ebook img

A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) PDF

329 Pages·2013·16.619 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

JosepFh.H aiJrr,. G.TomaMs. H ult ChristMi.a nR ingle MarkoS ar stedt A PRMIERO N PARTILAELA SSTQ UARES STRUCTUREAQLU ATION MODELNIG (PLS-SEM) Tot hAec adeomfMy a rkeStciineg(n AcMeSa )ni dt mse mbers A PRIM01ENIR PA,RTILAIELA S,ST1Q1 UARES STIRUCTILJIREAQLU ATION M10D,ELIN{GP LS--SEM) Jos,ephH aEi Jrr,. KennesaSwt atUen iversity G.TomaM:s. H ufit MichigaSnt atUen iversfiatysL,ta nsing ChristMi.oR n� ngle TechniUcnoilv erosfi tHyo mburg-HoGrebrumtagn,y MarkoS arstedt Otto -vo11-GuerVir"lcikvee f:c,.ity.M,o r;deburg ($)SAGE LosAng eles IL ondIo nN ew OOOii Singapore I Washington DC ISAGE LosA ngelIeL so ndoInN ewD elhi SingapoIWr aes hingtDoCn FORI NFORMATION: Copyri© g2h0t1b 4y S AGEP ublications, Inc. SAGEP ublicaItnico.n s, Alrli grhetsse rNvoep da.ro tf tbhoiomska yb e 245T5e lRloeard reprodouruc teidl iinaz nefydo romrb ya nmye ans, electorrom neicch aniinccallu,pd hiontgo copying, ThousaOnadk sC,a lifo9r1n3i20a recordoirbn yag n,iy n formsattoiroaanng dre e trieval E-maoirdle:r @sagepub.com systweimt,h poeurtm isisnwi roint frionmgt hpeu bhlei.rs SAGEP ublicaLttido.n s 1O livYearrd' s 55C itRyo ad LondEoCn1 Y1 SP Prinitnte hdUe n itSetda toefAs m erica United Kingdom LibraorfCy o ngreCsast aloging-in-PDuabtlai cation SAGEP ublicaItnidoPinvtas. L td. B1 /11M ohaCno operaItnidvues Atrerai al A primoenpr a rtlieaaslsq tu asrtersu cetquuraatli on MathuRroaa dN,e wD el1h1i00 44 model(iLPnSg- SEIMJ )o seF.p Hha i,Jr .r. .[.ea tl .]. India p.cm. SAGEP ublicaAtsiioan-sP aPctieLf.ti dc. Inclubdiebsl iogrraepfheircaeannldci ensd ex. 3C hurcSht reet #10-S0a4m sunHgu b ISB9N7 8-1-454242-(-4p1 b7k.) Singap0o4re9 483 1.L eassqtur ae2s..S trucetquuraatlmi oodne ling. IH.a i,Jr oseF.ph QA275.2P08184 5114'2.-dc23 2012041594 Thibso oiksp rinotnea dc id-pfarp.ee er AcquisiEtdiiotnoVsri :c Kknii ght EditoArsisails taKnatlK:io es cielak ProducEtdiiotno Lra:u rBaa rrett CopEyd itoGri:l lDiiacnk ens TypesettCe&rM:D igi(tPaL)lt sd . ProofreadSecro:Ott n ey IndexeWri:Rl alg sdale CoveDre signReors:Se t orey MarketMiannga geNri:c oEllel iott PermissEidointsoA rd:e lHeu tchinson 131 41 51 61 7109 8 7 6 5 4 3 2 1 Tableo fC ontents Preface xi Aboutt heA uthors xv Chapte1r:A n IntruocdtiotnoS tructural EquatiMoond eling 1 Chapte2r:S pecifyitnhge P athM odela nd CollectDiantga 32 Chapte3r:P athM odelE stimation 73 Chapte4r:A ssessiPnLgS -SEMR esultPsa rIt: EvaluatoifoR ne flectMievaes uremeMnotd els 95 Chapte5r:A ssessiPnLgS -SEMR esultPsa rItI : Evaluatoifot nh eF ormatiMveea suremeMnotd els 118 Chapte6r:A ssessiPnLgS -SEMR esultPsa rItl l: Evaluatoifot nh eS tructuMroadle l 167 Chapte7r:A dvanceTdo picisnP LS-SEM 205 Chapte8r:M odelinHge terogeneDoautsa 243 References 282 AuthoIrn dex 290 SubjeIcntd ex 293 DetaileTda ble ofC ontents Preface xi Aboutt heA uthors xv Chapte1r:A n IntrocdtuiotnoS tructural EquatiMoond eling 1 LearniOnugt come1s ChaptPerre vi1ew WhatI sS tructEuqruaalt iMoond elin2g? ConsideraitniU osnisnS gt ructural EquatiMoond eli4ng TheV aria4te Measureme5nt MeasuremSecnatl 7es Codin8g DataD istribu9tions StructEuqruaalt iMoond eliWnigt h PartiLeaals Stq uarPeast Mho deli1n1g PatMho delWsi thL ateVnatr iab1l1es MeasuremTehneto ry1 3 StructTuhreaolr 1y3 PLS-SEaMn dC B-SEM1 4 DataC haracter1i8stics ModelC haracter2i3stics OrganizaotfiR oenm ainiCnhga pte2r4s Summar2y6 RevieQwu estio2n8s Critical TQhuiensktiino2gn8 s KeyTerm2s8 SuggesRteeadd in3g1s Chapte2r:S pecifytihnegP athM odel andC ollectDiantga 32 LearniOnugt come3s2 ChaptPerre vi3e2w Stag1e:S peciftyhiSent gr uctMuordaell3 3 Mediati3o5n Moderati3o7n Higher-OarnddeH ri erarchical ComponeMnotd el3s9 Stag2e:S peciftyhieMn ega suremMeondte l4s0 ReflecatnidvF eo rmatMievaes uremMeondte l4s2 Single-MIetaesmu r4e6s Stag3e:D ataC ollecatnidoE nx aminat4i8o n MissiDnagt a5 1 Suspicious Respon5s2e Patterns Outlie5r3s DataD istribu5t4i on CasSet udIyl lustrSapteicoinf:ty hiPenL gS -SEMMo del5 5 ApplicaotfiS otna g1e:S tructMuordaell Specific5a6t ion ApplicaotfiS otna g2e:M easurement Model Specific5a7t ion ApplicaotfiS otna g3e:D ataC ollecatnido n Examinat5i8o n PatMho deClr eatiUosni ntgh eS martPSLoSf twa6r1e Summar6y6 RevieQwu estio6n9s CritiTchianlk iQnuge stio6n9s KeyTerm6s9 SuggesRteeadd in7g1s Chapte3r:P athM odelE stimation 73 LearniOnugt come7s3 ChaptPerre vi7e3w Stag4e:M odeEls timatainodtn h e PLS-SEAMl gorit7h 4m How thAel goriWtohrmk s7 4 Statistical 7P8r operties AlgoritOhpmtiico annsd P arameter SettitnogR su nt hAel gorit8h0m Resul8t1s CasSet udIyl lustrPaLtSiP oant:h ModeEls timat(iSotna4 g)e8 3 ModeEls timat8i3o n EstimatRieosnu l8t5s Summar8y8 RevieQwu estio9n0s CritiTchailn kiQnuge stio9n0 s KeyTerms 91 SuggesRteeadd ings 94 Chapte4r:A ssessiPnLgS -SEM ResPualrtIts: EvaluatoifoR ne flectMievaes uremeMnotd els 95 LearniOnugt come9sS ChaptPerre vi9e wS OvervioefwS tagSe:E valuatoifo n Measurement M9o6d els StagSea A: ssessRiensgu lotfRs e flective MeasuremMeondte l1s0 0 InterCnoanls istReenlciya bi1l0i1t y ConvergVeanlti d1i0t2y DiscrimiVnaalnitd 1i0t4y CasSet udIyl lustration-Reflective MeasuremMeondte l1s0 7 Runnintgh eP LS-SEAMl gorit1h0m7 ReflecMteiavseu remMeondte Elv aluat1i0o9n Summar1y1 3 RevieQwu estio1n1s4 CritiTchailn kiQnuge stio1n1s4 KeyTerms1 14 SuggesRteeadd in1g1s6 Chapte5r:A ssessing PLS-SEM PRaersItuI l:t s Evaluatoifot nh eF ormative MeasuMroedmeelnst 118 LearniOnugt come1s1 8 ChaptPerre vi1e1w8 StagSeb A:s sessing oRfeF sourlmtast ive MeasuremMeondte l1s1 9 Ste1p:A ssess Convergen1t2 1V alidity Ste2p: A sseFsosr matMievaes uremMeondte lfso r CollineIasrsiut1ey2s 3 Ste3p: A ssetshseS i gnifiacnadnR ceel evaonfct eh e FormatIinvdei cat1o2r6s BootstrapPprioncge du1r3e0 Conceapntd J ustific1a3t0i on BootstCroanpf ideInnctee rv1a3l6s CasSet udIyl lustration-EovfaF louramtaitoinv e MeasuremMeondte l1s3 9 ExtendtihneSg i mpPlaet Mho del1 39 ReflectMievaes uremMeondte Elv aluat1i47o n FormatMievaes uremMeondte Elv aluat1i5o0n Summar1y6 1 RevieQwu estio1n6s2 CritiTchianlk iQnuge stio1n6s3 KeyT erm1s6 3 SuggesRteeadd in1g6s5 Chapte6r:A ssessiPnLgS -SEMR esults IPlalr:t Evalautioonft heS tructuMroadle l 167 LearniOnugt come1s6 7 ChaptPerre vi1e6w7 Stag6e:A ssessPiLnSg- SESMt ructural ModeRle sul1t68s Ste1p: C ollineAasrsietsys m1e7n0t Ste2p: S tructMuordaelPl a tCho efficie1n7t0 s (R2 Ste3p: C oefficioefDn ett erminatiVoanl ue1)7 4 f 2 Ste4p: E ffecSti ze 177 Q2 Ste5p: B lindfoladnidPn rge dictive Rel1e7v8a nce Heterogen1e8i4t y Goodness-oIfn-dFe1ix8t 5 CasSet udIyl lustrHaotwi Aorne:P LS-SEM StructMuordaelRl e sulRtesp orte1d8?5 Summar1y9 8 RevieQwu estio2n0s0 CritiTchianlk iQnuge stio2n0s0 KeyT erm2s0 0 SuggesRteeadd in2g0s3 Chapte7r:A dvanceTdo picisnP LS-SEM 205 Learning Out2c0o5m es Chapter Pr2e0v5i ew Importance-PerMfaotrrmiaAxnn cael ys2i0s6 Method20 6 CasSet udIyl lustr2a1t0i on MediatAonra lys2i1s9 Method21 9 CasSet udIyl lustr2a2t6i on

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.