can converge optimally, and our goal in this article is to theoretically establish the optimal a priori error estimates for DG-IFE methods that were discussed in [16, 18, 20]. The rest of the paper is organized as follows. In Section 2, we recall the DG-IFE methods originally proposedin[16,18]. InSection3,wepresentapriorierrorestimatesfortheseDG-IFEmethods. Anerror estimateinamesh-dependantenergynormisderived,andthiserrorestimateisoptimalaccordingtothe polynomials used in the IFE spaces. In Section 4, numerical experiments are provided to demonstrate features of DG-IFE methods. Brief conclusions are given in Section 5. 2 2 Discontinuous Galerkin Immersed Finite Element Methods In this paper, we adopt notations and norms of usual Sobolev spaces. For r >1 and any subset G Ω ⊆ that is cut through by Γ, we use the following function spaces: H˜r(G)={v ∈H1(G): v|G∩Ωs ∈Hr(G∩Ωs),s=+ or −}, H˜0r(G)=H˜r(G)∩H01(G), equipped with the norm v 2 = v 2 + v 2 , v H˜r(G). (cid:107) (cid:107)H˜r(G) (cid:107) (cid:107)Hr(G∩Ω−) (cid:107) (cid:107)Hr(G∩Ω+) ∀ ∈ Fromnowon,weuseC withorwithoutsubscriptstodenotegenericpositiveconstants,possiblydifferent at different occurrences, but they are independent of the mesh size and interface. Let with0<h<1be afamily oftriangularor rectangularCartesianmeshesof Ω. An element h {T } cutthroughbytheinterfaceiscalledaninterfaceelement;otherwise,itiscalledanon-interfaceelement. For each mesh , we let i be the set of interface elements of and n be the set of non-interface Th Th Th Th elements. We denote by the set of edges of . Also, let ˚ and b be the set of interior edges and Eh Th Eh Eh boundary edges of , respectively. Similarly, if an edge is cut through by the interface, it is called an h T interface edge; otherwise, it is called a non-interface edge. Let i and n be the set of interface edges Eh Eh and non-interface edges, respectively. Moreover, we use ˚i and ˚n to denote the set of interior interface Eh Eh edgesandinteriornon-interfaceedges, respectively. Withoutlossofgenerality, weassumethatelements in satisfy the following conditions: h T (H1) If one edge of an element meets Γ at more than one point, then this edge is part of Γ. (H2) If Γ meets the boundary of an element at two points, then these two points must be on different edges of this element. For every interface element K i, we assume its boundary intersects with the interface Γ at ∈ Th points D and E. Then, the line segment DE divides K into two sub-elements K+ and K with − K =K+ K DE. With a given mesh on Ω, we define the following broken Sobolev spaces: − h ∪ ∪ T H˜2( )= v L2(Ω): K n,v H2(K); Th { ∈ ∀ ∈Th |K ∈ ∀K ∈Thi,v|K ∈H1(K), v|Ks ∈H2(Ks),s=+,−}. and H˜2( )= v H˜2( ):v =0 . 0 Th { ∈ Th |∂Ω } We now recall some standard notations for describing IPDG methods [9, 22, 37]. For each edge B, we associate a unit normal vector n . If B ˚, we let K and K be two elements that share B B h B,1 B,2 ∈ E as the common edge and let n be the outward normal with respect to K . If B b, n is taken B B,1 ∈ Eh B to be the unit outward vector normal to ∂Ω. For a function u defined on K K , we denote its B,1 B,2 ∪ average and jump over B ˚ by h ∈E 1 u = ((u ) +(u ) ), [[u]] =(u ) (u ) . {{ }}B 2 |KB,1 |B |KB,2 |B B |KB,1 |B − |KB,2 |B If B is a boundary edge, we set u =[[u]] =u . {{ }}B B |B For simplicity, we usually drop the subscript B from these notations if there is no danger to cause any confusion. To obtain a variational form for the interface problem (1.1) - (1.5), we multiply (1.1) by a test function v H˜2( ), integrate both sides on each element K , and apply the Green’s formula to ∈ 0 Th ∈ Th have (cid:90) (cid:90) (cid:90) β u vdX β u n vds= fvdX. (2.1) K ∇ ·∇ − ∇ · K ∂K K 3 Note that (2.1) holds regardless whether K is a non-interface element or an interface element. For K n, the derivation follows from the standard procedure. When K is an interface element, (2.1) ∈ Th follows from applying the Green’s formula piecewisely over sub-elements of K determined according to thesmoothnessofuandv,thensummingupoverK andapplyingthefluxcontinuity(1.5). Summarizing (2.1) over all elements we obtain (cid:90) (cid:90) (cid:90) (cid:88) (cid:88) β u vdX β u n [[v]]ds= fvdX. (2.2) B ∇ ·∇ − {{ ∇ · }} K∈Th K B∈E˚h B Ω Since the solution u is continuous almost everywhere in Ω, we can assume (cid:88) (cid:90) (cid:88) σ0 (cid:90) (cid:15) β v n [[u]]ds=0, B [[u]][[v]]ds=0, (2.3) {{ ∇ · B}} B α B∈E˚h B B∈E˚h | | B for any constants (cid:15), α > 0, and σ0 0. Here B denotes the length of B. Adding the two terms in (2.3) to (2.2), we obtain the weakBfor≥m of interfa|ce| problem (1.1) - (1.5): Find u H˜2(Ω) such that ∈ 0 a (u,v)=(f,v), v H˜2( ), (2.4) (cid:15) ∀ ∈ 0 Th where the bilinear form a (, ): H (Ω) H (Ω) R is (cid:15) h h · · × → (cid:90) (cid:90) (cid:88) (cid:88) a (w,v) = β w vdX β w n [[v]]ds (cid:15) B ∇ ·∇ − {{ ∇ · }} K∈Th K B∈E˚h B (cid:88) (cid:90) (cid:88) σ0 (cid:90) +(cid:15) β v n [[w]]ds+ B [[w]][[v]]ds, (2.5) {{ ∇ · B}} B α B∈E˚h B B∈E˚h | | B and H (Ω) = H˜2(Ω)+H˜2( ). The weak form derived here for the interface problem (1.1)-(1.5) is in h 0 0 Th the same format as the standard weak form used in DG finite element methods for the usual elliptic boundary value problems [9, 22, 37]. As suggested by DG finite element methods, the parameter (cid:15) is usually chosen as 1, 0, or 1. Note that the bilinear form a (, ) is symmetric if (cid:15) = 1 and is (cid:15) − · · − nonsymmetric otherwise. We now introduce the IFE approximation of the broken space H˜2( ). For every element K , 0 Th ∈ Th denote by A , i = 1, ,d , the vertices of K. Here d = 3 or d = 4 depending on whether K is a i K K K ··· triangular or rectangular element. On each non-interface element K n, we let ψ , i = 1, ,d be ∈ Th i ··· K the standard linear or bilinear finite element nodal basis associated with the vertex A of K. The local i FE space on K n is the defined as ∈Th S (K)=span ψ :1 i d . h i K { ≤ ≤ } On an interface element K i, we let φ , i = 1, ,d be the linear [28, 29] or bilinear [17, 30] IFE ∈ Th i ··· K nodal basis associated with vertex A . We let local IFE space on K i be i ∈Th S (K)=span φ :1 i d . h i K { ≤ ≤ } Then, we define the discontinuous IFE space over the mesh as follows: h T S ( )= v L2(Ω):v S (K) , S˚ ( )= v S ( ):v =0 . h h K h h h h h ∂Ω T { ∈ | ∈ } T { ∈ T | } One can easily see that S˚ ( ) is a subspace of H (Ω). h h h Finally, we state the DGT-IFE methods for the interface problem (1.1) - (1.5) as: Find u S˚ ( ) h h h ∈ T such that a (u ,v )=(f,v ), v S˚ ( ). (2.6) (cid:15) h h h h h h ∀ ∈ T 4 3 A Priori Error Estimation In this section, we derive a priori error estimates for the DG-IFE methods (2.6) in an energy norm :H (Ω) R defined as follows h h (cid:107)·(cid:107) → 1/2 (cid:88) (cid:90) (cid:88) σ0 (cid:90) (cid:107)v(cid:107)h = β∇v·∇vdX+ BBα [[v]][[v]]ds . (3.1) K∈Th K B∈E˚h | | B Wefirstpresentafewlemmasrequiredintheerroranalysis. Bythestandardscalingargument,onecan show the following trace inequalities [37]: Lemma 3.1. (Standard trace inequalities) Let K be a triangle or rectangle with diameter h , and B K be an edge of K. There exists a constant C such that v C B 1/2 K 1/2( v +h v ), v H1(K), (3.2) L2(B) − L2(K) K L2(K) (cid:107) (cid:107) ≤ | | | | (cid:107) (cid:107) (cid:107)∇ (cid:107) ∀ ∈ v C B 1/2 K 1/2( v +h 2v ), v H2(K), (3.3) L2(B) − L2(K) K L2(K) (cid:107)∇ (cid:107) ≤ | | | | (cid:107)∇ (cid:107) (cid:107)∇ (cid:107) ∀ ∈ where 2v is the Hessian of v. ∇ On an interface element K i, we recall from [29, 30] that the local IFE space S (K) H1(K). ∈ Th h ⊂ This implies that the trace inequality (3.2) is valid for v S (K). However, since S (K) H2(K) for h h ∈ (cid:54)⊂ K i ingeneral,thesecondinequality(3.3)cannotbeappliedtofunctionsinS (K). Nevertheless,in ∈Th h [32, 42], this trace inequality has been extended to IFE functions. We recall this result in the following lemma. Lemma 3.2. (Trace inequalities for IFE functions) Let be a Cartesian triangular or rectangular h T mesh and let K be an interface triangle or rectangle with diameter h and let B be an edge of K. h K ∈T There exists a constant C, independent of interface location but depending on the jump of the coefficient β, such that for every linear or bilinear IFE function v defined on K, the following inequality hold (cid:107)β∇v·nB(cid:107)L2(B) ≤Ch−K1/2(cid:107)(cid:112)β∇v(cid:107)L2(K). (3.4) We now describe the interpolation with IFE functions. For K n, the local interpolation operator ∈Th is defined as In :C(K) S (K): h,K → h (cid:88)dK In u(X)= u(A )ψ (X), K n. h,K i i ∈Th i=1 For K i, the local interpolation operator is defined as Ii :C(K) S (K): ∈Th h,K → h (cid:88)dK Ii u(X)= u(A )φ (X), K i. h,K i i ∈Th i=1 On each non-interface element, we have the standard approximation theory for the finite element inter- polation: u In u +h u In u Ch2 u , K n. (3.5) (cid:107) − h,K (cid:107)L2(K) K| − h,K |H1(K) ≤ K| |H2(K) ∀ ∈Th On each interface element, the approximation property of the IFE interpolation proved in [17, 29] provides similar error bounds as follows: u Ii u +h u Ii u Ch2 u , K i, (3.6) (cid:107) − h,K (cid:107)L2(K) K| − h,K |H1(K) ≤ K(cid:107) (cid:107)H˜2(K) ∀ ∈Th where the constant C is independent of interface location. For u H˜2(Ω), let I :H˜2(Ω) S ( ) be h h h ∈ → T the interpolation defined by (cid:40) In u, K n, (I u) = h,K ∈Th (3.7) h |K Ii u, K i. h,K ∈Th 5 Multiplying h−K1 on both sides of (3.5) and (3.6), then summing up for all non-interface and interface elements, we can obtain an interpolation error bound on the domain Ω as stated in the next lemma. Lemma 3.3. For u H˜2(Ω), satisfying the interface jump conditions (1.4) and (1.5), there exists a ∈ constant C such that (cid:16) (cid:88) (cid:17)1/2 (cid:16) (cid:88) (cid:17)1/2 h−K2(cid:107)u−Ihu(cid:107)2L2(K) + |u−Ihu|2H1(K) ≤Ch(cid:107)u(cid:107)H˜2(Ω), (3.8) K∈Th K∈Th where h= max h . K K∈Th The following lemma provides the approximation property of I u in the energy norm . h h (cid:107)·(cid:107) Lemma 3.4. Assume α 1 in the energy norm (3.1). For every u H˜2(Ω), satisfying the interface ≤ ∈ jump conditions (1.4) and (1.5), there exists a constant C such that u I u Ch u . (3.9) (cid:107) − h (cid:107)h ≤ (cid:107) (cid:107)H˜2(Ω) Proof. By the definition of , we have h (cid:107)·(cid:107) (cid:88) (cid:90) (cid:88) σ0 u I u 2 = β (u I u)2dX+ B [[u I u]] 2 . (3.10) (cid:107) − h (cid:107)h |∇ − h | B α(cid:107) − h (cid:107)L2(B) K∈Th K B∈E˚h | | For the first term on the right hand side, we use the estimate (3.8) to have (cid:90) (cid:88) (cid:88) β (u I u)2dX β (u I u) 2 β h2 u 2 (3.11) |∇ − h | ≤ max (cid:107)∇ − h (cid:107)L2(K) ≤ max (cid:107) (cid:107)H˜2(Ω) K∈Th K K∈Th where β = max β ,β+ . Now we bound the second term in (3.10). Using the standard trace max − { } equality (3.2) and the approximation properties (3.5) or (3.6), we have σ0 σ0 B [[u I u]] 2 B ( (u I u) 2 + (u I u) 2 ) B α(cid:107) − h (cid:107)L2(B) ≤ B α (cid:107) − h |KB,1(cid:107)L2(B) (cid:107) − h |KB,2(cid:107)L2(B) | | | | (cid:16) (cid:17) ≤ Ch−K1B−,1α (cid:107)u−Ihu(cid:107)2L2(KB,1)+h2KB,1(cid:107)∇(u−Ihu)(cid:107)2L2(KB,1) (cid:16) (cid:17) +ChK−1B−,2α (cid:107)u−Ihu(cid:107)2L2(KB,2)+h2KB,2(cid:107)∇(u−Ihu)(cid:107)2L2(KB,2) ≤ Ch3K−Bα,1(cid:107)u(cid:107)2V(KB,1)+Ch3K−Bα,2(cid:107)u(cid:107)2V(KB,2) (cid:16) (cid:17) Ch3 α u 2 + u 2 , ≤ − (cid:107) (cid:107)V(KB,1) (cid:107) (cid:107)V(KB,2) where V(K) = H2(K) for K n and V(K) = H˜2(K) for K i, and h = max h . Also, the second inequality is due to the∈shTahpe-regular property of Cartesia∈nTthriangular orKre∈cTthanKgular meshes h C B , i=1,2. Thus, for α 1, we get KB,i ≤ | | ≤ (cid:88) σ0 B [[u I u]] 2 Ch2 u 2 . (3.12) B α(cid:107) − h (cid:107)L2(B) ≤ (cid:107) (cid:107)H˜2(Ω) B∈E˚h | | Finally, combining (3.11) and (3.12), we get (3.9). The coercivity of the bilinear form a (, ) is analyzed in the following lemma. (cid:15) · · Lemma 3.5. There exists a constant κ>0 such that a (v ,v ) κ v 2, v S˚ ( ) (3.13) (cid:15) h h ≥ (cid:107) h(cid:107)h ∀ h ∈ h Th holdsfor(cid:15)=1unconditionallyandholdsfor(cid:15)=0 or 1undertheconditionsthatthepenaltyparameter − σ0 is large enough and α 1. B ≥ 6 Proof. From the definition of a (, ), we have (cid:15) · · (cid:88) (cid:90) (cid:88) (cid:90) (cid:88) σ0 (cid:90) a (v ,v )= β v 2dX+((cid:15) 1) β v n [[v ]]ds+ B [[v ]]2ds. (3.14) (cid:15) h h |∇ h| − {{ ∇ h· B}} h B α h K∈Th K B∈E˚h B B∈E˚h | | B We first note that, when (cid:15) = 1, the coercivity follows directly from (3.14) and the definition of . h If (cid:15) = 0 or 1, we need to bound the second term on the right hand side of (3.14). For each B(cid:107)·(cid:107)˚, h − ∈ E recall that K , i=1,2 are two elements sharing B as their common edge. If K , i=1 or 2 is B,i h B,i ∈T a non-interface element, by the trace inequality (3.3) and inverse inequalities, we have (β v n ) β ( v ) (cid:107) ∇ h· B |KB,i(cid:107)L2(B) ≤ max(cid:107) ∇ h |KB,i(cid:107)L2(B) 1 ≤ Cβmaxh−KB2,i(cid:107)∇vh(cid:107)L2(KB,i) βmax 1 (cid:112) ≤ C√β hK−B2,i(cid:107) β∇vh(cid:107)L2(KB,i), (3.15) min where β = min β ,β+ , and β = max β ,β+ . Then, using the assumption that α 1 and min − max − { } { } ≥ by either the estimate (3.15) or IFE trace inequality (3.4) depending on whether the element is a non- interface element or an interface element, we have (cid:90) β v n [[v ]]ds β v n [[v ]] h B h h B L2(B) h L2(B) {{ ∇ · }} ≤ (cid:107){{ ∇ · }}(cid:107) (cid:107) (cid:107) B 1(cid:0) (cid:1) (β v n ) + (β v n ) [[v ]] ≤ 2 (cid:107) ∇ h· B |KB,1(cid:107)L2(B) (cid:107) ∇ h· B |KB,2(cid:107)L2(B) (cid:107) h (cid:107)L2(B) C (cid:16) 1 (cid:112) 1 (cid:112) (cid:17) ≤ 2 h−KB2,1(cid:107) β∇vh(cid:107)L2(KB,1)+hK−B2,2(cid:107) β∇vh(cid:107)L2(KB,2) (cid:107)[[vh]](cid:107)L2(B) C(cid:16) (cid:112)β v 2 + (cid:112)β v 2 (cid:17)12 1 [[v ]] . ≤ (cid:107) ∇ h(cid:107)L2(KB,1) (cid:107) ∇ h(cid:107)L2(KB,2) B α/2(cid:107) h (cid:107)L2(B) | | Summing over all interior edges and using the Young’s inequality, we have (cid:90) (cid:88) β v n [[v ]]ds h B h {{ ∇ · }} B B∈E˚h (cid:88) (cid:16) (cid:112) (cid:112) (cid:17)1/2 1 C β v 2 + β v 2 [[v ]] ≤ (cid:107) ∇ h(cid:107)L2(KB,1) (cid:107) ∇ h(cid:107)L2(KB,2) B α/2(cid:107) h (cid:107)L2(B) B∈E˚h | | 1/2 1/2 (cid:88) 1 (cid:88) (cid:16) (cid:112) (cid:112) (cid:17) ≤ C B α(cid:107)[[vh]](cid:107)2L2(B) (cid:107) β∇vh(cid:107)2L2(KB,1)+(cid:107) β∇vh(cid:107)2L2(KB,2) B∈E˚h | | B∈E˚h δ (cid:88) (cid:112) C (cid:88) 1 β v 2 + [[v ]] 2 . (3.16) ≤ 2 (cid:107) ∇ h(cid:107)L2(K) 2δ B α(cid:107) h (cid:107)L2(B) K∈Th B∈E˚h | | Then, for (cid:15)=0, we can choose C δ =1 and σ0 > , B 2 and for (cid:15)= 1, we can choose − 1 δ = and σ0 >2C. 2 B Substituting these parameters in (3.16) and then putting it in (3.14), we obtain (3.13). We also need an error bound for the IFE interpolation I u on interface edges which has been proved h in [32]. We present the result in the following lemma. 7 Lemma 3.6. For every u H˜3(Ω), satisfying the interface jump conditions (1.4) and (1.5), there exists ∈ a constant C independent of interface location such that (cid:16) (cid:17) β( (u I u)) n 2 C h2 u 2 +h u 2 , (3.17) (cid:107) ∇ − h |K · B(cid:107)L2(B) ≤ K(cid:107) (cid:107)H˜3(Ω) K(cid:107) (cid:107)H˜2(K) where K is an interface element and B is one of its interface edge. The assumptions of α in Lemma 3.4 and Lemma 3.5 suggest that we should choose α=1 in our DG formulation (2.6). Now we are ready to prove the a priori error estimate for DG-IFE method (2.6). Theorem 3.1. Let u H˜3(Ω) be the exact solution to the interface problem (1.1) to (1.5) and u h ∈ ∈ S ( ) be the solution to (2.6) with α=1, (cid:15)= 1, 0, or 1. Then there exists a constant C such that h h T − u u Ch u . (3.18) (cid:107) − h(cid:107)h ≤ (cid:107) (cid:107)H˜3(Ω) Proof. Subtracting the weak form (2.4) from the DG-IFE scheme (2.6), we get a (u u ,v )=0, v S˚ ( ). (3.19) (cid:15) h h h h h − ∀ ∈ T For every w S˚ ( ), using (3.19) and the coercivity (3.13), we have h h h ∈ T κ u w 2 a (u w ,u w )=a (u w ,u w ) (cid:107) h− h(cid:107)h ≤≤ (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)K(cid:15)(cid:88)(cid:12)∈Thh−(cid:90)Kβh∇(hu−−whh)·∇((cid:15)uh−−whh)dXh−(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)hB(cid:88)(cid:12)∈E˚h(cid:12)(cid:90)B{{β∇(u−wh)·nB}}[[uh−wh]]ds(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) +(cid:12)(cid:12)(cid:12)(cid:12) (cid:88) (cid:90) {{β∇(uh−wh)·nB}}[[u−wh]]ds(cid:12)(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)(cid:12) (cid:88) BσB0α (cid:90) [[u−wh]][[uh−wh]]ds(cid:12)(cid:12)(cid:12)(cid:12) (cid:12)B∈E˚h B (cid:12) (cid:12)B∈E˚h | | B (cid:12) (cid:44) T +T +T +T . (3.20) 1 2 3 4 WeproceedtoboundthetermsT ,i=1,2,3,4in(3.20). BytheCauchy-SchwarzinequalityandYoung’s i inequality with parameter δ >0, we can easily bound T and T : 1 2 (cid:32) (cid:33)1/2(cid:32) (cid:33)1/2 (cid:88) (cid:112) (cid:88) (cid:112) T β (u w ) 2 β (u w ) 2 1 ≤ (cid:107) ∇ − h (cid:107)L2(K) (cid:107) ∇ h− h (cid:107)L2(K) K∈Th K∈Th 1 (cid:88) (cid:112) β (u w ) 2 +δ β (u w ) 2 ≤ 4δ max(cid:107)∇ − h (cid:107)L2(Ω) (cid:107) ∇ h− h (cid:107)L2(K) K∈Th C(δ) (u w ) 2 +δ u w 2, (3.21) ≤ (cid:107)∇ − h (cid:107)L2(Ω) (cid:107) h− h(cid:107)h and (cid:88) B α (cid:88) σ0 T C(δ) | | β (u w ) n 2 +δ B [[u w ]] 2 2 ≤ σ0 (cid:107){{ ∇ − h · B}}(cid:107)L2(B) B α(cid:107) h− h (cid:107)L2(B) B∈E˚h B B∈E˚h | | (cid:88) B α C(δ) | | β (u w ) n 2 +δ u w 2, (3.22) ≤ σ0 (cid:107){{ ∇ − h · B}}(cid:107)L2(B) (cid:107) h− h(cid:107)h B∈E˚h B whereC(δ)emphasizesthatthisisaconstantdependingonδ. ForT ,bytheCauchy-Schwarzinequality 3 we have (cid:88) T β (u w ) n [[u w ]] . (3.23) 3 h h B L2(B) h L2(B) ≤ (cid:107){{ ∇ − · }}(cid:107) (cid:107) − (cid:107) B∈E˚h 8 First, using the standard trace equality (3.2), we have [[u w ]] (u w ) + (u w ) (cid:107) − h (cid:107)L2(B) ≤ (cid:107) − h |KB,1(cid:107)L2(B) (cid:107) − h |KB,2(cid:107)L2(B) ≤ Ch−K1B/,21(cid:0)(cid:107)u−wh(cid:107)L2(KB,1)+hKB,1(cid:107)∇(u−wh)(cid:107)L2(KB,1)(cid:1) +Ch−K1B/,22(cid:0)(cid:107)u−wh(cid:107)L2(KB,2)+hKB,2(cid:107)∇(u−wh)(cid:107)L2(KB,2)(cid:1). Then, by the trace inequalities (3.3) or (3.4) , we have (cid:107){{β∇(uh−wh)·nB}}(cid:107)L2(B) ≤C(cid:16)h−K1B/,21(cid:107)(cid:112)β∇(uh−wh)(cid:107)L2(KB,1)+h−K1B/,22(cid:107)(cid:112)β∇(uh−wh)(cid:107)L2(KB,2)(cid:17). Substituting the above two bounds into (3.23) and applying Young’s inequality, we obtain (cid:32) (cid:33) (cid:88) (cid:88) T3 ≤C(δ) h−K2(cid:107)u−wh(cid:107)2L2(K)+ (cid:107)∇(u−wh)(cid:107)2L2(K) +δ(cid:107)uh−wh(cid:107)2h. (3.24) K∈Th K∈Th For T , we use the assumption α=1, the Cauchy-Schwarz inequality, and Young’s inequality to have 4 (cid:88) (cid:18) 1 σ0 (cid:90) σ0 (cid:90) (cid:19) T B [[u w ]][[u w ]]ds+δ B [[u w ]][[u w ]]ds . (3.25) 4 h h h h h h ≤ 4δ B − − B − − B∈E˚h | | B | | B Again, by trace inequality (3.2), we have σ0 (cid:90) σ0 (cid:16) (cid:17) B [[u w ]]2ds C B (u w ) 2 + (u w ) 2 B − h ≤ B (cid:107) − h |KB,1(cid:107)L2(B) (cid:107) − h |KB,2(cid:107)L2(B) | | B | | ≤ Ch−K2B,1(cid:0)(cid:107)u−wh(cid:107)L2(KB,1)+hKB,1(cid:107)∇(u−wh)(cid:107)L2(KB,1)(cid:1)2 +Ch−K2B,2(cid:0)(cid:107)u−wh(cid:107)L2(KB,2)+hKB,2(cid:107)∇(u−wh)(cid:107)L2(KB,2)(cid:1)2. (3.26) Using (3.26) in (3.25), we have (cid:32) (cid:33) (cid:88) (cid:88) T4 ≤C(δ) h−K2(cid:107)u−wh(cid:107)2L2(K)+ (cid:107)∇(u−wh)(cid:107)2L2(K) +δ(cid:107)uh−wh(cid:107)2h. (3.27) K∈Th K∈Th Substituting (3.21), (3.22), (3.24) and (3.27) into (3.20) and choosing δ =κ/8, we obtain (cid:88) (cid:88) B u w 2 C (u w ) 2 +C | | β (u w ) n 2 (cid:107) h− h(cid:107)h ≤ (cid:107)∇ − h (cid:107)L2(K) σ0 (cid:107){{ ∇ − h · B}}(cid:107)L2(B) K∈Th B∈E˚h B (cid:88) +C h−K2(cid:107)u−wh(cid:107)2L2(K) (3.28) K∈Th Now, we let w be the IFE interpolation I u in (3.28) and use the optimal approximation capability of h h linear or bilinear DG-IFE spaces (3.8) to have (cid:88) (cid:88) u I u 2 Ch2 u 2 +Ch (β (u I u) n ) 2 . (3.29) (cid:107) h− h (cid:107)h ≤ (cid:107) (cid:107)H˜2(Ω) (cid:107) ∇ − h · B |KB,i(cid:107)L2(B) B∈E˚hi=1,2 We now bound the second term on the right hand side of (3.29). If K , i = 1 or 2 is a non-interface B,i element, we use the trace inequality (3.3) to obtain (cid:107)(β∇(u−Ihu)·nB)|KB,i(cid:107)2L2(B) ≤ C(h−K1B,i(cid:107)∇(u−Ihu)(cid:107)2L2(KB,i)+hKB,i(cid:107)∇2u(cid:107)2L2(KB,i)) Ch u 2 . (3.30) ≤ KB,i(cid:107) (cid:107)H2(KB,i) 9 If K is an interface element, we use (3.17) to get B,i (cid:16) (cid:17) (β (u I u) n ) 2 C h2 u 2 +h u 2 . (3.31) (cid:107) ∇ − h · B |KB,i(cid:107)L2(B) ≤ KB,i(cid:107) (cid:107)H˜3(Ω) KB,i(cid:107) (cid:107)H˜2(KB,i) Due to the shape regularity of mesh , we have the following bound on the union of interface elements h T (cid:88) (cid:88) h2 u 2 h u 2 h Ch u 2 . (3.32) K(cid:107) (cid:107)H˜3(Ω) ≤ (cid:107) (cid:107)H˜3(Ω) K ≤ (cid:107) (cid:107)H˜3(Ω) K i K i ∈Th ∈Th Summing up the estimates (3.30) and (3.31) over all interior edges, and using the bound in (3.32), we obtain (cid:88) (cid:88) (β (u I u) n ) 2 Ch u 2 +Ch u 2 Ch u 2 . (3.33) (cid:107) ∇ − h · B |KB,i(cid:107)L2(B) ≤ (cid:107) (cid:107)H˜3(Ω) (cid:107) (cid:107)H˜2(Ω) ≤ (cid:107) (cid:107)H˜3(Ω) B∈E˚hi=1,2 Then, substituting (3.33) to (3.29) we obtain u I u Ch u . (3.34) (cid:107) h− h (cid:107)h ≤ (cid:107) (cid:107)H˜3(Ω) Finally, the error estimate (3.18) follows from triangle inequality, (3.34) and (3.9). Remark 3.1. The DG-IFE methods proposed in this article and their related error estimation can be extended to arbitrary shape-regular unstructured interface independent meshes. Remark 3.2. The proof of Theorem 3.1 requires that the solution is piecewise H3, which is higher than the usual piecewise H2 assumption imposed on methods using a finite element space based on linear polynomials. Consequently, our error estimate here is optimal according to the rate of convergence expected from linear polynomials but not with respect to the regularity of solution space. 4 Numerical Examples In this section, we present numerical examples to demonstrate features of interior penalty DG-IFE methodsforellipticinterfaceproblems. LetthesolutiondomainΩbetheopenrectangle( 1,1) ( 1,1) and let the interface Γ be the ellipse centered at (x ,y )=( 0.2,0.1) with semi-axes a=− π ,×b−= 3a. 0 0 − 6.28 2 The interface separates Ω into two sub-domains, denoted by Ω and Ω+, i.e., − Ω = (x,y):r(x,y)<1 , and Ω+ = (x,y):r(x,y)>1 , − { } { } where (cid:114) (x x )2 (y y )2 0 0 r(x,y)= − + − . a2 b2 The exact solution u to the interface problem is chosen as follows (cid:40) a2b2 rp , if (x,y) Ω , u(x,y)= β(cid:16)− (cid:17) ∈ − (4.1) a2b2 rp + 1 1 , if (x,y) Ω+. β+ β− − β+ ∈ Here p is a parameter and we choose p = 5 in Examples 1 - 3 representing a solution with enough regularity, and p=0.5 in Example 4 representing a solution with low regularity. Note that this solution does not satisfy the homogeneous boundary condition (1.2). We use this function for numerical verifi- cation because both the algorithm and the analysis in Section 2 and Section 3 can be extended to the nonhomogeneous boundary condition case via a standard treatment. Example 1: In this example, we present a group of numerical results for demonstrating the con- vergence of the DG-IFE methods on Cartesian triangular meshes. Additional numerical results on 10